E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	26
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 10x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-VQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamd21e15b-mf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	21.6.	Functional Description	
	21.7.	Register Summary	311
	21.8.	Register Description	312
00	N I\ 78.4		200
22.	INVIV	IC I RL – Non-volatile Memory Controller	
	22.1.	Overview	320
	22.2.	Features	320
	22.3.	Block Diagram	
	22.4.	Signal Description	321
	22.5.	Product Dependencies	321
	22.6.	Functional Description	322
	22.7.	Register Summary	329
	22.8.	Register Description	
23.	POR	T - I/O Pin Controller	
	23.1.	Overview	
	23.2.	Features	
	23.3.	Block Diagram	
	23.4.	Signal Description	
	23.5.	Product Dependencies	
	23.6.	Functional Description	
	23.7.	Register Summary	
	23.8.	Register Description	
~ .			
24.	EVS	YS – Event System	363
	24.1.	Overview	
	24.2.	Features	363
	24.3.	Block Diagram	
	24.4.	Signal Description	
	24.5.	Product Dependencies	
	24.6.	Functional Description	
	24.7.	Register Summary	370
	24.8.	Register Description	
25.	SER	COM – Serial Communication Interface	
	25 1	Overview	382
	25.2	Features	382
	25.3	Block Diagram	383
	25.4	Signal Description	383
	25.5	Product Dependencies	383
	25.6	Functional Description	
	20.0.		
26.	SER	COM USART – SERCOM Universal Synchronous and Asynchronous	Receiver
	and	I ransmitter	
	26.1.	Overview	
	26.2.	USART Features	
	26.3.	Block Diagram	
	26.4.	Signal Description	

PM – Power Manager

11.6 PAC - Peripheral Access Controller

11.6.1 Overview

There is one PAC associated with each AHB-APB bridge. The PAC can provide write protection for registers of each peripheral connected on the same bridge.

The PAC peripheral bus clock (CLK_PACx_APB) can be enabled and disabled in the Power Manager. CLK_PAC0_APB and CLK_PAC1_APB are enabled are reset. CLK_PAC2_APB is disabled at reset. Refer to *PM* – *Power Manager* for details. The PAC will continue to operate in any sleep mode where the selected clock source is running. Write-protection does not apply for debugger access. When the debugger makes an access to a peripheral, write-protection is ignored so that the debugger can update the register.

Write-protect registers allow the user to disable a selected peripheral's write-protection without doing a read-modify-write operation. These registers are mapped into two I/O memory locations, one for clearing and one for setting the register bits. Writing a one to a bit in the Write Protect Clear register (WPCLR) will clear the corresponding bit in both registers (WPCLR and WPSET) and disable the write-protection for the corresponding bit in both registers (WPCLR and WPSET) and enable the write-protection for the corresponding bit in both registers (WPCLR and WPSET) and enable the write-protection for the corresponding bit in both registers (WPCLR and WPSET) and enable the write-protection for the corresponding bit in both registers (WPCLR and WPSET) and enable the write-protection for the corresponding peripheral. Both registers (WPCLR and WPSET) will return the same value when read.

If a peripheral is write-protected, and if a write access is performed, data will not be written, and the peripheral will return an access error (CPU exception).

The PAC also offers a safety feature for correct program execution, with a CPU exception generated on double write-protection or double unprotection of a peripheral. If a peripheral n is write-protected and a write to one in WPSET[n] is detected, the PAC returns an error. This can be used to ensure that the application follows the intended program flow by always following a write-protect with an unprotect, and vice versa. However, in applications where a write-protected peripheral is used in several contexts, e.g., interrupts, care should be taken so that either the interrupt can not happen while the main application or other interrupt levels manipulate the write-protection status, or when the interrupt handler needs to unprotect the peripheral, based on the current protection status, by reading WPSET.

Value	Description
0	Write-protection is disabled.
1	Write-protection is enabled.

Bit 2 – NVMCTRL

Writing a zero to these bits has no effect.

Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals.

Value	Description
0	Write-protection is disabled.
1	Write-protection is enabled.

Bit 1 – DSU

Writing a zero to these bits has no effect.

Writing a one to these bits will clear the Write Protect bit for the corresponding peripherals.

Value	Description
0	Write-protection is disabled.
1	Write-protection is enabled.

