E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	26
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 10x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-VQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamd21e15b-mu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

11.2.2 Interrupt Line Mapping

Each of the 28 interrupt lines is connected to one peripheral instance, as shown in the table below. Each peripheral can have one or more interrupt flags, located in the peripheral's Interrupt Flag Status and Clear (INTFLAG) register. The interrupt flag is set when the interrupt condition occurs. Each interrupt in the peripheral can be individually enabled by writing a one to the corresponding bit in the peripheral's Interrupt Enable Set (INTENSET) register, and disabled by writing a one to the corresponding bit in the peripheral's Interrupt Enable Clear (INTENCLR) register. An interrupt request is generated from the peripheral are ORed together on system level, generating one interrupt request for each peripheral. An interrupt request will set the corresponding interrupt pending bit in the NVIC interrupt, it must be enabled in the NVIC interrupt enable register (SETPEND/CLRPEND bits in ISPR/ICPR). For the NVIC to activate the interrupt, it must be enabled in the NVIC interrupt enable register (SETENA/CLRENA bits in ISER/ICER). The NVIC interrupt priority registers IPR0-IPR7 provide a priority field for each interrupt.

Peripheral Source	NVIC Line
EIC NMI – External Interrupt Controller	NMI
PM – Power Manager	0
SYSCTRL – System Control	1
WDT – Watchdog Timer	2
RTC – Real Time Counter	3
EIC – External Interrupt Controller	4
NVMCTRL – Non-Volatile Memory Controller	5
DMAC - Direct Memory Access Controller	6
USB - Universal Serial Bus	7
EVSYS – Event System	8
SERCOM0 – Serial Communication Interface 0	9
SERCOM1 – Serial Communication Interface 1	10
SERCOM2 – Serial Communication Interface 2	11
SERCOM3 – Serial Communication Interface 3	12
SERCOM4 – Serial Communication Interface 4	13
SERCOM5 – Serial Communication Interface 5	14
TCC0 – Timer Counter for Control 0	15
TCC1 – Timer Counter for Control 1	16
TCC2 – Timer Counter for Control 2	17
TC3 – Timer Counter 3	18
TC4 – Timer Counter 4	19
TC5 – Timer Counter 5	20

31	30	29	28	27	26	25	24
	DATA[31:24]						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
23	22	21	20	19	18	17	16
			DATA[23:16]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8
			DATA	[15:8]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
7	6	5	4	3	2	1	0
			DATA	\[7:0]			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
0	0	0	0	0	0	0	0
	R/W 0 23 R/W 0 15 R/W 0 7 R/W	R/W R/W 0 0 23 22 R/W R/W 0 0 15 14 R/W R/W 0 0 7 6 R/W R/W	R/W R/W R/W 0 0 0 23 22 21 R/W R/W R/W 0 0 0 15 14 13 R/W R/W R/W 0 0 0 7 6 5 R/W R/W R/W	R/W R/W R/W R/W R/W R/W Q/W Q/W <td>R/W R/W R/W R/W R/W 0 0 0 0 0 0 23 22 21 20 19 DATA[23:16] DATA[23:16] R/W R/W R/W R/W 0 0 0 0 0 15 14 13 12 11 DATA[15:8] R/W R/W R/W R/W 0 0 0 0 0 7 6 5 4 3 DATA[7:0] R/W R/W R/W R/W</td> <td>DATA[31:24] R/W R/W R/W R/W 0 0 0 0 0 23 22 21 20 19 18 DATA[23:16] R/W R/W R/W R/W R/W 0 0 0 0 0 0 15 14 13 12 11 10 DATA[15:8] R/W R/W R/W R/W 0 0 0 0 0 7 6 5 4 3 2 DATA[7:0] R/W R/W R/W R/W R/W</td> <td>DATA[31:24] R/W R/W R/W R/W R/W 0 0 0 0 0 0 23 22 21 20 19 18 17 DATA[23:16] TOATA[23:16] R/W R/W R/W R/W R/W 0 0 0 0 0 0 15 14 13 12 11 10 9 DATA[15:8] R/W R/W R/W R/W R/W 0 0 0 0 0 0 TOATA[15:8] R/W R/W R/W R/W R/W R/W 0 0 0 0 0 0 7 6 5 4 3 2 1 DATA[7:0] R/W R/W R/W R/W R/W R/W</td>	R/W R/W R/W R/W R/W 0 0 0 0 0 0 23 22 21 20 19 DATA[23:16] DATA[23:16] R/W R/W R/W R/W 0 0 0 0 0 15 14 13 12 11 DATA[15:8] R/W R/W R/W R/W 0 0 0 0 0 7 6 5 4 3 DATA[7:0] R/W R/W R/W R/W	DATA[31:24] R/W R/W R/W R/W 0 0 0 0 0 23 22 21 20 19 18 DATA[23:16] R/W R/W R/W R/W R/W 0 0 0 0 0 0 15 14 13 12 11 10 DATA[15:8] R/W R/W R/W R/W 0 0 0 0 0 7 6 5 4 3 2 DATA[7:0] R/W R/W R/W R/W R/W	DATA[31:24] R/W R/W R/W R/W R/W 0 0 0 0 0 0 23 22 21 20 19 18 17 DATA[23:16] TOATA[23:16] R/W R/W R/W R/W R/W 0 0 0 0 0 0 15 14 13 12 11 10 9 DATA[15:8] R/W R/W R/W R/W R/W 0 0 0 0 0 0 TOATA[15:8] R/W R/W R/W R/W R/W R/W 0 0 0 0 0 0 7 6 5 4 3 2 1 DATA[7:0] R/W R/W R/W R/W R/W R/W

Property: PAC Write-Protection

Bits 31:0 - DATA[31:0]: Data

Memory operation initial value or result value.

