

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	V850ES
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	CSI, EBI/EMI, Ethernet, I ² C, UART/USART, USB
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	100
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	124К х 8
Voltage - Supply (Vcc/Vdd)	2.85V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd70f3785gj-gae-ax

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.6.2 Internal units

(1) CPU

The CPU uses five-stage pipeline control to enable single-clock execution of address calculations, arithmetic logic operations, data transfers, and almost all other instruction processing.

Other dedicated on-chip hardware, such as a multiplier (16 bits \times 16 bits \rightarrow 32 bits) and a barrel shifter (32 bits) contribute to faster complex processing.

(2) Bus control unit (BCU)

The BCU starts a required external bus cycle based on the physical address obtained by the CPU. When an instruction is fetched from external memory space and the CPU does not send a bus cycle start request, the BCU generates a prefetch address and prefetches the instruction code. The prefetched instruction code is stored in an instruction queue.

(3) Flash memory (ROM)

This is a 512/384/256 KB flash memory mapped to addresses 0000000H to 007FFFFH/0000000H to 005FFFFH/0000000H to 003FFFFH. It can be accessed from the CPU in one clock during instruction fetch.

(4) RAM

This is a 60 KB RAM mapped to addresses 3FF0000H to 3FFEFFFH. It can be accessed from the CPU in one clock during data access. An 16/64 KB data-only RAM is incorporated at addresses 00280000H to 00283FFFH/00280000H to 0028FFFFH.

(5) Interrupt controller (INTC)

This controller handles hardware interrupt requests (NMI, INTP00 to INTP25) from on-chip peripheral hardware and external hardware. Eight levels of interrupt priorities can be specified for these interrupt requests, and multiplexed servicing control can be performed.

(6) Clock generator (CG)

A main clock oscillator and subclock oscillator are provided and generate the main clock oscillation frequency (f_{xT}) and subclock frequency (f_{xT}), respectively. There are two modes: In the clock-through mode, f_x is used as the main clock frequency (f_{xx}) as is. In the PLL mode, f_x is used multiplied by 8.

The CPU clock frequency (fcPu) can be selected from among fxx, fxx/2, fxx/4, fxx/8, fxx/16, fxx/32, and fxr.

(7) Internal oscillator

An internal oscillator is provided on chip. The oscillation frequency is 220 kHz (TYP). The internal oscillator supplies the clock for watchdog timer 2 and timer M.

(8) Timer/counter

Six-channel 16-bit timer/event counter AA (TAA), two-channel 16-bit timer/event counter AB (TAB), one-channel 16-bit timer/event counter T (TMT), and four-channel 16-bit interval timer M (TMM) are provided on chip. The motor control function can be realized using TAB1 and TAA4 in combination.

/850ES/JJ3									
After res	set: 00H	R/W	Address: F	FFFF444H	ł				
	7	6	5	4	3	2	1	0	
PMC2	PMC27	PMC26	PMC25	PMC24	PMC23	PMC22	PMC21	PMC20	
		1							
	PMC27		Spe	cification o	f P27 pin o	peration m	ode		
	0	I/O port							
	1	TIAB03 ir	put/TOABC	03 output/IN	NTP21 inpu	ıt			
	PMC26		Spe	cification o	f P26 pin o	peration m	ode		
	0	I/O port							
	1	TIAA31 ir	put/TOAA3	31 output/IN	NTP05 inpu	it/UDMAAk	0 output		
	PMC25		Spe	cification o	f P25 pin o	peration m	ode		
	0	I/O port	I/O port						
	1	SCKF1 I/	SCKF1 I/O/TIAA30 input/TOAA30 output/UDMARQ0 input						
	PMC24	Specification of P24 pin operation mode							
	0	I/O port							
	1	SOF1 out	SOF1 output/RXDC1 input/SCL00 I/O/INTP04 input						
	PMC23		Spe	cification o	f P23 pin o	peration m	ode		
	0	I/O port							
	1	SIF1 inpu	SIF1 input/TXDC1 output/SDA00 I/O/INTP03 input						
	PMC22		Spe	cification o	f P22 pin o	peration m	ode		
	0	I/O port			•				
	1	TIAB01 ir	put/TOABC)1 output/R	TC1HZ out	tput/INTP0	2 input		
	PMC21		Spe	cification o	f P21 pin o	peration m	ode		
	0	I/O port					-		
	1	•	put/TOABC	0 output/R	TCDIV out	put/RTCCL	output		
	PMC20		Spe	cification o	f P20 pin o	peration m	ode		
	0	I/O port			-				
	1		put/TOABC)2 output/IN		+			

PFCDH2	Specification of PDH2 pin alternate function
0	A18 output
1	SCKE1 I/O

Caution The SCKE1 function is assigned to the PDH2 pin as well as the P911 pin. When using the PDH2 pin for the SCKE1 function, do not set the P911 pin to be used for this function.