11.6.2.3 PAC2 Register Description

Write Protect Clear

 Name:
 WPCLR

 Offset:
 0x00

 Reset:
 0x00800000

 Property:
 –

Bit	31	30	29	28	27	26	25	24
Access			•					
Reset								
Bit	23	22	21	20	19	18	17	16
				I2S	PTC	DAC	AC	ADC
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
	TC7	TC4	TC5	TC4	TC3	TCC2	TCC1	TCC0
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
							EVSYS	
Access			•				R/W	
Reset							0	

Table 13-6. Available Features when Operated From The External Address Range and Device is Protected

Features	Availability From The External Address Range and Device is Protected
Chip-Erase command and status	Yes
CRC32	Yes, only full array or full EEPROM
CoreSight Compliant Device identification	Yes
Debug communication channels	Yes
Testing of onboard memories (MBIST)	No
STATUSA.CRSTEXT clearing	No (STATUSA.PERR is set when attempting to do so)

Bit 0 – SWRST: Software Reset

Writing a zero to this bit has no effect.

Writing a one to this bit resets all registers in the RTC, except DBGCTRL, to their initial state, and the RTC will be disabled.

Writing a one to CTRL.SWRST will always take precedence, meaning that all other writes in the same write-operation will be discarded.

Due to synchronization, there is a delay from writing CTRL.SWRST until the reset is complete. CTRL.SWRST and STATUS.SYNCBUSY will both be cleared when the reset is complete.

This bit is not enable-protected.

Value	Description
0	There is no reset operation ongoing.
1	The reset operation is ongoing.

19.8.2 Control - MODE1

Name:CTRLOffset:0x00Reset:0x0000Property:Enable-Protected, Write-Protected, Write-Synchronized

Bit	15	14	13	12	11	10	9	8
					PRESCALER[3:0]			
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	7	6	5	4	3	2	1	0
					MOD	E[1:0]	ENABLE	SWRST
Access					R/W	R/W	R/W	W
Reset					0	0	0	0

Bits 11:8 - PRESCALER[3:0]: Prescaler

These bits define the prescaling factor for the RTC clock source (GCLK_RTC) to generate the counter clock (CLK_RTC_CNT).

These bits are not synchronized.

PRESCALER[3:0]	Name	Description
0x0	DIV1	CLK_RTC_CNT = GCLK_RTC/1
0x1	DIV2	CLK_RTC_CNT = GCLK_RTC/2
0x2	DIV4	CLK_RTC_CNT = GCLK_RTC/4
0x3	DIV8	CLK_RTC_CNT = GCLK_RTC/8
0x4	DIV16	CLK_RTC_CNT = GCLK_RTC/16
0x5	DIV32	CLK_RTC_CNT = GCLK_RTC/32
0x6	DIV64	CLK_RTC_CNT = GCLK_RTC/64

Value	Description
0	The correction value is positive, i.e., frequency will be increased.
1	The correction value is negative, i.e., frequency will be decreased.

Bits 6:0 – VALUE[6:0]: Correction Value

These bits define the amount of correction applied to the RTC prescaler.

1–127: The RTC frequency is adjusted according to the value.

Value	Description
0	Correction is disabled and the RTC frequency is unchanged.

19.8.20 Counter Value - MODE0

Name: COUNT

Offset: 0x10

Reset: 0x0000000

Property: Read-Synchronized, Write-Protected, Write-Synchronized

Bit	31	30	29	28	27	26	25	24			
		COUNT[31:24]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	23	22	21	20	19	18	17	16			
				COUN	[[23:16]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	15	14	13	12	11	10	9	8			
				COUN	T[15:8]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
		COUNT[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Bits 31:0 - COUNT[31:0]: Counter Value

These bits define the value of the 32-bit RTC counter.

19.8.21 Counter Value - MODE1

Name:COUNTOffset:0x10Reset:0x0000Property:Read-Synchronized, Write-Protected, Write-Synchronized

Bit	31	30	29	28	27	26	25	24
ſ				BASEAD	DR[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Γ				BASEAD	DR[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				BASEAD	DR[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
Γ				BASEA	DDR[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Property: PAC Write-Protection, Enable-Protected

Bits 31:0 – BASEADDR[31:0]: Descriptor Memory Base Address

These bits store the Descriptor memory section base address. The value must be 128-bit aligned.

