

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active	
Core Processor	ARM® Cortex®-M0+	
Core Size 32-Bit Single-Core		
Speed 48MHz		
Connectivity	I ² C, LINbus, SPI, UART/USART, USB	
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT	
Number of I/O	26	
Program Memory Size	64KB (64K x 8)	
Program Memory Type	FLASH	
EEPROM Size	-	
RAM Size	8K x 8	
Voltage - Supply (Vcc/Vdd)	d) 1.62V ~ 3.6V	
Data Converters	A/D 10x12b; D/A 1x10b	
Oscillator Type	Internal	
Operating Temperature	-40°C ~ 125°C (TA)	
Mounting Type	Surface Mount	
Package / Case	32-TQFP	
Supplier Device Package	32-TQFP (7x7)	
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamd21e16b-af	

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

36. PTC	- Peripheral Touch Controller	781
36.1.	Overview	
36.2.	Features	
36.3.	Block Diagram	
36.4.	Signal Description	
36.5.	Product Dependencies	
36.6.	Functional Description	
37. Elec	trical Characteristics	786
37.1.	Disclaimer	
37.2.	Absolute Maximum Ratings	
37.3.	General Operating Ratings	
37.4.	Supply Characteristics	
37.5.	Maximum Clock Frequencies	
37.6.	Power Consumption	
37.7.	Peripheral Power Consumption	795
37.8.	I/O Pin Characteristics	798
37.9.	Injection Current	
37.10	. Analog Characteristics	
37.11	. NVM Characteristics	816
37.12	. Oscillators Characteristics	817
37.13	. PTC Typical Characteristics	
37.14	. USB Characteristics	
37.15	. Timing Characteristics	832
38. Pack	aging Information	
38.1.	Thermal Considerations	
38.2.	Package Drawings	843
38.3.	Soldering Profile	
39. Sche	ematic Checklist	855
39.1.	Introduction	855
39.2.	Power Supply	
39.3.	External Analog Reference Connections	856
39.4.	External Reset Circuit	858
39.5.	Clocks and Crystal Oscillators	859
39.6.	Unused or Unconnected Pins	862
39.7.	Programming and Debug Ports	
39.8.	USB Interface	
40. Erra	ta	
40.1.	Device Variant A	
40.2.	Device Variant B	
40.3.	Device Variant C	908
41. Con	ventions	912
41.1.	Numerical Notation	
41.2.	Memory Size and Type	912

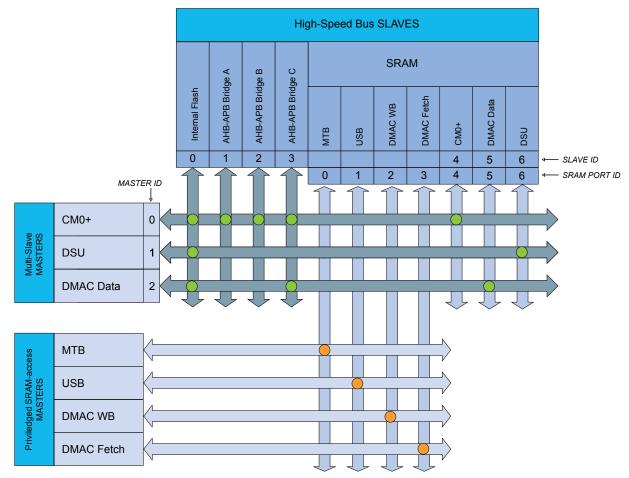
11.2.2 Interrupt Line Mapping

Each of the 28 interrupt lines is connected to one peripheral instance, as shown in the table below. Each peripheral can have one or more interrupt flags, located in the peripheral's Interrupt Flag Status and Clear (INTFLAG) register. The interrupt flag is set when the interrupt condition occurs. Each interrupt in the peripheral can be individually enabled by writing a one to the corresponding bit in the peripheral's Interrupt Enable Set (INTENSET) register, and disabled by writing a one to the corresponding bit in the peripheral's Interrupt Enable Clear (INTENCLR) register. An interrupt request is generated from the peripheral are ORed together on system level, generating one interrupt request for each peripheral. An interrupt request will set the corresponding interrupt pending bit in the NVIC interrupt, it must be enabled in the NVIC interrupt enable register (SETPEND/CLRPEND bits in ISPR/ICPR). For the NVIC to activate the interrupt, it must be enabled in the NVIC interrupt enable register (SETENA/CLRENA bits in ISER/ICER). The NVIC interrupt priority registers IPR0-IPR7 provide a priority field for each interrupt.