PFCDH1	Specification of PDH1 pin alternate function
0	A17 output
1	SOE1 output

Caution The SOE1 function is assigned to the PDH1 pin as well as the P910 pin. When using the PDH1 pin for the SOE1 function, do not set the P910 pin to be used for this function.

PFCDH0	Specification of PDH0 pin alternate function
0	A16 output
1	SIE1 input

Caution The SIE1 function is assigned to the PDH0 pin as well as the P99 pin. When using the PDH0 pin for the SIE1 function, do not set the P99 pin to be used for this function.

	•						-,	
Pin Name	Alternate	Function	Pnx Bit of	PMnx Bit of	PMCnx Bit of	PFCEnx Bit of	PFCnx Bit of	Other Bits
	Name	I/O	Pn Register	PMn Register	PMCn Register	PFCEn Register	PFCn Register	(Registers)
P93	TOAB1B2	Output	P93 = Setting not required	PM93 = Setting not required	PMC93 = 1	PFCE93 = 0	PFC93 = 0	
	TRGAB1 Note 1	Input	P93 = Setting not required	PM93 = Setting not required	PMC93 = 1	PFCE93 = 0	PFC93 = 1	KRM3 (KRM) = 0
	KR3 ^{Note 1}	Input	P93 = Setting not required	PM93 = Setting not required	PMC93 = 1	PFCE93 = 0	PFC93 = 1	TAB1ETS1, TAB1ETS0 (TAB1I0C1) = 0
	INTP14	Input	P93 = Setting not required	PM93 = Setting not required	PMC93 = 1	PFCE93 = 1	PFC93 = 0	
	A3 ^{Note 2}	Output	P93 = Setting not required	PM93 = Setting not required	PMC93 = 1	PFCE93 = 1	PFC93 = 1	
P94	TOAB1T3	Output	P94 = Setting not required	PM94 = Setting not required	PMC94 = 1	PFCE94 = 0	PFC94 = 0	
	TOAB13	Output	P94 = Setting not required	PM94 = Setting not required	PMC94 = 1	PFCE94 = 0	PFC94 = 0	
	TIAB13 ^{Note 3}	Input	P94 = Setting not required	PM94 = Setting not required	PMC94 = 1	PFCE94 = 0	PFC94 = 1	KRM2 (KRM) = 0
	KR ^{4Note 3}	Input	P94 = Setting not required	PM94 = Setting not required	PMC94 = 1	PFCE94 = 0	PFC94 = 1	TAB1TIS7, TAB1TIS6 (TAB1I0C1) = 0
	INTP15	Input	P94 = Setting not required	PM94 = Setting not required	PMC94 = 1	PFCE94 = 1	PFC94 = 0	
	A4 ^{Note 2}	Output	P94 = Setting not required	PM94 = Setting not required	PMC94 = 1	PFCE94 = 1	PFC94 = 1	
P95	TOAB1B3	Output	P95 = Setting not required	PM95 = Setting not required	PMC95 = 1	PFCE95 = 0	PFC95 = 0	
	EVTAB1 ^{Note 4}	Input	P95 = Setting not required	PM95 = Setting not required	PMC95 = 1	PFCE95 = 0	PFC95 = 1	KRM5 (KRM) = 0
	KR5 ^{Note 4}	Input	P95 = Setting not required	PM95 = Setting not required	PMC95 = 1	PFCE95 = 0	PFC95 = 1	TAB1EES1, TAB1EES0 (TAB1I0C1) = 0
	INTP16	Input	P95 = Setting not required	PM95 = Setting not required	PMC95 = 1	PFCE95 = 1	PFC95 = 0	
	A5 ^{Note 2}	Output	P95 = Setting not required	PM95 = Setting not required	PMC95 = 1	PFCE95 = 1	PFC95 = 1	

Table 4-18. Using Port Pin as Alternate-Function Pin (8/13)

Notes 1. KR3 and TRGAB1 are alternate functions. When using the pin for the TRGAB1 function, disable key return detection of KR3, which is the alternate function (set the KRM.KRM3 bit to 0). Also, when using the pin for the KR3 function, disable edge detection of TRGAB1, which is the alternate function (set the TAB1IOC2.TAB1ETS1 and TAB1ETS0 bits to 00).

- 2. When using as the A0 to A15 pins, be sure to set all 16 bits of the PMC9 register to FFFFH at once.
- 3. KR4 and TIAB13 are alternate functions. When using the pin for the TIAB13 function, disable key return detection of KR4, which is the alternate function (set the KRM.KRM4 bit to 0). Also, when using the pin for the KR4 function, disable edge detection of TIAB13, which is the alternate function (set the TAB1IOC1.TAB1IS7 and TAB1IS6 bits to 00).
- 4. KR5 and EVTAB1 are alternate functions. When using the pin for the EVTAB1 function, disable key return detection of KR5, which is the alternate function (set the KRM.KRM5 bit to 0). Also, when using the pin for the KR5 function, disable edge detection of EVTAB1, which is the alternate function (set the TAB1IOC2.TAB1EES1 and TAB1EES0 bits to 00).

