


#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M0+                                                           |
| Core Size                  | 32-Bit Single-Core                                                         |
| Speed                      | 48MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART, USB                             |
| Peripherals                | Brown-out Detect/Reset, DMA, I <sup>2</sup> S, POR, PWM, WDT               |
| Number of I/O              | 26                                                                         |
| Program Memory Size        | 32KB (32K x 8)                                                             |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | -                                                                          |
| RAM Size                   | 4K x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 1.62V ~ 3.63V                                                              |
| Data Converters            | A/D 10x12b; D/A 1x10b                                                      |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 35-XFBGA, WLCSP                                                            |
| Supplier Device Package    | 35-WLCSP (2.82x2.53)                                                       |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/atsamd21e15c-uut |
|                            |                                                                            |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 6. Signal Descriptions List

The following table gives details on signal names classified by peripheral.

| Signal Name      | Function                                                       | Туре            | Active Level |  |  |  |  |  |  |
|------------------|----------------------------------------------------------------|-----------------|--------------|--|--|--|--|--|--|
| Analog Compa     | Analog Comparators - AC                                        |                 |              |  |  |  |  |  |  |
| AIN[3:0]         | AC Analog Inputs                                               | Analog          |              |  |  |  |  |  |  |
| CMP[:0]          | AC Comparator Outputs                                          | Digital         |              |  |  |  |  |  |  |
| Analog Digital   | Converter - ADC                                                |                 |              |  |  |  |  |  |  |
| AIN[19:0]        | ADC Analog Inputs                                              | Analog          |              |  |  |  |  |  |  |
| VREFA            | ADC Voltage External Reference A                               | Analog          |              |  |  |  |  |  |  |
| VREFB            | ADC Voltage External Reference B                               | Analog          |              |  |  |  |  |  |  |
| Digital Analog   | Converter - DAC                                                |                 |              |  |  |  |  |  |  |
| VOUT             | DAC Voltage output                                             | Analog          |              |  |  |  |  |  |  |
| VREFA            | DAC Voltage External Reference                                 | Analog          |              |  |  |  |  |  |  |
| External Interru | upt Controller                                                 |                 |              |  |  |  |  |  |  |
| EXTINT[15:0]     | External Interrupts                                            | Input           |              |  |  |  |  |  |  |
| NMI              | External Non-Maskable Interrupt                                | Input           |              |  |  |  |  |  |  |
| Generic Clock    | Generator - GCLK                                               |                 |              |  |  |  |  |  |  |
| GCLK_IO[7:0]     | Generic Clock (source clock or generic clock generator output) | I/O             |              |  |  |  |  |  |  |
| Inter-IC Sound   | Controller - I2S                                               |                 |              |  |  |  |  |  |  |
| MCK[1:0]         | Master Clock                                                   | I/O             |              |  |  |  |  |  |  |
| SCK[1:0]         | Serial Clock                                                   | I/O             |              |  |  |  |  |  |  |
| FS[1:0]          | I2S Word Select or TDM Frame Sync                              | I/O             |              |  |  |  |  |  |  |
| SD[1:0]          | Serial Data Input or Output                                    | I/O             |              |  |  |  |  |  |  |
| Power Manage     | er - PM                                                        |                 |              |  |  |  |  |  |  |
| RESETN           | Reset                                                          | Input           | Low          |  |  |  |  |  |  |
| Serial Commun    | nication Interface - SERCOMx                                   | 1               |              |  |  |  |  |  |  |
| PAD[3:0]         | SERCOM I/O Pads                                                | I/O             |              |  |  |  |  |  |  |
| System Contro    | System Control - SYSCTRL                                       |                 |              |  |  |  |  |  |  |
| XIN              | Crystal Input                                                  | Analog/ Digital |              |  |  |  |  |  |  |
| XIN32            | 32kHz Crystal Input                                            | Analog/ Digital |              |  |  |  |  |  |  |
| XOUT             | Crystal Output                                                 | Analog          |              |  |  |  |  |  |  |
| XOUT32           | 32kHz Crystal Output                                           | Analog          |              |  |  |  |  |  |  |

| Periph. | Base       | IRQ  | AHB C | lock     | APB C | lock     | Generic Clock      | PAC   |          | Events                |                            | DMA                     |         |
|---------|------------|------|-------|----------|-------|----------|--------------------|-------|----------|-----------------------|----------------------------|-------------------------|---------|
| Name    | Address    | Line | Index | Enabled  | Index | Enabled  | Index              | Index | Prot.    | User                  | Generator                  | Index                   | Sleep   |
|         |            |      |       | at Reset |       | at Reset |                    |       | at Reset |                       |                            |                         | Walking |
| TC5     | 0x42003400 | 20   |       |          | 13    | N        | 28                 | 13    | N        | 20: EV                | 57: OVF<br>58-59: MC0-1    | 30: OVF<br>31-32: MC0-1 | Y       |
| TC6     | 0x42003800 | 21   |       |          | 14    | N        | 29                 | 14    | N        | 21: EV                | 60: OVF<br>61-62: MC0-1    | 33: OVF<br>34-35: MC0-1 | Y       |
| TC7     | 0x42003C00 | 22   |       |          | 15    | N        | 29                 | 15    | N        | 22: EV                | 63: OVF<br>64-65: MC0-1    | 36: OVF<br>37-38: MC0-1 | Y       |
| ADC     | 0x42004000 | 23   |       |          | 16    | Y        | 30                 | 16    | N        | 23: START<br>24: SYNC | 66: RESRDY<br>67: WINMON   | 39: RESRDY              | Y       |
| AC      | 0x42004400 | 24   |       |          | 17    | N        | 31: DIG<br>32: ANA | 17    | N        | 25-26: SOC0-1         | 68-69: COMP0-1<br>70: WIN0 |                         | Y       |
| DAC     | 0x42004800 | 25   |       |          | 18    | N        | 33                 | 18    | N        | 27: START             | 71: EMPTY                  | 40: EMPTY               | Y       |
| PTC     | 0x42004C00 | 26   |       |          | 19    | N        | 34                 | 19    | N        | 28: STCONV            | 72: EOC<br>73: WCOMP       |                         |         |
| 125     | 0x42005000 | 27   |       |          | 20    | N        | 35-36              | 20    | N        |                       |                            | 41:42: RX<br>43:44: TX  | Y       |

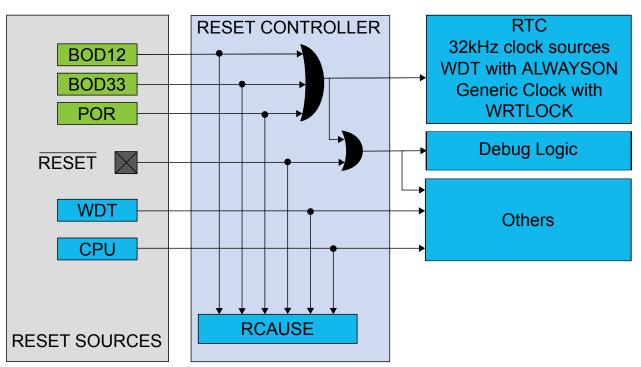



Figure 16-3. Reset Controller

## 16.6.2.8 Sleep Mode Controller

Sleep mode is activated by the Wait For Interrupt instruction (WFI). The Idle bits in the Sleep Mode register (SLEEP.IDLE) and the SLEEPDEEP bit of the System Control register of the CPU should be used as argument to select the level of the sleep mode.