20.8.16 Write-Back Memory Section Base Address

Name:	WRBADDR
Offset:	0x38
Reset:	0x0000000
Property:	PAC Write-Protection, Enable-Protected

Bit	31	30	29	28	27	26	25	24
				WRBADI	DR[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				WRBADI	DR[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				WRBAD	DR[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Value	Name	Description
0x1C	TC1 MC0	TC1 Match/Compare 0 Trigger
0x1D	TC1 MC1	TC1 Match/Compare 1 Trigger
0x1E	TC2 OVF	TC2 Overflow Trigger
0x1F	TC2 MC0	TC2 Match/Compare 0 Trigger
0x20	TC2 MC1	TC2 Match/Compare 1 Trigger
0x21	TC3 OVF	TC3 Overflow Trigger
0x22	TC3 MC0	TC3 Match/Compare 0 Trigger
0x23	TC3 MC1	TC3 Match/Compare 1 Trigger
0x24	TC4 OVF	TC4 Overflow Trigger
0x25	TC4 MC0	TC4 Match/Compare 0 Trigger
0x26	TC4 MC1	TC4 Match/Compare 1 Trigger
0x27	ADC RESRDY	ADC Result Ready Trigger
0x28	DAC EMPTY	DAC Empty Trigger
0x29	12S RX 0	I2S RX 0 Trigger
0x2A	12S RX 1	I2S RX 1 Trigger
0x2B	12S TX 0	I2S TX 0 Trigger
0x2C	12S TX 0	I2S TX 1 Trigger

Bits 6:5 – LVL[1:0]: Channel Arbitration Level

These bits define the arbitration level used for the DMA channel, where a high level has priority over a low level. For further details on arbitration schemes, refer to Arbitration.

These bits are not enable-protected.

TRIGACT[1:0]	Name	Description
0x0	LVL0	Channel Priority Level 0
0x1	LVL1	Channel Priority Level 1
0x2	LVL2	Channel Priority Level 2
0x3	LVL3	Channel Priority Level 3

Bit 4 – EVOE: Channel Event Output Enable

This bit indicates if the Channel event generation is enabled. The event will be generated for every condition defined in the descriptor Event Output Selection (BTCTRL.EVOSEL).

This bit is available only for the least significant DMA channels. Refer to table: User Multiplexer Selection and Event Generator Selection of the Event System for details.

Value	Description
0	Channel event generation is disabled.
1	Channel event generation is enabled.

Bit 3 – EVIE: Channel Event Input Enable

This bit is available only for the least significant DMA channels. Refer to table: *User Multiplexer Selection* and *Event Generator Selection* of the Event System for details.

Value	Description
0	Channel event action will not be executed on any incoming event.
1	Channel event action will be executed on any incoming event.

20.8.23 Channel Status

This register affects the DMA channel that is selected in the Channel ID register (CHID.ID).

Name:	CHSTATUS				
Offset:	0x4F				
Reset:	0x00				
Property: -					

Bit	7	6	5	4	3	2	1	0
						FERR	BUSY	PEND
Access						R	R	R
Reset						0	0	0

Bit 2 – FERR: Channel Fetch Error

This bit is cleared when a software resume command is executed.

This bit is set when an invalid descriptor is fetched.

Bit 1 – BUSY: Channel Busy

This bit is cleared when the channel trigger action is completed, when a bus error is detected or when the channel is disabled.

This bit is set when the DMA channel starts a DMA transfer.

Bit 0 – PEND: Channel Pending

This bit is cleared when the channel trigger action is started, when a bus error is detected or when the channel is disabled. For details on trigger action settings, refer to CHCTRLB.TRIGACT.

This bit is set when a transfer is pending on the DMA channel, as soon as the transfer request is received.

the Lock and Unlock commands. The current status of the lock can be determined by reading the LOCK register.

To change the default lock/unlock setting for a region, the user configuration section of the auxiliary space must be written using the Write Auxiliary Page command. Writing to the auxiliary space will take effect after the next Reset. Therefore, a boot of the device is needed for changes in the lock/unlock setting to take effect. Refer to the Physical Memory Map for calibration and auxiliary space address mapping.

Related Links

Physical Memory Map

22.6.4 Command and Data Interface

The NVM Controller is addressable from the APB bus, while the NVM main address space is addressable from the AHB bus. Read and automatic page write operations are performed by addressing the NVM main address space or the RWWEE address space directly, while other operations such as manual page writes and row erases must be performed by issuing commands through the NVM Controller.

To issue a command, the CTRLA.CMD bits must be written along with the CTRLA.CMDEX value. When a command is issued, INTFLAG.READY will be cleared until the command has completed. Any commands written while INTFLAG.READY is low will be ignored.