13.13.7 Debug Communication Channel 0

Name:	DCC0
Offset:	0x0010
Reset:	0x0000000
Property:	-

Bit	31	30	29	28	27	26	25	24
				DATA[[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				DATA[[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				DATA	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Value	Description
0	The 32kHz output is disabled.
1	The 32kHz output is enabled.
0	The oscillator is disabled.
1	The oscillator is enabled.

Bit 1 – ENABLE: Oscillator Enable

Value	Description
0	The oscillator is disabled.
1	The oscillator is enabled.

17.8.8 32kHz Ultra Low Power Internal Oscillator (OSCULP32K) Control

Name:OSCULP32KOffset:0x1CReset:0xXXProperty:Write-Protected

Bit	7	6	5	4	3	2	1	0
	WRTLOCK					CALIB[4:0]		
Access	R/W			R/W	R/W	R/W	R/W	R/W
Reset	0			х	х	х	х	x

Bit 7 – WRTLOCK: Write Lock

This bit locks the OSCULP32K register for future writes to fix the OSCULP32K configuration.

Value	Description
0	The OSCULP32K configuration is not locked.
1	The OSCULP32K configuration is locked.

Bits 4:0 – CALIB[4:0]: Oscillator Calibration

These bits control the oscillator calibration.

These bits are loaded from Flash Calibration at startup.

17.8.9 8MHz Internal Oscillator (OSC8M) Control

Name:OSC8MOffset:0x20Reset:0xXXXX0382Property:Write-Protected

Bit	31	30	29	28	27	26	25	24
	FRANGE[1:0]					CALIE	8[11:8]	
Access	R/W	R/W			R/W	R/W	R/W	R/W
Reset	x	x			0	0	0	0

Value	Description
0	Output clock before the DFLL is locked.
1	Output clock when DFLL is locked.

Bit 10 – BPLCKC: Bypass Coarse Lock

This bit controls the coarse lock procedure:

Value	Description
0	Bypass coarse lock is disabled.
1	Bypass coarse lock is enabled.

Bit 9 – QLDIS: Quick Lock Disable

Value	Description
0	Quick Lock is enabled.
1	Quick Lock is disabled.

Bit 8 – CCDIS: Chill Cycle Disable

Value	Description
0	Chill Cycle is enabled.
1	Chill Cycle is disabled.

Bit 7 – ONDEMAND: On Demand Control

The On Demand operation mode allows an oscillator to be enabled or disabled depending on peripheral clock requests.

In On Demand operation mode, i.e., if the ONDEMAND bit has been previously written to one, the oscillator will only be running when requested by a peripheral. If there is no peripheral requesting the oscillator s clock source, the oscillator will be in a disabled state.

If On Demand is disabled the oscillator will always be running when enabled.

In standby sleep mode, the On Demand operation is still active if the DFLLCTRL.RUNSTDBY bit is one. If DFLLCTRL.RUNSTDBY is zero, the oscillator is disabled.

Value	Description
0	The oscillator is always on, if enabled.
1	The oscillator is enabled when a peripheral is requesting the oscillator to be used as a clock source. The oscillator is disabled if no peripheral is requesting the clock source.

Bit 6 – RUNSTDBY: Run in Standby

This bit controls how the DFLL behaves during standby sleep mode:

Value	Description
0	The oscillator is disabled in standby sleep mode.
1	The oscillator is not stopped in standby sleep mode. If DFLLCTRL.ONDEMAND is one, the clock source will be running when a peripheral is requesting the clock. If DFLLCTRL.ONDEMAND is zero, the clock source will always be running in standby sleep mode.