6.4 Operation

6.4.1 Operation of each clock

The following table shows the operation status of each clock.

Register Setting and		PCC Register										
Operation Status		CLK Bi	t = 0, MCK	Bit = 0			Bit = 1, Bit = 0		Bit = 1, Bit = 1			
	During Reset	During Oscillation Stabilization	HALT Mode	IDLE1, IDLE2 Mode	STOP Mode	Subclock Mode	Sub-IDLE Mode	Subclock Mode	Sub-IDLE Mode			
Target Clock		Time Count										
Main clock oscillator (fx)	×	0	0	0	×	0	0	×	×			
Subclock oscillator (fxT)	0	0	0	0	0	0	0	0	0			
CPU clock (fcpu)	×	×	×	×	×	0	×	0	×			
Internal system clock (fclk)	×	×	0	×	×	0	×	0	×			
Main clock (in PLL mode, fxx)	×	O ^{Note}	0	×	×	0	0	×	×			
Peripheral clock (fxx to fxx/1,024)	×	×	0	×	×	0	×	×	×			
WT clock (main)	×	0	0	0	×	0	0	×	×			
WT clock (sub)	0	0	0	0	0	0	0	0	0			
WDT2 clock (internal oscillation)	×	0	0	0	0	0	0	0	0			
WDT2 clock (main)	×	×	0	×	×	0	×	×	×			
WDT2 clock (sub)	0	0	0	0	0	0	0	0	0			

Table 6-1. Operation Status of Each Clock

Note Lockup time

Remark O: Operable

×: Stopped

6.4.2 Clock output function

The clock output function is used to output the internal system clock (fcLK) from the CLKOUT pin.

The internal system clock (fcLK) is selected by using the PCC.CK3 to PCC.CK0 bits.

The CLKOUT pin functions alternately as the PCM1 pin and functions as a clock output pin if so specified by the control register of port CM.

The status of the CLKOUT pin is the same as the internal system clock in Table 6-1 and the pin can output the clock when it is in the operable status. It outputs a low level in the stopped status. However, the CLKOUT pin is in the port mode (PCM1 pin: input mode) after reset and until it is set in the output mode. Therefore, the status of the pin is Hi-Z.

A timing example of noise elimination performed by the timer AA input pin digital filter is shown Figure 7-2.

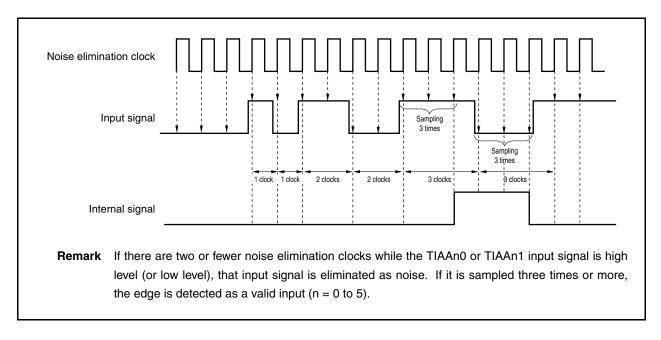
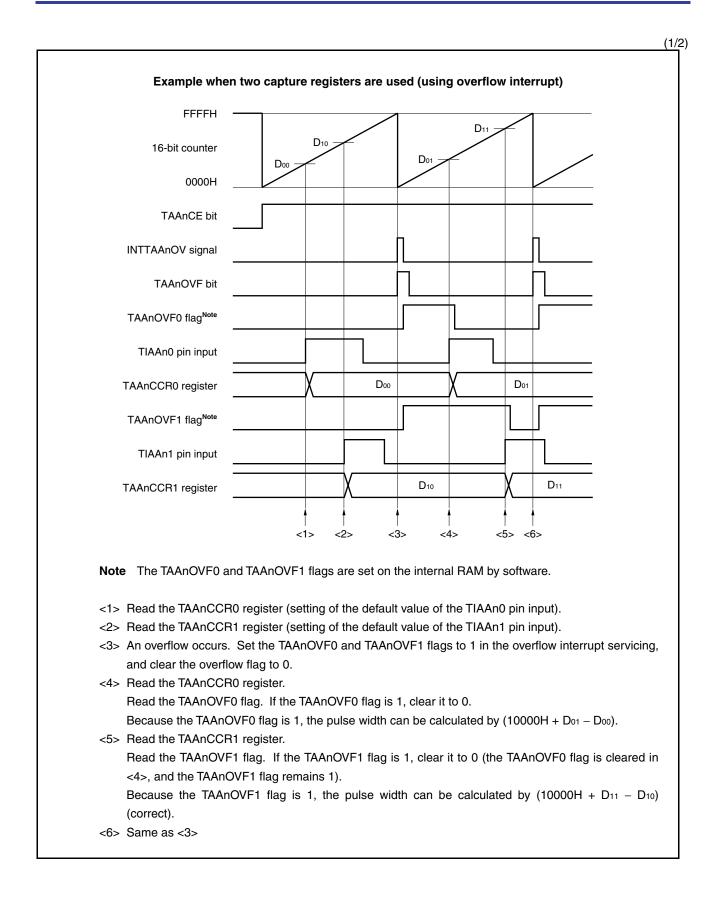