The CTRLB register must be used to control the power reduction mode, read wait states, and the write mode.

22.6.4.1 NVM Read

Reading from the NVM main address space is performed via the AHB bus by addressing the NVM main address space or auxiliary address space directly. Read data is available after the configured number of read wait states (CTRLB.RWS) set in the NVM Controller.

The number of cycles data are delayed to the AHB bus is determined by the read wait states. Examples of using zero and one wait states are shown in Figure Read Wait State Examples below.

Reading the NVM main address space while a programming or erase operation is ongoing on the NVM main array results in an AHB bus stall until the end of the operation. Reading the NVM main array does not stall the bus when the RWWEE array is being programmed or erased.

22.6.4.2 RWWEE Read

Reading from the RWW EEPROM address space is performed via the AHB bus by addressing the RWWEE address space directly.

Read timings are similar to regular NVM read timings when access size is Byte or half-Word. The AHB data phase is twice as long in case of full-Word-size access.

It is not possible to read the RWWEE area while the NVM main array is being written or erased, whereas the RWWEE area can be written or erased while the main array is being read.

The RWWEE address space is not cached, therefore it is recommended to limit access to this area for performance and power consumption considerations.

22.6.4.3 NVM Write

The NVM Controller requires that an erase must be done before programming. The entire NVM main address space and the RWWEE address space can be erased by a debugger Chip Erase command. Alternatively, rows can be individually erased by the Erase Row command or the RWWEE Erase Row command to erase the NVM main address space or the RWWEE address space, respectively.

Name:INTENSETOffset:0x10Reset:0x00Property:PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
							ERROR	READY
Access							R/W	R/W
Reset							0	0

Bit 1 – ERROR: Error Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit sets the ERROR interrupt enable.

This bit will read as the current value of the ERROR interrupt enable.

Bit 0 – READY: NVM Ready Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit sets the READY interrupt enable.

This bit will read as the current value of the READY interrupt enable.

22.8.6 Interrupt Flag Status and Clear

Bit	7	6	5	4	3	2	1	0
							ERROR	READY
Access					-		R/W	R
Reset							0	0

Bit 1 – ERROR: Error

This flag is set on the occurrence of an NVME, LOCKE or PROGE error.

This bit can be cleared by writing a '1' to its bit location.

Value	Description
0	No errors have been received since the last clear.
1	At least one error has occurred since the last clear.

Bit 0 – READY: NVM Ready

Value	Description
0	The NVM controller is busy programming or erasing.
1	The NVM controller is ready to accept a new command.

22.8.7 Status

26.6.2.3 Clock Generation and Selection

For both synchronous and asynchronous modes, the clock used for shifting and sampling data can be generated internally by the SERCOM baud-rate generator or supplied externally through the XCK line.

The synchronous mode is selected by writing a '1' to the Communication Mode bit in the Control A register (CTRLA.CMODE), the asynchronous mode is selected by writing a zero to CTRLA.CMODE.

The internal clock source is selected by writing 0x1 to the Operation Mode bit field in the Control A register (CTRLA.MODE), the external clock source is selected by writing 0x0 to CTRLA.MODE.

The SERCOM baud-rate generator is configured as in the figure below.

In asynchronous mode (CTRLA.CMODE=0), the 16-bit Baud register value is used.

In synchronous mode (CTRLA.CMODE=1), the eight LSBs of the Baud register are used. Refer to *Clock Generation – Baud-Rate Generator* for details on configuring the baud rate.

Figure 26-3. Clock Generation

Related Links

Clock Generation – Baud-Rate Generator Asynchronous Arithmetic Mode BAUD Value Selection

Synchronous Clock Operation

In synchronous mode, the CTRLA.MODE bit field determines whether the transmission clock line (XCK) serves either as input or output. The dependency between clock edges, data sampling, and data change is the same for internal and external clocks. Data input on the RxD pin is sampled at the opposite XCK clock edge when data is driven on the TxD pin.

The Clock Polarity bit in the Control A register (CTRLA.CPOL) selects which XCK clock edge is used for RxD sampling, and which is used for TxD change:

When CTRLA.CPOL is '0', the data will be changed on the rising edge of XCK, and sampled on the falling edge of XCK.

When CTRLA.CPOL is '1', the data will be changed on the falling edge of XCK, and sampled on the rising edge of XCK.