There are two main types of sleep mode:

- IDLE mode: The CPU is stopped. Optionally, some synchronous clock domains are stopped, depending on the IDLE argument. Regulator operates in normal mode.
- STANDBY mode: All clock sources are stopped, except those where the RUNSTDBY bit is set. Regulator operates in low-power mode. Before entering standby mode the user must make sure that a significant amount of clocks and peripherals are disabled, so that the voltage regulator is not overloaded.

| Mode    | Level | Mode Entry                                   | Wake-Up Sources                                                    |
|---------|-------|----------------------------------------------|--------------------------------------------------------------------|
| IDLE    | 0     | SCR.SLEEPDEEP = 0<br>SLEEP.IDLE=Level<br>WFI | Synchronous <sup>(2)</sup> (APB, AHB), asynchronous <sup>(1)</sup> |
|         | 1     |                                              | Synchronous (APB), asynchronous                                    |
|         | 2     |                                              | Asynchronous                                                       |
| STANDBY |       | SCR.SLEEPDEEP = 1<br>WFI                     | Asynchronous                                                       |

| Table 16-3. | Sleep Mode | Entry and | Exit Table |
|-------------|------------|-----------|------------|
|-------------|------------|-----------|------------|

## Note:

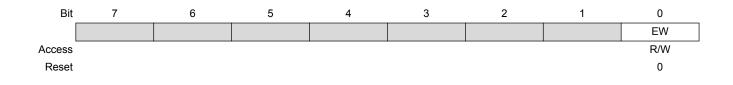
- 1. Asynchronous: interrupt generated on generic clock or external clock or external event.
- 2. Synchronous: interrupt generated on the APB clock.

| Value   | Description        |
|---------|--------------------|
| 0xA     | 8192 clock cycles  |
| 0xB     | 16384 clock cycles |
| 0xC-0xF | Reserved           |

## 18.8.3 Early Warning Interrupt Control

| Name:                                       | EWCTRL                                     |  |  |  |  |
|---------------------------------------------|--------------------------------------------|--|--|--|--|
| Offset:                                     | 0x2                                        |  |  |  |  |
| Reset:                                      | N/A - Loaded from NVM User Row at start-up |  |  |  |  |
| Property: Write-Protected, Enable-Protected |                                            |  |  |  |  |

| Bit    | 7 | 6 | 5 | 4 | 3   | 2     | 1        | 0   |
|--------|---|---|---|---|-----|-------|----------|-----|
|        |   |   |   |   |     | EWOFF | SET[3:0] |     |
| Access |   |   |   |   | R/W | R/W   | R/W      | R/W |
| Reset  |   |   |   |   | х   | х     | х        | х   |


### Bits 3:0 – EWOFFSET[3:0]: Early Warning Interrupt Time Offset

These bits determine the number of GCLK\_WDT clocks in the offset from the start of the watchdog timeout period to when the Early Warning interrupt is generated. These bits are loaded from NVM User Row at start-up. Refer to *NVM User Row Mapping* for more details.

| Value   | Description        |
|---------|--------------------|
| 0x0     | 8 clock cycles     |
| 0x1     | 16 clock cycles    |
| 0x2     | 32 clock cycles    |
| 0x3     | 64 clock cycles    |
| 0x4     | 128 clock cycles   |
| 0x5     | 256 clocks cycles  |
| 0x6     | 512 clocks cycles  |
| 0x7     | 1024 clock cycles  |
| 0x8     | 2048 clock cycles  |
| 0x9     | 4096 clock cycles  |
| 0xA     | 8192 clock cycles  |
| 0xB     | 16384 clock cycles |
| 0xC-0xF | Reserved           |

## 18.8.4 Interrupt Enable Clear

| Name:            | INTENCLR        |
|------------------|-----------------|
| Offset:          | 0x4             |
| Reset:           | 0x00            |
| <b>Property:</b> | Write-Protected |



| PRESCALER[3:0] | Name    | Description                 |
|----------------|---------|-----------------------------|
| 0x7            | DIV128  | CLK_RTC_CNT = GCLK_RTC/128  |
| 0x8            | DIV256  | CLK_RTC_CNT = GCLK_RTC/256  |
| 0x9            | DIV512  | CLK_RTC_CNT = GCLK_RTC/512  |
| 0xA            | DIV1024 | CLK_RTC_CNT = GCLK_RTC/1024 |
| 0xB-0xF        |         | Reserved                    |

## Bits 3:2 – MODE[1:0]: Operating Mode

These bits define the operating mode of the RTC.

These bits are not synchronized.

| MODE[1:0] | Name    | Description            |
|-----------|---------|------------------------|
| 0x0       | COUNT32 | Mode 0: 32-bit Counter |
| 0x1       | COUNT16 | Mode 1: 16-bit Counter |
| 0x2       | CLOCK   | Mode 2: Clock/Calendar |
| 0x3       |         | Reserved               |

## Bit 1 – ENABLE: Enable

Due to synchronization, there is delay from writing CTRL.ENABLE until the peripheral is enabled/ disabled. The value written to CTRL.ENABLE will read back immediately, and the Synchronization Busy bit in the Status register (STATUS.SYNCBUSY) will be set. STATUS.SYNCBUSY will be cleared when the operation is complete.

This bit is not enable-protected.

| Value | Description                                   |
|-------|-----------------------------------------------|
| 0     | The peripheral is disabled or being disabled. |
| 1     | The peripheral is enabled or being enabled.   |

## Bit 0 – SWRST: Software Reset

Writing a zero to this bit has no effect.

Writing a one to this bit resets all registers in the RTC, except DBGCTRL, to their initial state, and the RTC will be disabled.

Writing a one to CTRL.SWRST will always take precedence, meaning that all other writes in the same write-operation will be discarded.

Due to synchronization, there is a delay from writing CTRL.SWRST until the reset is complete. CTRL.SWRST and STATUS.SYNCBUSY will both be cleared when the reset is complete.