Figure 7-2. Example of Digital Noise Elimination Timing



(1) Operation flow in PWM output mode

FFFH 16-bit counter 0000H	D00 D00 D01 D01 D01 D01 D00 D00 D00 D00
TAAnCE bit	
TAAnCCR0 register	D00 D01 D00
CCR0 buffer register	Doo Do1 Do0
INTTAAnCC0 signal	
TOAAn0 pin output	
TAAnCCR1 register	D10 D10 D11 D10
CCR1 buffer register	D10 D10 D11 D10
INTTAAnCC1 signal	
TOAAn1 pin output	
	I I I I <1> <2> <3> <4> <5>
Remark n = 0 m m = 0.	

Figure 7-32. Software Processing Flow in PWM Output Mode (1/2)

FFFFH	D11 D11
TAA1 16-bit counter	D ₁₀ D ₁₀
0000H FFFFH	
TAA0 16-bit counter	D ₀₁ D ₀₁ D ₀₁ D ₀₁ D ₀₁
0000H	
TAA1CE bit	
TAA1CCR0 register	D10
TAA1CCR1 register	D ₁₁
INTTAA1CC0 interrupt	
INTTAA1CC1 interrupt	
TOAA10 pin output	
TOAA11 pin output	
TAA0CCR0 register	D00
TAA0CCR1 register	D01
INTTAA0CC0 interrupt	
INTTAA0CC1 interrupt	
TOAA00 pin output	
TOAA01 pin output	

Figure 7-49. Timing Example of Simultaneous-Start Function (TAA1: Master, TAA0: Slave)

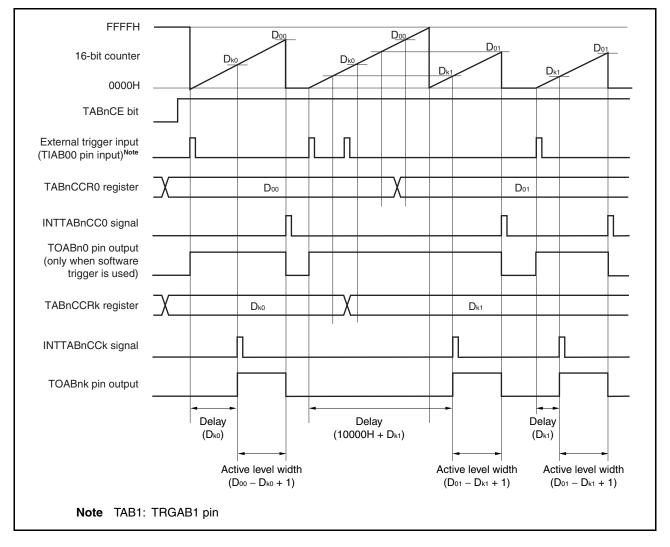
(b) 0%/100% output of PWM waveform

To output a 0% waveform, set the TABnCCRk register to 0000H. If the set value of the TABnCCR0 register is FFFFH, the INTTABnCCk signal is generated periodically.

Count clock 16-bit counter		$\frac{1}{2} \frac{1}{2} \frac{1}$		$ \begin{array}{c c} $
TABnCE bit		ζ		<u>}</u>
TABnCCR0 register		۲ <u>ــــــــــــــــــــــــــــــــــــ</u>	Do	<u>, D</u> o
TABnCCRk register		ς	0000H	0000H
INTTABnCC0 signal		<u> </u>		,
INTTABnCCk signal		·		,
TOABnk pin output	L	·		·
Remark k = n =	1 to 3, 0, 1			

To output a 100% waveform, set a value of "set value of TABnCCR0 register + 1" to the TABnCCRk register. If the set value of the TABnCCR0 register is FFFFH, 100% output cannot be produced.

Count clock		"		,	
16-bit counter	FFFF 0000	D_{0} $D_{0} - 1$ D_{0}	0000 0001	$D_0 - 1$ D_0	0000
TABnCE bit		\$ }		(
TABnCCR0 register	Do	\$}	Do	Do	
TABnCCRk register	D ₀ + 1	۶ ،	D₀ + 1	Do + 1	
INTTABnCC0 signal		\$ }		, (,	
INTTABnCCk signal	(<u> </u>		<u>}</u>	
TOABnk pin output		\$}		<u>}</u>	
Remark k = n =	1 to 3, 0, 1				



(2) Operation timing in one-shot pulse output mode

(a) Notes on rewriting TABnCCRm register

To change the set value of the TABnCCRm register to a smaller value, stop counting once, and then change the set value.