Bit 5 – USBCRM: USB Clock Recovery Mode

Table 19-1. MODE0 - Mode Register Summary

Offset	Name	Bit									
		Pos.									
0x00	CTRL	7:0	MATCHCLR				MOD	E[1:0]	ENABLE	SWRST	
0x01	-	15:8						PRESCA	LER[3:0]		
0x02	READREQ	7:0					ADD	R[5:0]			
0x03		15:8	RREQ	RCONT							
0x04	EVCTRL	7:0	PEREO7	PEREO6	PEREO5	PEREO4	PEREO3	PEREO2	PEREO1	PEREO0	
0x05	LVOINE	15:8	OVFEO							CMPEO0	
0x06	INTENCLR	7:0	OVF	SYNCRDY						CMP0	
0x07	INTENSET	7:0	OVF	SYNCRDY						CMP0	
0x08	INTFLAG	7:0	OVF	SYNCRDY						CMP0	
0x09	Reserved										
0x0A	STATUS	7:0	SYNCBUSY								
0x0B	DBGCTRL	7:0								DBGRUN	
0x0C	FREQCORR	7:0	SIGN				VALUE[6:0]				
0x0D											
	Reserved										
0x0F											
0x10		7:0				COUN	NT[7:0]				
0x11	001117	15:8				COUN	T[15:8]				
0x12	COUNT	23:16				COUN	T[23:16]				
0x13		31:24		COUNT[31:24]							
0x14											
	Reserved										
0x17											
0x18		7:0			1	COM	P[7:0]	1			
0x19		15:8				COM	P[15:8]				
0x1A	COMP0	23:16					[23:16]				
0x1B	-	31:24				COMP	[31:24]				

Table 19-2. MODE1 - Mode Register Summary

Offset	Name	Bit								
		Pos.								
0x00	CTRL	7:0					MOD	E[1:0]	ENABLE	SWRST
0x01	CIRL	15:8						PRESCA	ALER[3:0]	
0x02	READREQ	7:0					ADD	R[5:0]		
0x03	READREQ	15:8	RREQ	RCONT						
0x04		7:0	PEREO7	PEREO6	PEREO5	PEREO4	PEREO3	PEREO2	PEREO1	PEREO0
0x05	EVCTRL	15:8	OVFEO						CMPEO1	CMPEO0
0x06	INTENCLR	7:0	OVF	SYNCRDY					CMP1	CMP0
0x07	INTENSET	7:0	OVF	SYNCRDY					CMP1	CMP0
0x08	INTFLAG	7:0	OVF	SYNCRDY					CMP1	CMP0
0x09	Reserved									
0x0A	STATUS	7:0	SYNCBUSY							
0x0B	DBGCTRL	7:0								DBGRUN
0x0C	FREQCORR	7:0	SIGN				VALUE[6:0]			

Writing a zero to this bit has no effect.

Writing a one to this bit clears the Synchronization Ready interrupt flag.

Bits 1,0 – CMPx : Compare x [x=1:0]

This flag is cleared by writing a one to the flag.

This flag is set on the next CLK_RTC_CNT cycle after a match with the compare condition and an interrupt request will be generated if INTENCLR/SET.CMPx is one.

Writing a zero to this bit has no effect.

Writing a one to this bit clears the Compare x interrupt flag.

19.8.16 Interrupt Flag Status and Clear - MODE2

Name: INTFLAG Offset: 0x08 Reset: 0x00 Property: -

Bit	7	6	5	4	3	2	1	0
	OVF	SYNCRDY						ALARM0
Access	R/W	R/W						R/W
Reset	0	0						0

Bit 7 – OVF: Overflow

This flag is cleared by writing a one to the flag.

This flag is set on the next CLK_RTC_CNT cycle after an overflow condition occurs, and an interrupt request will be generated if INTENCLR/SET.OVF is one.

Writing a zero to this bit has no effect.

Writing a one to this bit clears the Overflow interrupt flag.

Bit 6 – SYNCRDY: Synchronization Ready

This flag is cleared by writing a one to the flag.

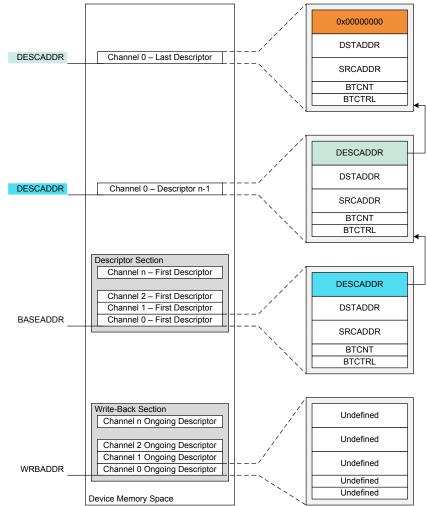
This flag is set on a 1-to-0 transition of the Synchronization Busy bit in the Status register (STATUS.SYNCBUSY), except when caused by enable or software reset, and an interrupt request will be generated if INTENCLR/SET.SYNCRDY is one.

Writing a zero to this bit has no effect.

Writing a one to this bit clears the Synchronization Ready interrupt flag.

Bit 0 – ALARM0: Alarm 0

This flag is cleared by writing a one to the flag.


This flag is set on the next CLK_RTC_CNT cycle after a match with ALARM0 condition occurs, and an interrupt request will be generated if INTENCLR/SET.ALARM0 is also one.

Writing a zero to this bit has no effect.

Writing a one to this bit clears the Alarm 0 interrupt flag.

ordered according to their channel number. The figure below shows an example of linked descriptors on DMA channel 0. For further details on linked descriptors, refer to Linked Descriptors.

The size of the descriptor and write-back memory sections is dependent on the number of the most significant enabled DMA channel *m*, as shown below:

Size = 128 bits $\cdot (m + 1)$

For memory optimization, it is recommended to always use the less significant DMA channels if not all channels are required.