This bit is not enable-protected.

| Value | Description                          |
|-------|--------------------------------------|
| 0     | There is no reset operation ongoing. |
| 1     | The reset operation is ongoing.      |

## 19.8.3 Control - MODE2

## Bit 0 – CMP0: Compare 0 Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will set the Compare 0 Interrupt Enable bit and enable the Compare 0 interrupt.

| Value | Description                          |
|-------|--------------------------------------|
| 0     | The compare 0 interrupt is disabled. |
| 1     | The compare 0 interrupt is enabled.  |

#### 19.8.12 Interrupt Enable Set - MODE1

Name: INTENSET Offset: 0x07 Reset: 0x00 Property: Write-Protected

| Bit    | 7   | 6       | 5 | 4 | 3 | 2 | 1    | 0    |
|--------|-----|---------|---|---|---|---|------|------|
|        | OVF | SYNCRDY |   |   |   |   | CMP1 | CMP0 |
| Access | R/W | R/W     |   |   |   |   | R/W  | R/W  |
| Reset  | 0   | 0       |   |   |   |   | 0    | 0    |

## Bit 7 – OVF: Overflow Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will set the Overflow interrupt bit and enable the Overflow interrupt.

| Va | alue | Description                         |
|----|------|-------------------------------------|
| 0  |      | The overflow interrupt is disabled. |
| 1  |      | The overflow interrupt is enabled.  |

## Bit 6 – SYNCRDY: Synchronization Ready Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will set the Synchronization Ready Interrupt Enable bit and enable the Synchronization Ready interrupt.

| Value | Description                                      |
|-------|--------------------------------------------------|
| 0     | The synchronization ready interrupt is disabled. |
| 1     | The synchronization ready interrupt is enabled.  |

## Bits 1,0 – CMPx : Compare x Interrupt Enable [x=1:0]

Writing a zero to this bit has no effect.

Writing a one to this bit will set the Compare x Interrupt Enable bit and enable the Compare x interrupt.

| Value | Description                          |
|-------|--------------------------------------|
| 0     | The compare x interrupt is disabled. |
| 1     | The compare x interrupt is enabled.  |

## 19.8.13 Interrupt Enable Set - MODE2

Name: INTENSET Offset: 0x07

## Bit 0 – SWRST: Channel Software Reset

Writing a '0' to this bit has no effect.

Writing a '1' to this bit resets the channel registers to their initial state. The bit can be set when the channel is disabled (ENABLE=0). Writing a '1' to this bit will be ignored as long as ENABLE=1. This bit is automatically cleared when the reset is completed.

| Value | Description                          |
|-------|--------------------------------------|
| 0     | There is no reset operation ongoing. |
| 1     | The reset operation is ongoing.      |

#### 20.8.19 Channel Control B

This register affects the DMA channel that is selected in the Channel ID register (CHID.ID).

Name:CHCTRLBOffset:0x44Reset:0x00000000Property:PAC Write-Protection, Enable-Protected

| 31    | 30                                 | 29                                                                                                                                               | 28                                  | 27                                                                                                                                                                                                                                                                  | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                                                                                                                                                                                                                                                                                                                                                                                      | 24                                                                                                                                                                                                                                    |  |  |
|-------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|       |                                    |                                                                                                                                                  |                                     |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CMD[1:0]                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                       |  |  |
|       |                                    |                                                                                                                                                  |                                     |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | R/W                                                                                                                                                                                                                                                                                                                                                                                     | R/W                                                                                                                                                                                                                                   |  |  |
|       |                                    |                                                                                                                                                  |                                     |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                     |  |  |
|       |                                    |                                                                                                                                                  |                                     |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                       |  |  |
| 23    | 22                                 | 21                                                                                                                                               | 20                                  | 19                                                                                                                                                                                                                                                                  | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17                                                                                                                                                                                                                                                                                                                                                                                      | 16                                                                                                                                                                                                                                    |  |  |
| TRIGA | CT[1:0]                            |                                                                                                                                                  |                                     |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                       |  |  |
| R/W   | R/W                                |                                                                                                                                                  |                                     |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                       |  |  |
| 0     | 0                                  |                                                                                                                                                  |                                     |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                       |  |  |
|       |                                    |                                                                                                                                                  |                                     |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                       |  |  |
| 15    | 14                                 | 13                                                                                                                                               | 12                                  | 11                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                                                                                                                                                                                     |  |  |
|       |                                    |                                                                                                                                                  | TRIGSRC[5:0]                        |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                       |  |  |
|       |                                    | R/W                                                                                                                                              | R/W                                 | R/W                                                                                                                                                                                                                                                                 | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R/W                                                                                                                                                                                                                                                                                                                                                                                     | R/W                                                                                                                                                                                                                                   |  |  |
|       |                                    | 0                                                                                                                                                | 0                                   | 0                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                     |  |  |
|       |                                    |                                                                                                                                                  |                                     |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                       |  |  |
| 7     | 6                                  | 5                                                                                                                                                | 4                                   | 3                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                     |  |  |
|       | LVL                                | LVL[1:0] EVOE EVIE EVACT[2:0]                                                                                                                    |                                     |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                       |  |  |
|       | R/W                                | R/W                                                                                                                                              | R/W                                 | R/W                                                                                                                                                                                                                                                                 | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | R/W                                                                                                                                                                                                                                                                                                                                                                                     | R/W                                                                                                                                                                                                                                   |  |  |
|       |                                    |                                                                                                                                                  |                                     |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                       |  |  |
|       | 23<br>TRIGA<br>R/W<br>0<br>15<br>7 | 23         22           TRIGACT[1:0]           R/W         R/W           0         0           15         14           7         6           LVL | 23     22     21       TRIGACT[1:0] | 23     22     21     20       TRIGACT[1:0]     20       R/W     R/W       0     0       15     14     13       15     14     13       R/W     R/W       0     0       15     14       15     14       16     5       17     6       5     4       LVL[1:0]     EVOE | 23       22       21       20       19         TRIGACT[1:0]       10       10         R/W       R/W       10       10         15       14       13       12       11         Image: Comparison of the system of the | 23       22       21       20       19       18         TRIGACT[1:0]       1       1       1         R/W       R/W       0       0       1         15       14       13       12       11       10         TRIGSRC[5:0]       TRIGSRC[5:0]       TRIGSRC[5:0]       1       10         7       6       5       4       3       2         LVL[1:0]       EVOE       EVIE       1       1 | CMD         CMD           23         22         21         20         19         18         17           23         22         21         20         19         18         17           TRIGACT[1:0]                  R/W         R/W |  |  |

## Bits 25:24 – CMD[1:0]: Software Command

These bits define the software commands. Refer to Channel Suspend and Channel Resume and Next Suspend Skip.