If the value of the TABnCCR0 register is rewritten to a smaller value during counting, the 16-bit counter may overflow.

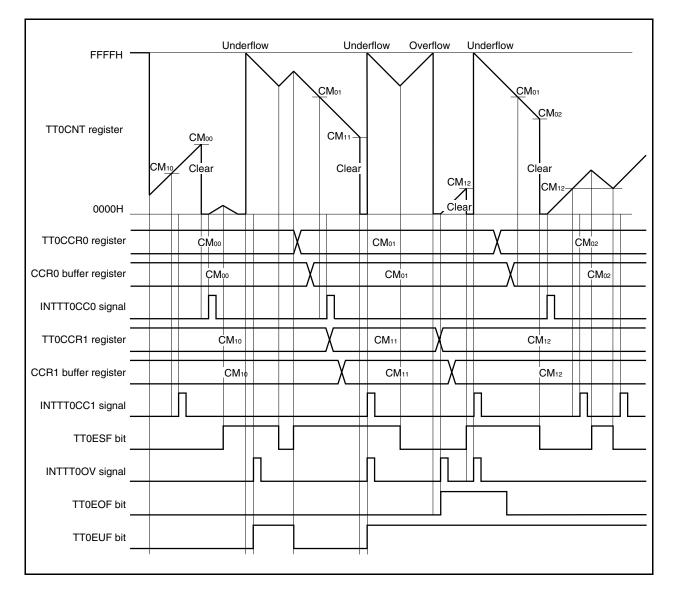
When the TABnCCR0 register is rewritten from D_{00} to D_{01} and the TABnCCRk register from D_{k0} to D_{k1} where $D_{00} > D_{01}$ and $D_{k0} > D_{k1}$, if the TABnCCRk register is rewritten when the count value of the 16-bit counter is greater than D_{k1} and less than D_{k0} and if the TABnCCR0 register is rewritten when the count value is greater than D_{01} and less than D_{00} , each set value is reflected as soon as the register has been rewritten and compared with the count value. The counter counts up to FFFFH and then counts up again from 0000H. When the count value matches D_{k1} , the counter generates the INTTABnCCk signal and asserts the TOABnk pin. When the count value matches D_{01} , the counter generates the INTTABnCCO signal, deasserts the TOABnk pin, and stops counting.

Therefore, the counter may output a pulse with a delay period or active period different from that of the oneshot pulse that is originally expected.

Remark k = 1 to 3, n = 0, 1

(c) Basic timing 3

[Register setting condition]


• TT0CTL2.TT0ECM1 and TT0CTL2.TT0ECM0 bits = 11

The count value of the 16-bit counter is cleared to 0000H when its value matches the value of the CCR0 buffer register.

The count value of the 16-bit counter is cleared to 0000H when its value matches the value of the CCR1 buffer register.

- Setting of the TT0CTL2.TT0LDE bit is invalid.
- TT0IOC3.TT0SCE bit = 0, and TT0IOC3.TT0ECS1 and TT0IOC3.TT0ECS0 bits = 00

Specification of clearing the 16-bit counter when the edge of the encoder clear input signal (TECR0 pin) is detected (no edge specified)

(3) Real-time counter control register 2 (RC1CC2)

The RC1CC2 register is an 8-bit register that controls the alarm interrupt function and waiting of counters. This register can be read or written in 8-bit or 1-bit units.

Reset sets this register to 00H.

After n	eset: 00H	R/W	Addres	s: FFFFFA	DFH				
	7	6	5	4	3	2	1	0	
RC1CC2	WALE	0	0	0	0	0	RWST	RWAIT	
	<u> </u>								
	WALE	Description	Alarm interrupt (INTRTC1) operation control						
	0		•	upon alarm		atch.			
		Generated	sinterrupt		matori.				
	RWST			Real-tim	e counter v	vait state			
	0	Counter o	perating						
	1				counters sto values ena				
		status flag write counte							
	RWAIT			Real-time	e counter w	ait control			
	0	Sets coun	ter operati	on.					
	1			on of secon /write mode	d to year co e)	ounters.			
	Be sure to If the RC informatic clocks or However	to write 1 to 1SUBC reg on is retained less $(2 \times 3)^2$, if the seco	pontrols the operation of the counters. by write 1 to this bit when reading or writing counter values. ISUBC register overflows while the RWAIT bit is 1, the overflow on is retained internally and the RC1SEC register is counted up after two less (2×32.768 kHz) after 0 is written to the RWAIT bit. if the second counter value is rewritten while the RWAIT bit is 1, the overflow information is discarded.						
				-	-	-	al-time co C1PWR bi	unter operation when t = 1).	
2. Conf	irm that th	at the RWST bit is set to 1 when reading or writing each counter value.							
		does not l omes 0 wł						even if the RWAIT bit	

16.10 Cautions

Cautions concerning UARTBn are shown below.