Related Links

Nested Vector Interrupt Controller

26.6.4.3 Events

Not applicable.

26.6.5 Sleep Mode Operation

The behavior in sleep mode is depending on the clock source and the Run In Standby bit in the Control A register (CTRLA.RUNSTDBY):

- Internal clocking, CTRLA.RUNSTDBY=1: GCLK_SERCOMx_CORE can be enabled in all sleep modes. Any interrupt can wake up the device.
- External clocking, CTRLA.RUNSTDBY=1: The Receive Start and the Receive Complete interrupt(s) can wake up the device.
- Internal clocking, CTRLA.RUNSTDBY=0: Internal clock will be disabled, after any ongoing transfer was completed. The Receive Start and the Receive Complete interrupt(s) can wake up the device.
- External clocking, CTRLA.RUNSTDBY=0: External clock will be disconnected, after any ongoing transfer was completed. All reception will be dropped.

26.6.6 Synchronization

Due to asynchronicity between the main clock domain and the peripheral clock domains, some registers need to be synchronized when written or read.

The following bits are synchronized when written:

- Software Reset bit in the CTRLA register (CTRLA.SWRST)
- Enable bit in the CTRLA register (CTRLA.ENABLE)
- Receiver Enable bit in the CTRLB register (CTRLB.RXEN)
- Transmitter Enable bit in the Control B register (CTRLB.TXEN)

Note: CTRLB.RXEN is write-synchronized somewhat differently. See also CTRLB for details.

Required write-synchronization is denoted by the "Write-Synchronized" property in the register description.

Related Links

Register Synchronization

The PWM frequency (f_{PWM_SS}) depends on TOP value and the peripheral clock frequency (f_{GCLK_TCC}), and can be calculated by the following equation:

$$f_{\text{PWM}_\text{SS}} = \frac{f_{\text{GCLK}_\text{TC}}}{N(\text{TOP}+1)}$$

Where N represents the prescaler divider used (1, 2, 4, 8, 16, 64, 256, 1024).

Match Pulse-Width Modulation Operation (MPWM)

In MPWM, the output of WO[1] is depending on CC1 as shown in the figure below. On on every overflow/ underflow, a one-TC-clock-cycle negative pulse is put out on WO[0] (not shown in the figure).

Figure 30-6. Match PWM Operation

The table below shows the update counter and overflow event/interrupt generation conditions in different operation modes.

Name	Operation	ТОР	Update	Output Waveform		OVFIF/Event	
				On Match	On Update	Up	Down
NFRQ	Normal Frequency	PER	TOP/ ZERO	Toggle	Stable	TOP	ZERO
MFRQ	Match Frequency	CC0	TOP/ ZERO	Toggle	Stable	TOP	ZERO
NPWM	Single-slope PWM	PER	TOP/ ZERO	See descripti	on above.	TOP	ZERO
MPWM	Single-slope PWM	CC0	TOP/ ZERO	Toggle	Toggle	TOP	ZERO

Table 30-2. Counter	Update and	Overflow Event/interrupt	Conditions in	TC
---------------------	------------	---------------------------------	----------------------	----

Changing the Top Value

The counter period is changed by writing a new TOP value to the Period register (PER or CC0, depending on the waveform generation mode). If a new TOP value is written when the counter value is close to zero and counting down, the counter can be reloaded with the previous TOP value, due to synchronization delays. Then, the counter will count one extra cycle before the new TOP value is used.

COUNT and TOP are continuously compared, so when a new TOP value that is lower than current COUNT is written to TOP, COUNT will wrap before a compare match.

A counter wraparound can occur in any operation mode when up-counting without buffering, see the figure below.

Offset: 0x40 Reset: 0xFFFFFFF Property: Write-Synchronized

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				PER[17:10]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8
				PER	[9:2]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1
Bit	7	6	5	4	3	2	1	0
	PEF	PER[1:0]		DITHER[5:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Bits 23:6 – PER[17:0]: Period Value

These bits hold the value of the period buffer register.

Note: When the TCC is configured as 16-bit timer/counter, the excess bits are read zero.

Note: This bit field occupies the MSB of the register, [23:m]. m is dependent on the Resolution bit in the Control A register (CTRLA.RESOLUTION):

CTRLA.RESOLUTION	Bits [23:m]
0x0 - NONE	23:0
0x1 - DITH4	23:4
0x2 - DITH5	23:5
0x3 - DITH6	23:6 (depicted)

Bits 5:0 – DITHER[5:0]: Dithering Cycle Number

These bits hold the number of extra cycles that are added on the PWM pulse period every 64 PWM frames.