These bits are not enable-protected.

| CMD[1:0] | Name    | Description               |
|----------|---------|---------------------------|
| 0x0      | NOACT   | No action                 |
| 0x1      | SUSPEND | Channel suspend operation |

Some event generators can generate an event when the system clock is stopped. The generic clock (GCLK\_EVSYS\_CHANNELx) for this channel will be restarted if the channel uses a synchronized path or a resynchronized path, without waking the system from sleep. The clock remains active only as long as necessary to handle the event. After the event has been handled, the clock will be turned off and the system will remain in the original sleep mode. This is known as SleepWalking. When an asynchronous path is used, there is no need for the clock to be activated for the event to be propagated to the user.

On a software reset, all registers are set to their reset values and any ongoing events are canceled.

## 24.7 Register Summary

| Table 24-1 | . Event System | <b>Register Summary</b> |
|------------|----------------|-------------------------|
|------------|----------------|-------------------------|

| Offset | Name     | Bit   |         |         |         |         |            |              |          |         |
|--------|----------|-------|---------|---------|---------|---------|------------|--------------|----------|---------|
|        |          | Pos.  |         |         |         |         |            |              |          |         |
| 0x00   | CTRL     | 7:0   |         |         |         | GCLKREQ |            |              |          | SWRST   |
| 0x01   |          |       |         |         |         |         |            |              |          |         |
|        | Reserved |       |         |         |         |         |            |              |          |         |
| 0x03   |          |       |         |         |         |         |            |              |          |         |
| 0x04   |          | 7:0   |         |         |         |         |            | CHANN        | NEL[3:0] |         |
| 0x05   | CHANNEL  | 15:8  |         |         |         |         |            |              |          | SWEVT   |
| 0x06   | ONAMINEL | 23:16 |         |         |         |         | EVGEN[6:0] |              |          |         |
| 0x07   |          | 31:24 |         |         |         |         | EDGS       | EL[1:0]      | PATH     | H[1:0]  |
| 0x08   | USER     | 7:0   |         |         |         |         |            | USER[4:0]    |          |         |
| 0x09   | USER     | 15:8  |         |         |         |         |            | CHANNEL[4:0] |          |         |
| 0x0A   | Reserved |       |         |         |         |         |            |              |          |         |
| 0x0B   | Reserved |       |         |         |         |         |            |              |          |         |
| 0x0C   |          | 7:0   | USRRDY7 | USRRDY6 | USRRDY5 | USRRDY4 | USRRDY3    | USRRDY2      | USRRDY1  | USRRDY0 |
| 0x0D   | CHSTATUS | 15:8  | CHBUSY7 | CHBUSY6 | CHBUSY5 | CHBUSY4 | CHBUSY3    | CHBUSY2      | CHBUSY1  | CHBUSY0 |
| 0x0E   | CHSTATUS | 23:16 |         |         |         |         | USRRDY11   | USRRDY10     | USRRDY9  | USRRDY8 |
| 0x0F   |          | 31:24 |         |         |         |         | CHBUSY11   | CHBUSY10     | CHBUSY9  | CHBUSY8 |
| 0x10   |          | 7:0   | OVR7    | OVR6    | OVR5    | OVR4    | OVR3       | OVR2         | OVR1     | OVR0    |
| 0x11   | INTENCLR | 15:8  | EVD7    | EVD6    | EVD5    | EVD4    | EVD3       | EVD2         | EVD1     | EVD0    |
| 0x12   | INTENCLR | 23:16 |         |         |         |         | OVR11      | OVR10        | OVR9     | OVR8    |
| 0x13   |          | 31:24 |         |         |         |         | EVD11      | EVD10        | EVD9     | EVD8    |
| 0x14   |          | 7:0   | OVR7    | OVR6    | OVR5    | OVR4    | OVR3       | OVR2         | OVR1     | OVR0    |
| 0x15   | INTENSET | 15:8  | EVD7    | EVD6    | EVD5    | EVD4    | EVD3       | EVD2         | EVD1     | EVD0    |
| 0x16   | INTENSET | 23:16 |         |         |         |         | OVR11      | OVR10        | OVR9     | OVR8    |
| 0x17   |          | 31:24 |         |         |         |         | EVD11      | EVD10        | EVD9     | EVD8    |
| 0x18   |          | 7:0   | OVR7    | OVR6    | OVR5    | OVR4    | OVR3       | OVR2         | OVR1     | OVR0    |
| 0x19   | INTFLAG  | 15:8  | EVD7    | EVD6    | EVD5    | EVD4    | EVD3       | EVD2         | EVD1     | EVD0    |
| 0x1A   | INTELAG  | 23:16 |         |         |         |         | OVR11      | OVR10        | OVR9     | OVR8    |
| 0x1B   |          | 31:24 |         |         |         |         | EVD11      | EVD10        | EVD9     | EVD8    |

## 24.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16-, and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

| Bit    | 23 | 22         | 21  | 20  | 19  | 18    | 17       | 16    |  |  |
|--------|----|------------|-----|-----|-----|-------|----------|-------|--|--|
|        |    | EVGEN[6:0] |     |     |     |       |          |       |  |  |
| Access |    | R/W        | R/W | R/W | R/W | R/W   | R/W      | R/W   |  |  |
| Reset  |    | 0          | 0   | 0   | 0   | 0     | 0        | 0     |  |  |
|        |    |            |     |     |     |       |          |       |  |  |
| Bit    | 15 | 14         | 13  | 12  | 11  | 10    | 9        | 8     |  |  |
|        |    |            |     |     |     |       |          | SWEVT |  |  |
| Access |    |            |     |     |     |       |          | R/W   |  |  |
| Reset  |    |            |     |     |     |       |          | 0     |  |  |
|        |    |            |     |     |     |       |          |       |  |  |
| Bit    | 7  | 6          | 5   | 4   | 3   | 2     | 1        | 0     |  |  |
|        |    |            |     |     |     | CHANN | NEL[3:0] |       |  |  |
| Access |    |            |     |     | R/W | R/W   | R/W      | R/W   |  |  |
| Reset  |    |            |     |     | 0   | 0     | 0        | 0     |  |  |

## Bits 27:26 – EDGSEL[1:0]: Edge Detection Selection

These bits set the type of edge detection to be used on the channel.