The descriptor and write-back memory sections can either be two separate memory sections, or they can share memory section (BASEADDR=WRBADDR). The benefit of having them in two separate sections, is that the same transaction for a channel can be repeated without having to modify the first transfer descriptor. The benefit of having descriptor memory and write-back memory in the same section is that it requires less SRAM. In addition, the latency from fetching the first descriptor of a transaction to the first burst transfer is executed, is reduced.

20.6.2.4 Arbitration

If a DMA channel is enabled and not suspended when it receives a transfer trigger, it will send a transfer request to the arbiter. When the arbiter receives the transfer request it will include the DMA channel in the queue of channels having pending transfers, and the corresponding Pending Channel x bit in the Pending Channels registers (PENDCH.PENDCHx) will be set. Depending on the arbitration scheme, the arbiter

Figure 22-4. EEPROM and Boot L	
EEPROM Emulation allocation	NVM Base Address + NVM size
	NVM Base Address + NVM size - EEPROM size
Program allocation	
	NVM Base Address + BOOTPROT size
BOOT allocation	
Delated Links	NVM Base Address

Figure 22-4. EEPROM and Boot Loader Allocation

Related Links

Physical Memory Map

22.6.3 Region Lock Bits

The NVM block is grouped into 16 equally sized regions. The region size is dependent on the Flash memory size, and is given in the table below. Each region has a dedicated lock bit preventing writing and erasing pages in the region. After production, all regions will be unlocked.

Table 22-1. Region Size

Memory Size [KB]	Region Size [KB]
256	16
128	8
64	4
32	2

To lock or unlock a region, the Lock Region and Unlock Region commands are provided. Writing one of these commands will temporarily lock/unlock the region containing the address loaded in the ADDR register. ADDR can be written by software, or the automatically loaded value from a write operation can be used. The new setting will stay in effect until the next Reset, or until the setting is changed again using

© 2017 Microchip Technology Inc.

Related Links

Physical Memory Map

22.6.6 Security Bit

The security bit allows the entire chip to be locked from external access for code security. The security bit can be written by a dedicated command, Set Security Bit (SSB). Once set, the only way to clear the security bit is through a debugger Chip Erase command. After issuing the SSB command, the PROGE error bit can be checked.

In order to increase the security level it is recommended to enable the internal BOD33 when the security bit is set.

Related Links

DSU - Device Service Unit

22.6.7 Cache

The NVM Controller cache reduces the device power consumption and improves system performance when wait states are required. Only the NVM main array address space is cached. It is a direct-mapped cache that implements 8 lines of 64 bits (i.e., 64 Bytes). NVM Controller cache can be enabled by writing a '0' to the Cache Disable bit in the Control B register (CTRLB.CACHEDIS).

The cache can be configured to three different modes using the Read Mode bit group in the Control B register (CTRLB.READMODE).

The INVALL command can be issued using the Command bits in the Control A register to invalidate all cache lines (CTRLA.CMD=INVALL). Commands affecting NVM content automatically invalidate cache lines.

23.7 Register Summary

Offset	Name	Bit Pos.								
0x00		7:0				DIR	[7:0]			
0x01	212	15:8				DIR[15:8]			
0x02	DIR	23:16				DIR[2	3:16]			
0x03		31:24				DIR[3	1:24]			
0x04		7:0				DIRCL	.R[7:0]			
0x05		15:8				DIRCL	R[15:8]			
0x06	DIRCLR	23:16								
0x07		31:24				DIRCLF	R[31:24]			
0x08		7:0				DIRSE	T[7:0]			
0x09	DIRSET	15:8				DIRSE	T[15:8]			
0x0A	DIRSET	23:16				DIRSET	[23:16]			
0x0B		31:24				DIRSET	[31:24]			
0x0C		7:0				DIRTO	GL[7:0]			
0x0D	DIRTGL	15:8				DIRTG	L[15:8]			
0x0E	DIRTGL	23:16				DIRTGL	[23:16]			
0x0F		31:24				DIRTGL	[31:24]			
0x10		7:0				OUT	[7:0]			
0x11	OUT	15:8				ουτ	15:8]			
0x12	OUT	23:16				OUT[2	23:16]			
0x13		31:24				OUT[31:24]			
0x14		7:0	OUTCLR[7:0]							
0x15		15:8	OUTCLR[15:8]							
0x16	OUTCLR	23:16	OUTCLR[23:16]							
0x17		31:24				OUTCLE	R[31:24]			
0x18		7:0				OUTSE	ET[7:0]			
0x19	OUTSET	15:8				OUTSE	T[15:8]			
0x1A	OUTSET	23:16	OUTSET[23:16]							
0x1B		31:24				OUTSE	T[31:24]			
0x1C		7:0				OUTTO	GL[7:0]			
0x1D	OUTTGL	15:8				OUTTG	6L[15:8]			
0x1E	CONCE	23:16				OUTTG	L[23:16]			
0x1F		31:24				OUTTG	L[31:24]			
0x20		7:0				IN[7	7:0]			
0x21	IN	15:8				IN[1	5:8]			
0x22		23:16				IN[23	3:16]			
0x23		31:24	IN[31:24]							
0x24		7:0				SAMPLI	NG[7:0]			
0x25	CTRL	15:8				SAMPLI	NG[15:8]			
0x26	OTTLE .	23:16				SAMPLIN	IG[23:16]			
0x27		31:24				SAMPLIN	IG[31:24]			
0x28		7:0				PINMA	SK[7:0]			
0x29	WRCONFIG	15:8				PINMAS	SK[15:8]			
0x2A		23:16		DRVSTR				PULLEN	INEN	PMUXEN
0x2B		31:24	HWSEL	WRPINCFG		WRPMUX		PMU	X[3:0]	