(1) When supply clock to UARTBn is stopped

When the supply of clocks to UARTBn is stopped (for example, IDLE and STOP modes), operation stops with each register retaining the value it had immediately before the supply of clocks was stopped. The TXDBn pin output also holds and outputs the value it had immediately before the supply of clocks was stopped. However, operation is not guaranteed after the supply of clocks is restarted. Therefore, after the supply of clocks is restarted, the circuits should be initialized by setting the UBnPWR bit = 0, UBnRXE bit = 0, and UBnTXE bit = 0.

(2) Caution on setting UBnCTL0 register

- When using UARTBn, set the external pins related to the UARTBn function to the alternate function and set the UBnCTL2 register. Then set the UBnCTL0.UBnPWR bit to 1 before setting the other bits.
- Be sure to input a high level to the RXDBn pin when setting the external pins related to the UARTBn function to the alternate function. If a low level is input, it is judged that a falling edge is input after the UBnCTL0.UBnRXE bit has been set to 1, and reception may be started.

(3) Caution on setting UBnFIC2 register

Be sure to clear the UBnCTL0.UBnTXE bit (to disable transmission) and UBnCTL0.UBnRXE bit (to disable reception) to 0 before writing data to the UBnFIC2 register. If data is written to the UBnFIC2 register with the UBnTXE or UBnRXE bit set to 1, the operation is not guaranteed.

(4) Transmission interrupt request signal

In the single mode, the transmission enable interrupt request signal (INTUBnTIT) occurs when the UBnTX register becomes empty (when 1 byte of data is transferred from the UBnTX register to the transmit shift register). In the FIFO mode, the FIFO transmission end interrupt request signal (INTUBnTIF) occurs when data is no longer in transmit FIFO and the transmit shift register (when the FIFO and register are empty). However, the INTUBnTIT signal or INTUBnTIF signal does not occur if the transmit data register becomes empty due to RESET input.

(5) Initialization during continuous transmission in single mode

Confirm that the UBnSTR.UBnTSF bit is 0 before executing initialization during transmission processing. If initialization is executed while the UBnTSF bit is 1, the transmit data is not guaranteed.

(6) Initialization during continuous transmission (pending mode) in FIFO mode

Confirm that the UBnSTR.UBnTSF bit is 0 before executing initialization during transmission processing (this can also be done by checking the FIFO transmission end interrupt request signal (INTUBnTIF)). If initialization is executed while the UBnTSF bit is 1, the transmit data is not guaranteed.

To write transmit data to transmit FIFO by DMA control, set the number of transmit data specified as the trigger by the UBnFIC2.UBnTT3 to UBnFIC2.UBnTT0 bits to 1 byte; otherwise the operation will not be guaranteed.

(7) Initialization during continuous transmission (pointer mode) in FIFO mode

Confirm that the UBnSTR.UBnTSF bit is 0 before executing initialization during transmission processing (this can also be done by checking the FIFO transmission end interrupt request signal (INTUBnTIF)). If initialization is executed while the UBnTSF bit is 1, the transmit data is not guaranteed.

17.3.2 Mode switching between UARTC1, CSIF1 and I^2C00

In the V850ES/JH3-E and V850ES/JJ3-E, UARTC1, CSIF1 and I²C00 share the same pin, so these functions cannot be used simultaneously. Set UARTC1 in advance, using the PMC2, PFC2 and PFCE2 registers.

Caution The transmit/receive operation of UARTC1, CSIF1, and I²C00 is not guaranteed if these functions are switched during transmission or reception. Be sure to disable the one that is not used.

After re	set: 00H	R/W	Address:	FFFFF444H	4			
	7	6	5	4	3	2	1	0
PMC2	/ PMC27 ^{Note}		PMC25	PMC24	PMC23	PMC22	PMC21	PMC20
TWOZ	1 1027	1 1020	1 1023	1 1024	1 1023	TMOZZ	1 10021	1 1020
After res	set: 00H	R/W	Address: F	FFFF464H	I			
	7	6	5	4	3	2	1	0
PFC2	PFC27 ^{Note}	PFC26	PFC25	PFC24	PFC23	PFC22	PFC21	PFC20
After res	set: 00H 7	R/W	Address: F	FFFF704H 4	ł 3	2	1	0
PFCE2	PFCE27 ^{Note}		PFCE25	PFCE24	PFCE23	PFCE22	PFCE21	PFCE20
	PMC25	PFCE25	PFC25		Ор	eration mo	de	
	0	×	×	Port I/O m	node			
	1	0	0	SCKF1 (C	SIF1)			
	PMC24	PFCE24	PFC24			eration mo	de	
	0	×	×	Port I/O m				
	1	0	0	SOF1 (CS				
	1	0	1	RXDC1 (l				
	1	1	0	SCL00 (I ²	C00)			
	PMC23	PFCE23	PFC23		Ор	eration mo	de	
	0	×	×	Port I/O m	node			
	1	0	0	SIF1 (CSI	F1)			
	1	0	1	TXDC1 (L	JARTC1)			
	1	1	0	SDA00 (l ²	² C00)			
	Note V8	50ES/JJ3	3-E only					

Figure 17-3. UARTC1, CSIF1 and I²C00 Mode Switch Settings

20.4 Registers

I²C0n is controlled by the following registers.