These bits must be written to zero when using the asynchronous path.

| EDGSEL[1:0] | Name          | Description                                                                                                                          |
|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 0x0         | NO_EVT_OUTPUT | No event output when using the resynchronized or synchronous path                                                                    |
| 0x1         | RISING_EDGE   | Event detection only on the rising edge of the signal from the event generator when using the resynchronized or synchronous path     |
| 0x2         | FALLING_EDGE  | Event detection only on the falling edge of the signal from the event generator when using the resynchronized or synchronous path    |
| 0x3         | BOTH_EDGES    | Event detection on rising and falling edges of the signal from the event generator when using the resynchronized or synchronous path |

#### Bits 25:24 – PATH[1:0]: Path Selection

These bits are used to choose the path to be used by the selected channel.

The path choice can be limited by the channel source.

| PATH[1:0] | Name           | Description         |
|-----------|----------------|---------------------|
| 0x0       | SYNCHRONOUS    | Synchronous path    |
| 0x1       | RESYNCHRONIZED | Resynchronized path |
| 0x2       | ASYNCHRONOUS   | Asynchronous path   |
| 0x3       |                | Reserved            |

## Bits 22:16 – EVGEN[6:0]: Event Generator Selection

These bits are used to choose which event generator to connect to the selected channel.

#### Bit 5 – RXBRK: Receive Break Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Receive Break Interrupt Enable bit, which disables the Receive Break interrupt.

| Value | Description                          |
|-------|--------------------------------------|
| 0     | Receive Break interrupt is disabled. |
| 1     | Receive Break interrupt is enabled.  |

### Bit 4 – CTSIC: Clear to Send Input Change Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Clear To Send Input Change Interrupt Enable bit, which disables the Clear To Send Input Change interrupt.

| Value | Description                                       |
|-------|---------------------------------------------------|
| 0     | Clear To Send Input Change interrupt is disabled. |
| 1     | Clear To Send Input Change interrupt is enabled.  |

### Bit 3 – RXS: Receive Start Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Receive Start Interrupt Enable bit, which disables the Receive Start interrupt.

| Value | Description                          |
|-------|--------------------------------------|
| 0     | Receive Start interrupt is disabled. |
| 1     | Receive Start interrupt is enabled.  |

## **Bit 2 – RXC: Receive Complete Interrupt Enable**

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Receive Complete Interrupt Enable bit, which disables the Receive Complete interrupt.

| Value | Description                             |
|-------|-----------------------------------------|
| 0     | Receive Complete interrupt is disabled. |
| 1     | Receive Complete interrupt is enabled.  |

#### **Bit 1 – TXC: Transmit Complete Interrupt Enable**

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Transmit Complete Interrupt Enable bit, which disables the Receive Complete interrupt.

| Value | Description                              |
|-------|------------------------------------------|
| 0     | Transmit Complete interrupt is disabled. |
| 1     | Transmit Complete interrupt is enabled.  |

#### Bit 0 – DRE: Data Register Empty Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the Data Register Empty Interrupt Enable bit, which disables the Data Register Empty interrupt.

| Bit    | 7          | 6   | 5   | 4   | 3   | 2   | 1   | 0   |  |
|--------|------------|-----|-----|-----|-----|-----|-----|-----|--|
|        | COUNT[7:0] |     |     |     |     |     |     |     |  |
| Access | R/W        | R/W | R/W | R/W | R/W | R/W | R/W | R/W |  |
| Reset  | 0          | 0   | 0   | 0   | 0   | 0   | 0   | 0   |  |

## Bits 7:0 – COUNT[7:0]: Counter Value

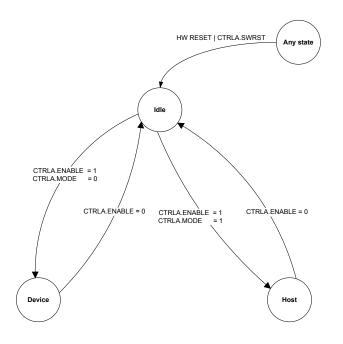
These bits contain the current counter value.

#### 30.8.12.2 Counter Value, 16-bit Mode

Name:COUNTOffset:0x10Reset:0x00Property:PAC Write-Protection, Write-Synchronized, Read-Synchronized

| Bit    | 15          | 14  | 13  | 12  | 11  | 10  | 9   | 8   |  |  |
|--------|-------------|-----|-----|-----|-----|-----|-----|-----|--|--|
| ſ      | COUNT[15:8] |     |     |     |     |     |     |     |  |  |
| Access | R/W         | R/W | R/W | R/W | R/W | R/W | R/W | R/W |  |  |
| Reset  | 0           | 0   | 0   | 0   | 0   | 0   | 0   | 0   |  |  |
|        |             |     |     |     |     |     |     |     |  |  |
| Bit    | 7           | 6   | 5   | 4   | 3   | 2   | 1   | 0   |  |  |
|        | COUNT[7:0]  |     |     |     |     |     |     |     |  |  |
| Access | R/W         | R/W | R/W | R/W | R/W | R/W | R/W | R/W |  |  |
| Reset  | 0           | 0   | 0   | 0   | 0   | 0   | 0   | 0   |  |  |

## Bits 15:0 - COUNT[15:0]: Counter Value


These bits contain the current counter value.

## 30.8.12.3 Counter Value, 32-bit Mode

Name:COUNTOffset:0x10Reset:0x00Property:PAC Write-Protection, Write-Synchronized, Read-Synchronized

| Bit    | 31           | 30  | 29  | 28  | 27  | 26  | 25  | 24  |  |  |
|--------|--------------|-----|-----|-----|-----|-----|-----|-----|--|--|
|        | COUNT[31:24] |     |     |     |     |     |     |     |  |  |
| Access | R/W          | R/W | R/W | R/W | R/W | R/W | R/W | R/W |  |  |
| Reset  | 0            | 0   | 0   | 0   | 0   | 0   | 0   | 0   |  |  |
|        |              |     |     |     |     |     |     |     |  |  |
| Bit    | 23           | 22  | 21  | 20  | 19  | 18  | 17  | 16  |  |  |
|        | COUNT[23:16] |     |     |     |     |     |     |     |  |  |
| Access | R/W          | R/W | R/W | R/W | R/W | R/W | R/W | R/W |  |  |
| Reset  | 0            | 0   | 0   | 0   | 0   | 0   | 0   | 0   |  |  |

#### Figure 32-2. General States



After a hardware reset, the USB is in the idle state. In this state:

- The module is disabled. The USB Enable bit in the Control A register (CTRLA.ENABLE) is reset.
- The module clock is stopped in order to minimize power consumption.
- The USB pad is in suspend mode.
- The internal states and registers of the device and host are reset.

Before using the USB, the Pad Calibration register (PADCAL) must be loaded with production calibration values from the NVM Software Calibration Area.

The USB is enabled by writing a '1' to CTRLA.ENABLE. The USB is disabled by writing a '0' to CTRLA.ENABLE.