Condition	Request				
	DMA	Interrupt	Event		
Data needed for transmit (TX) (Master transmit mode)	Yes (request cleared when data is written)		NA		
Data needed for transmit (RX) (Master transmit mode)	Yes (request cleared when data is read)				
Master on Bus (MB)		Yes			
Stop received (SB)		Yes			
Error (ERROR)		Yes			

28.6.4.1 DMA Operation

Smart mode must be enabled for DMA operation in the Control B register by writing CTRLB.SMEN=1.

Slave DMA

When using the I²C slave with DMA, an address match will cause the address interrupt flag (INTFLAG.ADDRMATCH) to be raised. After the interrupt has been serviced, data transfer will be performed through DMA.

The I²C slave generates the following requests:

- Write data received (RX): The request is set when master write data is received. The request is cleared when DATA is read.
- Read data needed for transmit (TX): The request is set when data is needed for a master read operation. The request is cleared when DATA is written.

Master DMA

When using the I²C master with DMA, the ADDR register must be written with the desired address (ADDR.ADDR), transaction length (ADDR.LEN), and transaction length enable (ADDR.LENEN). When ADDR.LENEN is written to 1 along with ADDR.ADDR, ADDR.LEN determines the number of data bytes in the transaction from 0 to 255. DMA is then used to transfer ADDR.LEN bytes followed by an automatically generated NACK (for master reads) and a STOP.

If a NACK is received by the slave for a master write transaction before ADDR.LEN bytes, a STOP will be automatically generated and the length error (STATUS.LENERR) will be raised along with the INTFLAG.ERROR interrupt.

The I²C master generates the following requests:

- Read data received (RX): The request is set when master read data is received. The request is cleared when DATA is read.
- Write data needed for transmit (TX): The request is set when data is needed for a master write operation. The request is cleared when DATA is written.

28.6.4.2 Interrupts

The I²C slave has the following interrupt sources. These are asynchronous interrupts. They can wake-up the device from any sleep mode:

Error (ERROR)

29.5.2 Power Management

The I²S will continue to operate in any sleep mode where the selected source clocks are running.

29.5.3 Clocks

The clock for the I²S bus interface (CLK_I2S_APB) is generated by the Power Manager. This clock is disabled at reset, and can be enabled in the Power Manager. It is recommended to disable the I²S before disabling the clock, to avoid freezing the I²S in an undefined state.

There are two generic clocks, GCLK_I2S_0 and GCLK_I2S_1, connected to the I²S peripheral, one for each I²S clock unit. The generic clocks (GCLK_I2S_n, n=0..1) can be set to a wide range of frequencies and clock sources. The GCLK_I2S_n must be enabled and configured before use.

The generic clocks are only used in Master mode and Controller mode. In Master mode, the clock from a single clock unit can be used for both Serializers to handle synchronous transfers, or a separate clock from different clock units can be used for each Serializer to handle transfers on non-related clocks.

Related Links

GCLK - Generic Clock Controller

29.5.4 DMA

The DMA request lines are connected to the DMA Controller (DMAC). Using the I²S DMA requests requires the DMA Controller to be configured first.

Related Links

DMAC - Direct Memory Access Controller

29.5.5 Interrupts

The interrupt request line is connected to the interrupt controller. Using I²S interrupts requires the interrupt controller to be configured first.

Related Links

Nested Vector Interrupt Controller

29.5.6 Events

Not applicable.

29.5.7 Debug Operation

When the CPU is halted in debug mode, this peripheral will continue normal operation. If the peripheral is configured to require periodical service by the CPU through interrupts or similar, improper operation or data loss may result during debugging. This peripheral can be forced to halt operation during debugging.

29.5.8 Register Access Protection

Registers with write-access can be optionally write-protected by the Peripheral Access Controller (PAC), except the following:

- DATAm
- INTFLAG
- SYNCBUSY

Note: Optional write-protection is indicated by the "PAC Write-Protection" property in the register description.

When the CPU is halted in debug mode, all write-protection is automatically disabled. Write-protection does not apply for accesses through an external debugger.