Note: This bit field consists of the n LSB of the register. n is dependent on the value of the Resolution bits in the Control A register (CTRLA.RESOLUTION):

CTRLA.RESOLUTION	Bits [n:0]
0x0 - NONE	-
0x1 - DITH4	3:0

SAMPLENUM[3:0]	Name	Description
0xA	1024	1024 samples
0xB-0xF		Reserved

33.8.4 Sampling Time Control

Name:	SAMPCTRL
Offset:	0x03
Reset:	0x00
Property:	Write-Protected

Bit	7	6	5	4	3	2	1	0
					SAMPL	EN[5:0]		
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bits 5:0 – SAMPLEN[5:0]: Sampling Time Length

These bits control the ADC sampling time in number of half CLK_ADC cycles, depending of the prescaler value, thus controlling the ADC input impedance. Sampling time is set according to the equation:

Sampling time =
$$(SAMPLEN+1) \cdot \left(\frac{CLK_{ADC}}{2}\right)$$

33.8.5 Control B

Name:CTRLBOffset:0x04Reset:0x0000Property:Write-Protected, Write-Synchronized

Bit	15	14	13	12	11	10	9	8
						F	PRESCALER[2:0)]
Access						R/W	R/W	R/W
Reset						0	0	0
Bit	7	6	5	4	3	2	1	0
			RESS	EL[1:0]	CORREN	FREERUN	LEFTADJ	DIFFMODE
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bits 10:8 – PRESCALER[2:0]: Prescaler Configuration

These bits define the ADC clock relative to the peripheral clock.

PRESCALER[2:0]	Name	Description
0x0	DIV4	Peripheral clock divided by 4
0x1	DIV8	Peripheral clock divided by 8

Table 38-24. Package Characteristics	
Moisture Sensitivity Level	MSL3
Table 38-25. Package Reference	
JEDEC Drawing Reference	MO-220
JESD97 Classification	E3

38.2.9 35 ball WLCSP (Device Variant B)

Table 38-26. Device and Package Maximum Weight

mg

The SAM D21 oscillator is optimized for very low power consumption, hence close attention should be made when selecting crystals, see the table below for maximum ESR recommendations on 9pF and 12.5pF crystals.

The Low-frequency Crystal Oscillator provides an internal load capacitance of typical values available in Table , *32kHz Crystal Oscillator Characteristics*. This internal load capacitance and PCB capacitance can allow to use a Crystal inferior to 12.5pF load capacitance without external capacitors as shown in the following figure.

Table 39-6. Maximum ESR Recommendation for 32.768kHz Crystal

Crystal C _L (pF)	Max ESR [kΩ]
12.5	313

Note: Maximum ESR is typical value based on characterization. These values are not covered by test limits in production.

Figure 39-7. External Real Time Oscillator without Load Capacitor

However, to improve Crystal accuracy and Safety Factor, it can be recommended by crystal datasheet to add external capacitors as shown in the next figure.

To find suitable load capacitance for a 32.768kHz crystal, consult the crystal datasheet.

Figure 39-8. External Real Time Oscillator with Load Capacitor

Table 39-7. External Real Time Oscillator Checklist

Signal Name	Recommended Pin Connection	Description
XIN32	Load capacitor 22pF ⁽¹⁾⁽²⁾	Timer oscillator input
XOUT32	Load capacitor 22pF ⁽¹⁾⁽²⁾	Timer oscillator output

- 1. These values are given only as typical examples.
- 2. Decoupling capacitor should be placed close to the device for each supply pin pair in the signal group.

Note: In order to minimize the cycle-to-cycle jitter of the external oscillator, keep the neighboring pins as steady as possible. For neighboring pin details, refer to the Oscillator Pinout section.

Related Links

© 2017 Microchip Technology Inc.