The USB is reset by writing a '1' to the Software Reset bit in CTRLA (CTRLA.SWRST). All registers in the USB will be reset to their initial state, and the USB will be disabled. Refer to the CTRLA register for details.

The user can configure pads and speed before enabling the USB by writing to the Operating Mode bit in the Control A register (CTRLA.MODE) and the Speed Configuration field in the Control B register (CTRLB.SPDCONF). These values are taken into account once the USB has been enabled by writing a '1' to CTRLA.ENABLE.

After writing a '1' to CTRLA.ENABLE, the USB enters device mode or host mode (according to CTRLA.MODE).

The USB can be disabled at any time by writing a '0' to CTRLA.ENABLE.

| Value  | Name         | Description                                                       |
|--------|--------------|-------------------------------------------------------------------|
| 0x01   | OFF (L3)     | Corresponds to the powered-off, disconnected, and disabled state. |
| 0x02   | ON (L0)      | Corresponds to the Idle and Active states.                        |
| 0x04   | SUSPEND (L2) |                                                                   |
| 0x08   | SLEEP (L1)   |                                                                   |
| 0x10   | DNRESUME     | Down Stream Resume.                                               |
| 0x20   | UPRESUME     | Up Stream Resume.                                                 |
| 0x40   | RESET        | USB lines Reset.                                                  |
| Others |              | Reserved                                                          |

#### 32.8.1.5 Descriptor Address

| Name:     | DESCADD              |
|-----------|----------------------|
| Offset:   | 0x24                 |
| Reset:    | 0x0000000            |
| Property: | PAC Write-Protection |

| Bit    | 31             | 30  | 29  | 28     | 27        | 26  | 25  | 24  |  |  |
|--------|----------------|-----|-----|--------|-----------|-----|-----|-----|--|--|
|        | DESCADD[31:24] |     |     |        |           |     |     |     |  |  |
| Access | R/W            | R/W | R/W | R/W    | R/W       | R/W | R/W | R/W |  |  |
| Reset  | 0              | 0   | 0   | 0      | 0         | 0   | 0   | 0   |  |  |
|        |                |     |     |        |           |     |     |     |  |  |
| Bit    | 23             | 22  | 21  | 20     | 19        | 18  | 17  | 16  |  |  |
|        |                |     |     | DESCAD | DD[23:16] |     |     |     |  |  |
| Access | R/W            | R/W | R/W | R/W    | R/W       | R/W | R/W | R/W |  |  |
| Reset  | 0              | 0   | 0   | 0      | 0         | 0   | 0   | 0   |  |  |
|        |                |     |     |        |           |     |     |     |  |  |
| Bit    | 15             | 14  | 13  | 12     | 11        | 10  | 9   | 8   |  |  |
|        |                |     |     | DESCA  | DD[15:8]  |     |     |     |  |  |
| Access | R/W            | R/W | R/W | R/W    | R/W       | R/W | R/W | R/W |  |  |
| Reset  | 0              | 0   | 0   | 0      | 0         | 0   | 0   | 0   |  |  |
|        |                |     |     |        |           |     |     |     |  |  |
| Bit    | 7              | 6   | 5   | 4      | 3         | 2   | 1   | 0   |  |  |
|        |                |     |     | DESCA  | .DD[7:0]  |     |     |     |  |  |
| Access | R/W            | R/W | R/W | R/W    | R/W       | R/W | R/W | R/W |  |  |
| Reset  | 0              | 0   | 0   | 0      | 0         | 0   | 0   | 0   |  |  |

## Bits 31:0 – DESCADD[31:0]: Descriptor Address Value

These bits define the base address of the main USB descriptor in RAM. The two least significant bits must be written to zero.

## 32.8.1.6 Pad Calibration

The Pad Calibration values must be loaded from the NVM Software Calibration Area into the USB Pad Calibration register by software, before enabling the USB, to achieve the specified accuracy. Refer to *NVM Software Calibration Area Mapping* for further details.

Refer to for further details.

Name: PADCAL Offset: 0x28

## Bits 6:0 – PDADDR[6:0]: Pipe Device Address

These bits define the Device Address for this pipe.

#### 32.8.7.7 Host Status Pipe

Name:STATUS\_PIPEOffset:0x0E & 0x1EReset:0xxxxxxxProperty:PAC Write-Protection, Write-Synchronized, Read-Synchronized

| Bit    | 15 | 14         | 13 | 12      | 11     | 10    | 9       | 8      |
|--------|----|------------|----|---------|--------|-------|---------|--------|
|        |    |            |    |         |        |       |         |        |
| Access |    |            |    |         |        |       |         |        |
| Reset  |    |            |    |         |        |       |         |        |
|        |    |            |    |         |        |       |         |        |
| Bit    | 7  | 6          | 5  | 4       | 3      | 2     | 1       | 0      |
|        |    | ERCNT[2:0] |    | CRC16ER | TOUTER | PIDER | DAPIDER | DTGLER |
| Access | R  | R          | R  | R       | R      | R/W   | R/W     | R/W    |
| Reset  | 0  | 0          | x  | x       | x      | x     | x       | x      |

### Bits 7:5 – ERCNT[2:0]: Pipe Error Counter

These bits define the number of errors detected on the pipe.

#### Bit 4 – CRC16ER: CRC16 ERROR

This bit defines the CRC16 Error Status.

This bit is set when a CRC 16 error has been detected during a IN transactions.

| Value | Description                       |
|-------|-----------------------------------|
| 0     | No CRC 16 Error detected.         |
| 1     | A CRC 16 error has been detected. |

## **Bit 3 – TOUTER: TIME OUT ERROR**

This bit defines the Time Out Error Status.

This bit is set when a Time Out error has been detected during a USB transaction.

| Value | Description                         |
|-------|-------------------------------------|
| 0     | No Time Out Error detected.         |
| 1     | A Time Out error has been detected. |

#### Bit 2 – PIDER: PID ERROR

This bit defines the PID Error Status.

This bit is set when a PID error has been detected during a USB transaction.

| Value | Description                    |
|-------|--------------------------------|
| 0     | No PID Error detected.         |
| 1     | A PID error has been detected. |

## Bit 1 – DAPIDER: Data PID ERROR

This bit defines the PID Error Status.