- IIC control register n (IICCn)
- IIC status register n (IICSn)
- IIC flag register n (IICFn)
- IIC clock select register n (IICCLn)
- IIC function expansion register n (IICXn)
- IIC division clock select register 0 to 2 (OCKS0 to OCKS2)

The following registers are also used.

- IIC shift registers n (IICn)
- Slave address registers n (SVAn)
- Remark For the alternate-function pin settings, see Table 4-18 Settings When Port Pins Are Used for Alternate Functions.

(1) IIC control registers n (IICCn)

The IICCn registers enable/stop I²C0n operations, set the wait timing, and set other I²C operations.

These registers can be read or written in 8-bit or 1-bit units. However, set the SPIEn, WTIMn, and ACKEn bits when the IICEn bit is 0 or during the wait period. When changing the IICEn bit from "0" to "1", these bits can also be set at the same time.

Reset sets these registers to 00H.

Address	Function Register Name	Symbol	R/W	Manipulatable Bits			Default Value
				1	8	16	
0020024AH	UF0 configuration/interface/endpoint descriptor register 66	UF0CIE66	R/W		\checkmark		Undefined
0020024CH	UF0 configuration/interface/endpoint descriptor register 67	UF0CIE67	R/W		V		Undefined
0020024EH	UF0 configuration/interface/endpoint descriptor register 68	UF0CIE68	R/W		V		Undefined
00200250H	UF0 configuration/interface/endpoint descriptor register 69	UF0CIE69	R/W		V		Undefined
00200252H	UF0 configuration/interface/endpoint descriptor register 70	UF0CIE70	R/W		V		Undefined
00200254H	UF0 configuration/interface/endpoint descriptor register 71	UF0CIE71	R/W		V		Undefined
00200256H	UF0 configuration/interface/endpoint descriptor register 72	UF0CIE72	R/W		V		Undefined
00200258H	UF0 configuration/interface/endpoint descriptor register 73	UF0CIE73	R/W		V		Undefined
0020025AH	UF0 configuration/interface/endpoint descriptor register 74	UF0CIE74	R/W		\checkmark		Undefined
0020025CH	UF0 configuration/interface/endpoint descriptor register 75	UF0CIE75	R/W		V		Undefined
0020025EH	UF0 configuration/interface/endpoint descriptor register 76	UF0CIE76	R/W		V		Undefined
00200260H	UF0 configuration/interface/endpoint descriptor register 77	UF0CIE77	R/W		V		Undefined
00200262H	UF0 configuration/interface/endpoint descriptor register 78	UF0CIE78	R/W		V		Undefined
00200264H	UF0 configuration/interface/endpoint descriptor register 79	UF0CIE79	R/W		V		Undefined
00200266H	UF0 configuration/interface/endpoint descriptor register 80	UF0CIE80	R/W		V		Undefined
00200268H	UF0 configuration/interface/endpoint descriptor register 81	UF0CIE81	R/W		V		Undefined
0020026AH	UF0 configuration/interface/endpoint descriptor register 82	UF0CIE82	R/W		V		Undefined
0020026CH	UF0 configuration/interface/endpoint descriptor register 83	UF0CIE83	R/W		\checkmark		Undefined
0020026EH	UF0 configuration/interface/endpoint descriptor register 84	UF0CIE84	R/W		V		Undefined
00200270H	UF0 configuration/interface/endpoint descriptor register 85	UF0CIE85	R/W		V		Undefined
00200272H	UF0 configuration/interface/endpoint descriptor register 86	UF0CIE86	R/W		V		Undefined
00200274H	UF0 configuration/interface/endpoint descriptor register 87	UF0CIE87	R/W		\checkmark		Undefined