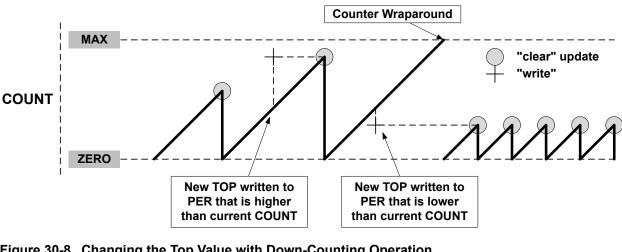
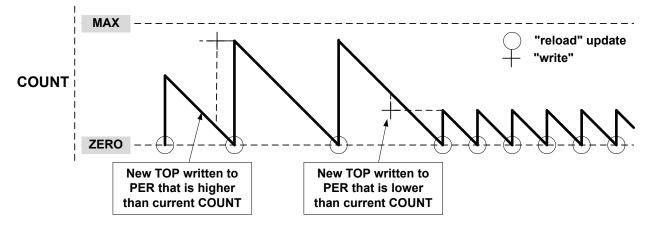



Figure 30-7. Changing the Top value with Up-Counting Operation

30.6.2.7 Capture Operations

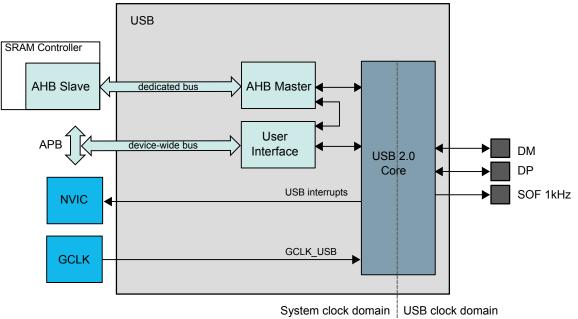
To enable and use capture operations, the event line into the TC must be enabled using the TC Event Input bit in the Event Control register (EVCTRL.TCEI). The capture channels to be used must also be enabled in the Capture Channel x Enable bit group in the Control C register (CTRLC.CPTENx) before capture can be performed.

To enable and use capture operations, the corresponding Capture Channel x Enable bit in the Control C register (CTRLC.CAPTENx) must be written to '1'.

A capture trigger can be provided by asynchronous IO pin WO[x] for each capture channel or by a TC event. To enable the capture from the IO pin, the Capture On Pin x Enable bit in CTRLC register (CTRLC.COPENx) must be written to '1'.

Note: The RETRIGGER, COUNT and START event actions are available only on an event from the Event System.

Event Capture Action


The compare/capture channels can be used as input capture channels to capture events from the Event System or from the corresponding IO pin, and give them a timestamp. The following figure shows four capture events for one capture channel.

- Supports multiplexed virtual pipe on one physical pipe to allow an unlimited USB tree
- Built-in DMA with multi-packet support and dual bank for all pipes
- Supports feedback endpoint
- Supports the USB 2.0 Phase-locked SOFs feature

32.3 USB Block Diagram

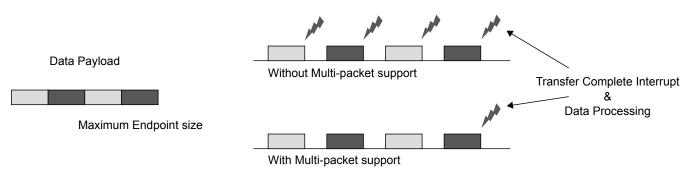
Figure 32-1. High-speed Implementation: USB Block Diagram

LS/FS Implementation: USB Block Diagram

32.4 Signal Description

Pin Name	Pin Description	Туре
DM	Data -: Differential Data Line - Port	Input/Output
DP	Data +: Differential Data Line + Port	Input/Output
SOF 1kHZ	SOF Output	Output

Refer to *I/O Multiplexing and Considerations* for details on the pin mapping for this peripheral. One signal can be mapped on several pins.


Related Links

I/O Multiplexing and Considerations

32.5 Product Dependencies

In order to use this peripheral module, other parts of the system must be configured correctly, as described below.

Figure 32-3. Multi-Packet Feature - Reduction of CPU Overhead

32.6.2.4 USB Reset

The USB bus reset is initiated by a connected host and managed by hardware.

During USB reset the following registers are cleared:

- Device Endpoint Configuration (EPCFG) register except for Endpoint 0
- Device Frame Number (FNUM) register
- Device Address (DADD) register
- Device Endpoint Interrupt Enable Clear/Set (EPINTENCLR/SET) register
- Device Endpoint Interrupt Flag (EPINTFLAG) register
- Transmit Stall 0 bit in the Endpoint Status register (EPSTATUS.STALLRQ0)
- Transmit Stall 1 bit in the Endpoint Status register (EPSTATUS.STALLRQ1)
- Endpoint Interrupt Summary (EPINTSMRY) register
- Upstream resume bit in the Control B register (CTRLB.UPRSM)

At the end of the reset process, the End of Reset bit is set in the Interrupt Flag register (INTFLAG.EORST).

32.6.2.5 Start-of-Frame

When a Start-of-Frame (SOF) token is detected, the frame number from the token is stored in the Frame Number field in the Device Frame Number register (FNUM.FNUM), and the Start-of-Frame interrupt bit in the Device Interrupt Flag register (INTFLAG.SOF) is set. If there is a CRC or bit-stuff error, the Frame Number Error status flag (FNUM.FNCERR) in the FNUM register is set.