This bit is set when a Data PID error has been detected during a USB transaction.

| Table 33-5. | Reference | Selection |
|-------------|-----------|-----------|
|-------------|-----------|-----------|

| REFSEL[3:0] | Name    | Description                         |
|-------------|---------|-------------------------------------|
| 0x0         | INT1V   | 1.0V voltage reference              |
| 0x1         | INTVCC0 | 1/1.48 VDDANA                       |
| 0x2         | INTVCC1 | 1/2 VDDANA (only for VDDANA > 2.0V) |
| 0x3         | VREFA   | External reference                  |
| 0x4         | VREFB   | External reference                  |
| 0x5-0xF     |         | Reserved                            |

## 33.8.3 Average Control

Name:AVGCTRLOffset:0x02Reset:0x00Property:Write-Protected

| Bit    | 7 | 6   | 5           | 4   | 3              | 2   | 1   | 0   |
|--------|---|-----|-------------|-----|----------------|-----|-----|-----|
| [      |   |     | ADJRES[2:0] |     | SAMPLENUM[3:0] |     |     |     |
| Access |   | R/W | R/W         | R/W | R/W            | R/W | R/W | R/W |
| Reset  |   | 0   | 0           | 0   | 0              | 0   | 0   | 0   |

## Bits 6:4 – ADJRES[2:0]: Adjusting Result / Division Coefficient

These bits define the division coefficient in 2n steps.

## Bits 3:0 – SAMPLENUM[3:0]: Number of Samples to be Collected

These bits define how many samples should be added together. The result will be available in the Result register (RESULT). Note: if the result width increases, CTRLB.RESSEL must be changed.

| SAMPLENUM[3:0] | Name | Description |
|----------------|------|-------------|
| 0x0            | 1    | 1 sample    |
| 0x1            | 2    | 2 samples   |
| 0x2            | 4    | 4 samples   |
| 0x3            | 8    | 8 samples   |
| 0x4            | 16   | 16 samples  |
| 0x5            | 32   | 32 samples  |
| 0x6            | 64   | 64 samples  |
| 0x7            | 128  | 128 samples |
| 0x8            | 256  | 256 samples |
| 0x9            | 512  | 512 samples |

## Offset: 0x20 Reset: 0x0000 Property: Write-Protected, Write-Synchronized

| Bit    | 15          | 14  | 13  | 12  | 11  | 10  | 9   | 8   |  |
|--------|-------------|-----|-----|-----|-----|-----|-----|-----|--|
|        | WINUT[15:8] |     |     |     |     |     |     |     |  |
| Access | R/W         | R/W | R/W | R/W | R/W | R/W | R/W | R/W |  |
| Reset  | 0           | 0   | 0   | 0   | 0   | 0   | 0   | 0   |  |
|        |             |     |     |     |     |     |     |     |  |
| Bit    | 7           | 6   | 5   | 4   | 3   | 2   | 1   | 0   |  |
|        | WINUT[7:0]  |     |     |     |     |     |     |     |  |
| Access | R/W         | R/W | R/W | R/W | R/W | R/W | R/W | R/W |  |
| Reset  | 0           | 0   | 0   | 0   | 0   | 0   | 0   | 0   |  |

### Bits 15:0 – WINUT[15:0]: Window Upper Threshold

If the window monitor is enabled, these bits define the upper threshold value.

## 33.8.17 Gain Correction

Name:GAINCORROffset:0x24Reset:0x0000Property:Write-Protected

| Bit    | 15            | 14  | 13  | 12  | 11  | 10     | 9        | 8   |
|--------|---------------|-----|-----|-----|-----|--------|----------|-----|
|        |               |     |     |     |     | GAINCO | RR[11:8] |     |
| Access |               |     |     |     | R/W | R/W    | R/W      | R/W |
| Reset  |               |     |     |     | 0   | 0      | 0        | 0   |
|        |               |     |     |     |     |        |          |     |
| Bit    | 7             | 6   | 5   | 4   | 3   | 2      | 1        | 0   |
|        | GAINCORR[7:0] |     |     |     |     |        |          |     |
| Access | R/W           | R/W | R/W | R/W | R/W | R/W    | R/W      | R/W |
| Reset  | 0             | 0   | 0   | 0   | 0   | 0      | 0        | 0   |

## Bits 11:0 – GAINCORR[11:0]: Gain Correction Value

If the CTRLB.CORREN bit is one, these bits define how the ADC conversion result is compensated for gain error before being written to the result register. The gain-correction is a fractional value, a 1-bit integer plusan 11-bit fraction, and therefore 1/2 <= GAINCORR < 2. GAINCORR values range from 0.10000000000 to 1.1111111111.

## 33.8.18 Offset Correction

Name:OFFSETCORROffset:0x26Reset:0x0000Property:Write-Protected

## 34.6.2.3 Comparator Configuration

Each individual comparator must be configured by its respective Comparator Control register (COMPCTRLx) before that comparator is enabled. These settings cannot be changed while the comparator is enabled.

- Select the desired measurement mode with COMPCTRLx.SINGLE. See Starting a Comparison for more details.
- Select the hysteresis with the COMPCTRLx.HYST bit. See Input Hysteresis for more details.
- Select the comparator speed versus power with COMPCTRLx.SPEED. See Propagation Delay vs. Power Consumption for more details.
- Select the interrupt source with COMPCTRLx.INTSEL.
- Select the positive and negative input sources with the COMPCTRLx.MUXPOS and COMPCTRLx.MUXNEG bits. See Selecting Comparator Inputs for more details.
- Select the filtering option with COMPCTRLx.FLEN.
- Select standby operation with Run in Standby bit (COMPCTRLx.RUNSTDBY).

The individual comparators are enabled by writing a '1' to the Enable bit in the Comparator x Control registers (COMPCTRLx.ENABLE). The individual comparators are disabled by writing a '0' to COMPCTRLx.ENABLE. Writing a '0' to CTRLA.ENABLE will also disable all the comparators, but will not clear their COMPCTRLx.ENABLE bits.

### 34.6.2.4 Starting a Comparison

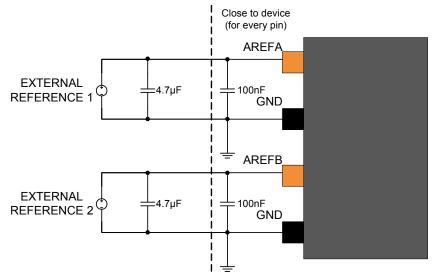
Each comparator channel can be in one of two different measurement modes, determined by the Single bit in the Comparator x Control register (COMPCTRLx.SINGLE):

- Continuous measurement
- Single-shot

After being enabled, a start-up delay is required before the result of the comparison is ready. This start-up time is measured automatically to account for environmental changes, such as temperature or voltage supply level, and is specified in *Electrical Characteristics*. During the start-up time, the COMP output is not available.

The comparator can be configured to generate interrupts when the output toggles, when the output changes from '0' to '1' (rising edge), when the output changes from '1' to '0' (falling edge) or at the end of the comparison. An end-of-comparison interrupt can be used with the single-shot mode to chain further events in the system, regardless of the state of the comparator outputs. The interrupt mode is set by the Interrupt Selection bit group in the Comparator Control register (COMPCTRLx.INTSEL). Events are generated using the comparator output state, regardless of whether the interrupt is enabled or not.