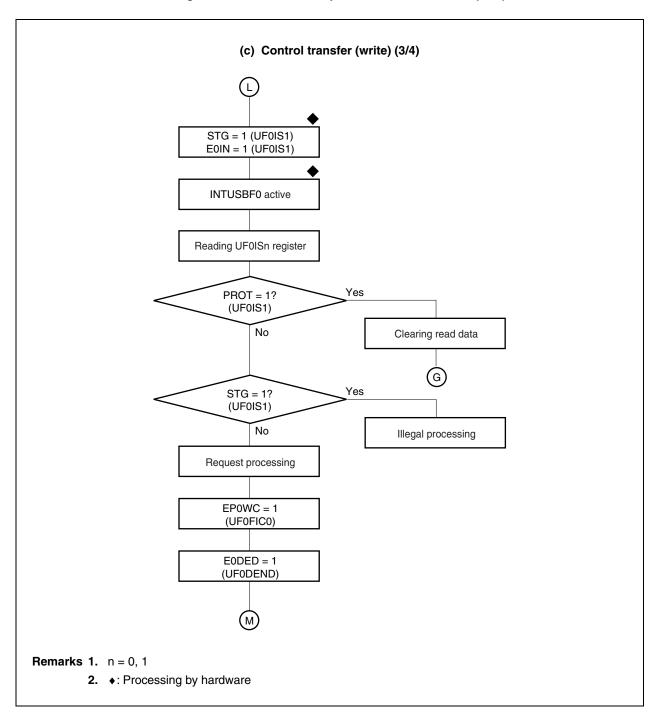
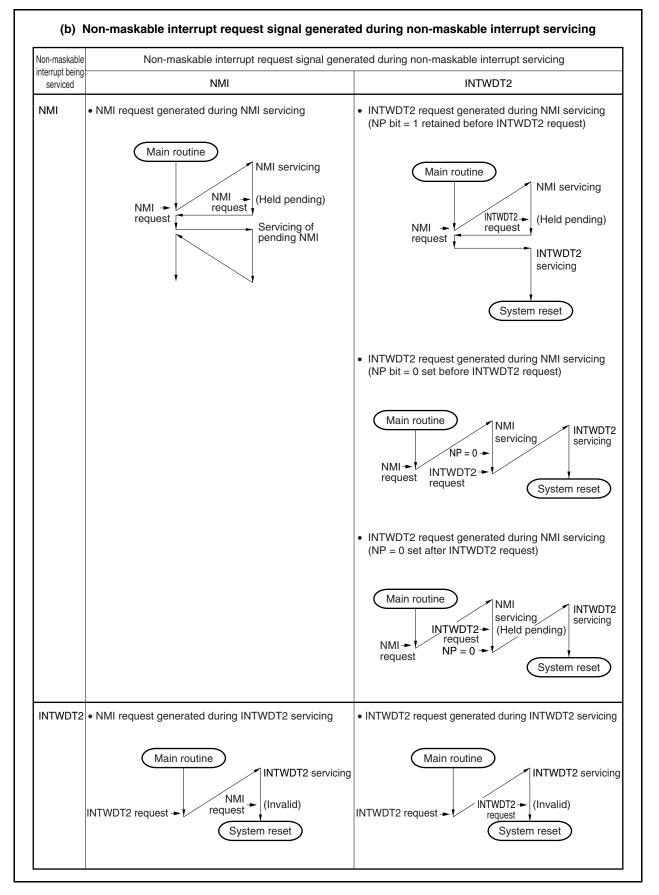



Figure 22-24. CPUDEC Request for Control Transfer (9/12)

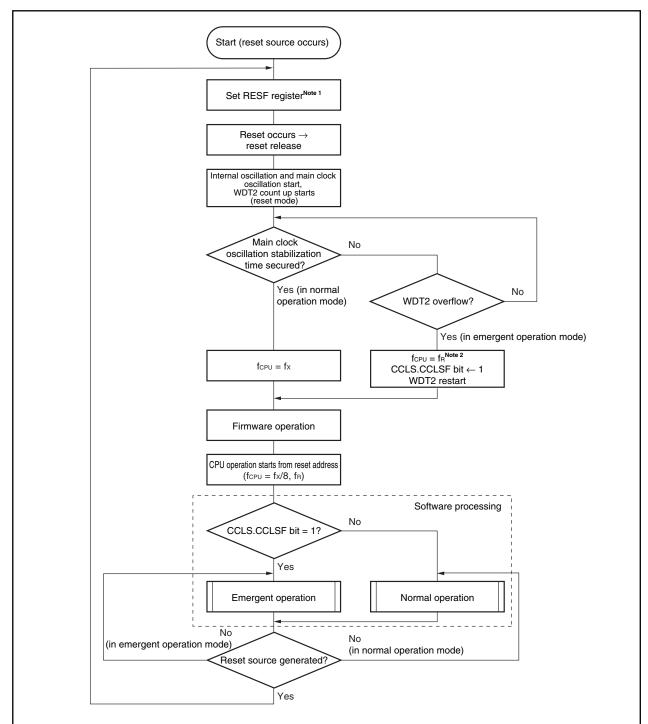


Figure 25-1. Non-Maskable Interrupt Request Signal Acknowledgment Operation (2/2)

28.3.6 Reset function operation flow

Notes 1. Bit to be set differs depending on the reset source.

	Reset Source	WDT2RF Bit	CRMRF Bit	LVIRF Bit		
	RESET pin	0	0	0		
	WDT2	1	Value before reset is retained.	Value before reset is retained.		
	CLM	Value before reset is retained.	1	Value before reset is retained.		
	LVI	Value before reset is retained.	Value before reset is retained.	1		
)_	The internal oscillator cannot be stopped					

2. The internal oscillator cannot be stopped.