32.6.2.6 Management of SETUP Transactions

When a SETUP token is detected and the device address of the token packet does not match DADD.DADD, the packet is discarded and the USB module returns to idle and waits for the next token packet.

When the address matches, the USB module checks if the endpoint is enabled in EPCFG. If the addressed endpoint is disabled, the packet is discarded and the USB module returns to idle and waits for the next token packet.

When the endpoint is enabled, the USB module then checks on the EPCFG of the addressed endpoint. If the EPCFG.EPTYPE0 is not set to control, the USB module returns to idle and waits for the next token packet.

When the EPCFG.EPTYPE0 matches, the USB module then fetches the Data Buffer Address (ADDR) from the addressed endpoint's descriptor and waits for a DATA0 packet. If a PID error or any other PID than DATA0 is detected, the USB module returns to idle and waits for the next token packet.

© 2017 Microchip Technology Inc.

35.8.5 Interrupt Enable Set

This register allows the user to disable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Clear register (INTENCLR).

Name:INTENSETOffset:0x05Reset:0x00Property:PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
						SYNCRDY	EMPTY	UNDERRUN
Access						R/W	R/W	R/W
Reset						0	0	0

Bit 2 – SYNCRDY: Synchronization Ready Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Synchronization Ready Interrupt Enable bit, which disables the Synchronization Ready interrupt.

Value	Description
0	The Synchronization Ready interrupt is disabled.
1	The Synchronization Ready interrupt is enabled.

Bit 1 – EMPTY: Data Buffer Empty Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the Data Buffer Empty Interrupt Enable bit, which enables the Data Buffer Empty interrupt.

Value	Description
0	The Data Buffer Empty interrupt is disabled.
1	The Data Buffer Empty interrupt is enabled.

Bit 0 – UNDERRUN: Underrun Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the Data Buffer Underrun Interrupt Enable bit, which enables the Data Buffer Underrun interrupt.

Value	Description
0	The Data Buffer Underrun interrupt is disabled.
1	The Data Buffer Underrun interrupt is enabled.

35.8.6 Interrupt Flag Status and Clear

Name:INTFLAGOffset:0x06Reset:0x00Property:PAC Write-Protection

3 – Advance capture mode (CAPTMIN CAPTMAX LOCMIN LOCMAX DERIV0) doesn't work if an upper channel is not in one of these mode. Example: when CC[0]=CAPTMIN, CC[1]=CAPTMAX, CC[2]=CAPTEN, and CC[3]=CAPTEN, CAPTMIN and CAPTMAX won't work. Errata reference: 14817 Fix/Workaround: Basic capture mode must be set in lower channel and advance capture mode in upper channel. Example: CC[0]=CAPTEN, CC[1]=CAPTEN, CC[2]=CAPTMIN, CC[3]=CAPTMAX All capture will be done as expected.

40.3 Device Variant C

The device variant (last letter of the ordering number) is independent of the die revision (DSU.DID.REVISION): The device variant denotes functional differences, whereas the die revision marks evolution of the die.

40.3.1 Die Revision F

40.3.1.1 Device

1 – The SYSTICK calibration value is incorrect. Errata reference: 14155 Fix/Workaround:

The correct SYSTICK calibration value is 0x4000000. This value should not be used to initialize the Systick RELOAD value register, which should be initialized instead with a value depending on the main clock frequency and on the tick period required by the application. For a detailed description of the SYSTICK module, refer to the official ARM Cortex-M0+ documentation.

2 – On pin PA24 and PA25 the pull-up and pull-down configuration is not disabled automatically when alternative pin function is enabled except for USB.

Errata reference: 12368

Fix/Workaround:

For pin PA24 and PA25, the GPIO pull-up and pull-down must be disabled before enabling alternative functions on them.

3 – If APB clock is stopped and GCLK clock is running, APB read access to read-synchronized registers will freeze the system. The CPU and the DAP AHB-AP are stalled, as a consequence debug operation is impossible.

Errata reference: 10416

Fix/Workaround:

Do not make read access to read-synchronized registers when APB clock is stopped and GCLK is running. To recover from this situation, power cycle the device or reset the device using the RESETN pin.

4 – If the external XOSC32K is broken, neither the external pin RST nor the GCLK software reset can reset the GCLK generators using XOSC32K as source clock. Errata reference: 12164 Fix/Workaround:

TCC – Timer/Counter for Control Applications	 Non-Recoverable Faults: Removed references to Update Fault State (UFS). Removed the UFS bit from the INTENCLR, INTENSET, INTFLAG and STATUS registers. Removed RAMP2C from the WAVE.WAVE[2:0]=0x3
Electrical Characteristics	 Absolute Maximum Ratings: Updated V_{PIN} minimum and maximum values. (Related to the new Injection Current definition section) Supply Characteristics: Corrected supply rise rates units from V/s to V/ µs. Power Consumption: Added power consumption numbers for Device Variant C. Fractional Digital Phase Locked Loop (FDPLL96M) Characteristics: Added characterization data for Device Variant C. Added Injection Current section.
Packaging Information	Added 35 ball WLCSP (Device Variant C) package outline drawing.
Errata	Added errata for Device Variant C.
Appendix A. Electrical Characteristics at 125°C	 Fractional Digital Phase Locked Loop (FDPLL96M) Characteristics: Added characterization data for Device Variant C. Absolute Maximum Ratings: Updated V_{PIN} minimum and maximum values. (Related to the new Injection Current definition section)