#### **Related Links**


#### Electrical Characteristics

#### **Continuous Measurement**

Continuous measurement is selected by writing COMPCTRLx.SINGLE to zero. In continuous mode, the comparator is continuously enabled and performing comparisons. This ensures that the result of the latest comparison is always available in the Current State bit in the Status A register (STATUSA.STATEx).

After the start-up time has passed, a comparison is done and STATUSA is updated. The Comparator x Ready bit in the Status B register (STATUSB.READYx) is set, and the appropriate peripheral events and interrupts are also generated. New comparisons are performed continuously until the COMPCTRLx.ENABLE bit is written to zero. The start-up time applies only to the first comparison.

### Figure 39-2. External Analog Reference Schematic With Two References



## Figure 39-3. External Analog Reference Schematic With One Reference

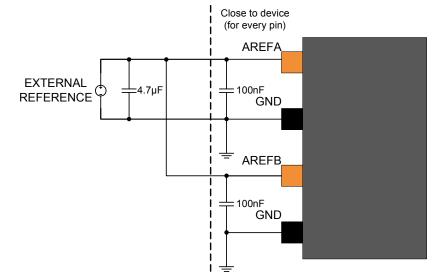
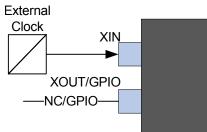



 Table 39-2. External Analog Reference Connections

| Signal Name | Recommended Pin Connection                                                                                                                                      | Description                                          |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| AREFx       | 1.0V to $V_{DDANA}$ - 0.6V for ADC<br>1.0V to $V_{DDANA}$ - 0.6V for DAC<br>Decoupling/filtering capacitors<br>100nF <sup>(1)(2)</sup> and 4.7µF <sup>(1)</sup> | External reference from AREFx pin on the analog port |
| GND         |                                                                                                                                                                 | Ground                                               |

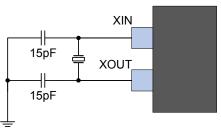

- 1. These values are given as a typical example.
- 2. Decoupling capacitor should be placed close to the device for each supply pin pair in the signal group.

## **39.5** Clocks and Crystal Oscillators

The SAM D21 can be run from internal or external clock sources, or a mix of internal and external sources. An example of usage will be to use the internal 8MHz oscillator as source for the system clock, and an external 32.768kHz watch crystal as clock source for the Real-Time counter (RTC).

## 39.5.1 External Clock Source

## Figure 39-5. External Clock Source Example Schematic




## Table 39-4. External Clock Source Connections

| Signal Name | Recommended Pin Connection                        | Description                        |
|-------------|---------------------------------------------------|------------------------------------|
| XIN         | XIN is used as input for an external clock signal | Input for inverting oscillator pin |
| XOUT/GPIO   | Can be left unconnected or used as normal GPIO    |                                    |

## 39.5.2 Crystal Oscillator

### Figure 39-6. Crystal Oscillator Example Schematic



The crystal should be located as close to the device as possible. Long signal lines may cause too high load to operate the crystal, and cause crosstalk to other parts of the system.

### Table 39-5. Crystal Oscillator Checklist

| Signal Name | Recommended Pin Connection            | Description                           |
|-------------|---------------------------------------|---------------------------------------|
| XIN         | Load capacitor 15pF <sup>(1)(2)</sup> | External crystal between 0.4 to 30MHz |
| XOUT        | Load capacitor 15pF <sup>(1)(2)</sup> |                                       |

- 1. These values are given only as typical example.
- 2. Decoupling capacitor should be placed close to the device for each supply pin pair in the signal group.

## 39.5.3 External Real Time Oscillator

The low frequency crystal oscillator is optimized for use with a 32.768kHz watch crystal. When selecting crystals, load capacitance and crystal's Equivalent Series Resistance (ESR) must be taken into consideration. Both values are specified by the crystal vendor.

|                  | Fix/Workaround:<br>Add a NOP instruction between each write to CRCDATAIN register.                                                                                                                                                                                                                                                                                                                                                                        |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 40.1.3.8 EIC     |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | 1 – When the EIC is configured to generate an interrupt on a low level<br>or rising edge or both edges (CONFIGn.SENSEx) with the filter enabled<br>(CONFIGn.FILTENx), a spurious flag might appear for the dedicated pin<br>on the INTFLAG.EXTINT[x] register as soon as the EIC is enabled using<br>CTRLA ENABLE bit.<br>Errata reference: 15341<br>Fix/Workaround:<br>Clear the INTFLAG bit once the EIC enabled and before enabling the<br>interrupts. |
| 40.1.3.9 NVMCTRL |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | 1 – Default value of MANW in NVM.CTRLB is 0.<br>This can lead to spurious writes to the NVM if a data write is done<br>through a pointer with a wrong address corresponding to NVM area.<br>Errata reference: 13134<br>Fix/Workaround:<br>Set MANW in the NVM.CTRLB to 1 at startup                                                                                                                                                                       |
|                  | <ul> <li>2 – When external reset is active it causes a high leakage current on VDDIO.</li> <li>Errata reference: 13446</li> <li>Fix/Workaround:</li> <li>Minimize the time external reset is active.</li> </ul>                                                                                                                                                                                                                                           |
|                  | <ul> <li>3 – When the part is secured and EEPROM emulation area configured to none, the CRC32 is not executed on the entire flash area but up to the on-chip flash size minus half a row.</li> <li>Errata reference: 11988</li> <li>Fix/Workaround:</li> <li>When using CRC32 on a protected device with EEPROM emulation area configured to none, compute the reference CRC32 value to the full chip flash size minus half row.</li> </ul>               |
| 40.1.3.10 I2S    |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | <ul> <li>1 – I2S RX serializer in LSBIT mode (SERCTRL.BITREV set) only works when the slot size is 32 bits.</li> <li>Errata reference: 13320</li> <li>Fix/Workaround:</li> <li>In SERCTRL.SERMODE RX, SERCTRL.BITREV LSBIT must be used with CLKCTRL.SLOTSIZE 32.</li> </ul>                                                                                                                                                                              |
| 40.1.3.11 SERCOM |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | 1 – The I2C Slave SCL Low Extend Time-out (CTRLA.SEXTTOEN) and<br>Master SCL Low Extend Time-out (CTRLA.MEXTTOEN) cannot be used<br>if SCL Low Time-out (CTRLA.LOWTOUT) is disabled. When<br>SCTRLA.LOWTOUT=0, the GCLK_SERCOM_SLOW is not requested.<br>Errata reference: 12003<br>Fix/Workaround:                                                                                                                                                       |