Symbol	Description	Max.	Units
f _{GCLK_PTC}	PTC input clock frequency	48	MHz
f _{GCLK_12S_0}	I2S serializer 0 input clock frequency	13	MHz
f _{GCLK_I2S_1}	I2S serializer 1 input clock frequency	13	MHz

Table 44-6. Maximum GCLK Generator Output Frequencies (Device Variant B)

Symbol	Description	Conditions	Max.	Units
f _{GCLKGEN0} / f _{GCLK_MAIN}	GCLK Generator Output Frequency	Undivided	96	MHz
t _{GCLKGEN1}		Divided	48	MHz
f _{GCLKGEN2}				
f _{GCLKGEN3}				
f _{GCLKGEN4}				
f _{GCLKGEN5}				
f _{GCLKGEN6}				
f _{GCLKGEN7}				
f _{GCLKGEN8}				

Table 44-7.	Maximum	Peripheral	Clock Frequencies	(Device	Variant B)
-------------	---------	------------	--------------------------	---------	------------

Symbol	Description	Max.	Units
f _{CPU}	CPU clock frequency	48	MHz
f _{AHB}	AHB clock frequency	48	MHz
f _{APBA}	APBA clock frequency	48	MHz
f _{APBB}	APBB clock frequency	48	MHz
f _{APBC}	APBC clock frequency	48	MHz
f _{GCLK_DFLL48M_REF}	DFLL48M Reference clock frequency	33	KHz
fgclk_dpll	FDPLL96M Reference clock frequency	2	MHz
f _{GCLK_DPLL_32K}	FDPLL96M 32k Reference clock frequency	32	KHz
f _{gclk_wdt}	WDT input clock frequency	48	MHz
f _{GCLK_RTC}	RTC input clock frequency	48	MHz
f _{GCLK_EIC}	EIC input clock frequency	48	MHz
f _{GCLK_USB}	USB input clock frequency	48	MHz
fgclk_evsys_channel_0	EVSYS channel 0 input clock frequency	48	MHz
fGCLK_EVSYS_CHANNEL_1	EVSYS channel 1 input clock frequency	48	MHz
fGCLK_EVSYS_CHANNEL_2	EVSYS channel 2 input clock frequency	48	MHz
f _{GCLK_EVSYS_CHANNEL_3}	EVSYS channel 3 input clock frequency	48	MHz

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
DNL Differ	Differential non-linearity	V _{REF} = Ext 1.0V	V _{DD} = 1.6V	+/-0.9	+/-1.2	+/-2.0	LSB
			V _{DD} = 3.6V	+/-0.9	+/-1.1	+/-1.5	-
		V _{REF} = V _{DDANA}	V _{DD} = 1.6V	+/-1.1	+/-1.7	+/-3.0	
			V _{DD} = 3.6V	+/-1.0	+/-1.1	+/-1.6	-
		V _{REF} = INT1V	V _{DD} = 1.6V	+/-1.1	+/-1.4	+/-2.5	
			V _{DD} = 3.6V	+/-1.0	+/-1.5	+/-1.8	-
	Gain error	Ext. V _{REF}		+/-1.0	+/-5	+/-10	mV
	Offset error	Ext. V _{REF}		+/-2	+/-3	+/-8	mV

Table 44-23. Accuracy Characteristics⁽¹⁾(Device Variant B)

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
RES	Input resolution			-	-	10	Bits
INL	Integral non-linearity	V _{REF} = Ext 1.0V	V _{DD} = 1.6V	0.7	0.75	2.0	LSB
			V _{DD} = 3.6V	0.6	0.65	1.5	
		$V_{REF} = V_{DDANA}$	V _{DD} = 1.6V	0.6	0.85	2.0	
			V _{DD} = 3.6V	0.5	0.8	1.5	
		V _{REF} = INT1V	V _{DD} = 1.6V	0.5	0.75	1.5	
			V _{DD} = 3.6V	0.7	0.8	1.5	
DNL	Differential non-linearity	V _{REF} = Ext 1.0V	V _{DD} = 1.6V	+/-0.3	+/-0.4	+/-1.0	LSB
			V _{DD} = 3.6V	+/-0.25	+/-0.4	+/-0.75	
		V _{REF} = V _{DDANA}	V _{DD} = 1.6V	+/-0.4	+/-0.55	+/-1.5	
			V _{DD} = 3.6V	+/-0.2	+/-0.3	+/-0.75	
		V _{REF} = INT1V	V _{DD} = 1.6V	+/-0.5	+/-0.7	+/-1.5	
			V _{DD} = 3.6V	+/-0.4	+/-0.7	+/-1.5	
	Gain error	Ext. V _{REF}		+/-0.5	+/-5	+/-12	mV
	Offset error	Ext. V _{REF}		+/-2	+/-1.5	+/-8	mV

1. All values measured using a conversion rate of 350ksps.