43.7 Rev. J - 07/2016

Ordering Information	SAM D21E: Added ATSAMD21E15B-UUT.
TC – Timer/Counter	EVCTRL:EVACT[2:0] bit description updated: Time stamp capture and pusle width capture removed .
TCC – Timer/Counter for Control Applications	 Additional Features: Removed "Time-Stamp Capture" section. EVCTRL:EVACT0[2:0] bit description updated: "Capture Overflow times (Max value)" option removed (Related to Time-Stamp Capture).
Errata	Cleaned up errata section: Split between device variant A and B.

43.8 Rev. I – 03/2016

Configuratio	Configuration Summary			
	Updated value for Waveform output channels per TCC to 8/4/2.			
I/O Multiplex	ing and Considerations			
	Added Note.6 for Table 7-1			
Memories	/emories			

Mode Conditions						
Mode	Conditions	T _A	Тур.	Max.	Units	
ACTIVE	CPU running a While ⁽¹⁾ algorithm	125°C	3.75	4.12	mA	
	CPU running a While ⁽¹⁾ algorithm V _{DDIN} =1.8V, CPU is running on Flash with 3 wait states	125°C	3.77	4.13		
	CPU running a While ⁽¹⁾ algorithm, CPU is running on Flash with 3 wait states with GCLKIN as reference	125°C	62*freq + 228	62*freq + 302	μΑ (with freq in MHz)	
	CPU running a Fibonacci algorithm	125°C	4.85	5.29	mA	
	CPU running a Fibonacci algorithm V _{DDIN} =1.8V, CPU is running on flash with 3 wait states	125°C	4.87	5.29	-	
	CPU running a Fibonacci algorithm, CPU is running on Flash with 3 wait states with GCLKIN as reference	125°C	88*freq + 424	88*freq + 486	μA (with freq in MHz)	
	CPU running a CoreMark algorithm	125°C	6.70	7.30	mA	
	CPU running a CoreMark algorithm V _{DDIN} =1.8V, CPU is running on flash with 3 wait states	125°C	5.98	6.41		
	CPU running a CoreMark algorithm, CPU is running on Flash with 3 wait states with GCLKIN as reference	125°C	108*freq + 426	108*freq + 492	μA (with freq in MHz)	
IDLE0	Default operating conditions	125°C	2.40	2.69	mA	
IDLE1	Default operating conditions	125°C	1.79	2.05		
IDLE2	Default operating conditions	125°C	1.50	1.76		
STANDBY (Device Variant B,	XOSC32K running , RTC running at 1kHz ⁽¹⁾	125°C	348.0	850.0	μA	
Die Revision E)	XOSC32K and RTC stopped ⁽¹⁾	125°C	346.0	848.0		

Table 44-8. Current Consumption

44.7 NVM Characteristics

Table 44-28. Maximum Operating Frequency

V _{DD} range	NVM Wait States	Maximum Operating Frequency	Units
1.62V to 2.7V	0	14	MHz
	1	28	
	2	40	
2.7V to 3.63V	0	24	
	1	40	

Note that on this flash technology, a max number of 8 consecutive write is allowed per row. Once this number is reached, a row erase is mandatory.

Table 44-29. Flash Endurance and Data Retention

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Ret _{NVM25k}	Retention after up to 25k	Average ambient 55°C	10	50	-	Years
Ret _{NVM2.5k}	Retention after up to 2.5k	Average ambient 55°C	20	100	-	Years
Ret _{NVM100}	Retention after up to 100	Average ambient 55°C	25	>100	-	Years
Cyc _{NVM}	Cycling Endurance ⁽¹⁾	-40°C < Ta < 85°C	25k	150k	-	Cycles

Note: 1. An endurance cycle is a write and an erase operation.

 Table 44-30.
 EEPROM Emulation⁽¹⁾
 Endurance and Data Retention

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Ret _{EEPROM100k}	Retention after up to 100k	Average ambient 55°C	10	50	-	Years
Ret _{EEPROM10k}	Retention after up to 10k	Average ambient 55°C	20	100	-	Years
Cyc _{EEPROM}	Cycling Endurance ⁽²⁾	-40°C < Ta < 85°C	100k	600k	-	Cycles

Notes: 1. The EEPROM emulation is a software emulation described in the App note AT03265.

2. An endurance cycle is a write and an erase operation.

Table 44-31. NVM Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
t _{FPP}	Page programming time	-	-	-	2.5	ms
t _{FRE}	Row erase time	-	-	-	6	ms
t _{FCE}	DSU chip erase time (CHIP_ERASE)	-	-	-	240	ms