Peripheral Source	NVIC Line
EIC NMI – External Interrupt Controller	NMI
PM – Power Manager	0
SYSCTRL – System Control	1
WDT – Watchdog Timer	2
RTC – Real Time Counter	3
EIC – External Interrupt Controller	4
NVMCTRL – Non-Volatile Memory Controller	5
DMAC - Direct Memory Access Controller	6
USB - Universal Serial Bus	7
EVSYS – Event System	8
SERCOM0 – Serial Communication Interface 0	9
SERCOM1 – Serial Communication Interface 1	10
SERCOM2 – Serial Communication Interface 2	11
SERCOM3 – Serial Communication Interface 3	12
SERCOM4 – Serial Communication Interface 4	13
SERCOM5 – Serial Communication Interface 5	14
TCC0 – Timer Counter for Control 0	15
TCC1 – Timer Counter for Control 1	16
TCC2 – Timer Counter for Control 2	17
TC3 – Timer Counter 3	18
TC4 – Timer Counter 4	19
TC5 – Timer Counter 5	20

- MASTER: Contains the main trace enable bit and other trace control fields,
- FLOW: Contains the WATERMARK address and the AUTOSTOP and AUTOHALT control bits,
- BASE: Indicates where the SRAM is located in the processor memory map. This register is provided to enable auto discovery of the MTB SRAM location, by a debug agent.

See the CoreSight MTB-M0+ Technical Reference Manual for a detailed description of these registers.


11.4 High-Speed Bus System

11.4.1 Features

High-Speed Bus Matrix has the following features:

- Symmetric crossbar bus switch implementation
- Allows concurrent accesses from different masters to different slaves
- 32-bit data bus
- Operation at a one-to-one clock frequency with the bus masters

11.4.2 Configuration

GAIN[2:0]	Recommended Max Frequency	
0x0	2MHz	
0x1	4MHz	
0x2	8MHz	
0x3	16MHz	
0x4	30MHz	
0x5-0x7	Reserved	

Bit 7 – ONDEMAND: On Demand Control

The On Demand operation mode allows an oscillator to be enabled or disabled, depending on peripheral clock requests.

In On Demand operation mode, i.e., if the XOSC.ONDEMAND bit has been previously written to one, the oscillator will be running only when requested by a peripheral. If there is no peripheral requesting the oscillator s clock source, the oscillator will be in a disabled state.

If On Demand is disabled, the oscillator will always be running when enabled.

In standby sleep mode, the On Demand operation is still active if the XOSC.RUNSTDBY bit is one. If XOSC.RUNSTDBY is zero, the oscillator is disabled.

Value	Description	
0	The oscillator is always on, if enabled.	
1	The oscillator is enabled when a peripheral is requesting the oscillator to be used as a clock	
	source. The oscillator is disabled if no peripheral is requesting the clock source.	

Bit 6 – RUNSTDBY: Run in Standby

This bit controls how the XOSC behaves during standby sleep mode:

Value	Description	
0	The oscillator is disabled in standby sleep mode.	
1	The oscillator is not stopped in standby sleep mode. If XOSC.ONDEMAND is one, the clock source will be running when a peripheral is requesting the clock. If XOSC.ONDEMAND is zero, the clock source will always be running in standby sleep mode.	

Bit 2 – XTALEN: Crystal Oscillator Enable

This bit controls the connections between the I/O pads and the external clock or crystal oscillator:

Value	Description	
0	External clock connected on XIN. XOUT can be used as general-purpose I/O.	
1	Crystal connected to XIN/XOUT.	

Bit 1 – ENABLE: Oscillator Enable

Value	Description
0	The oscillator is disabled.
1	The oscillator is enabled.

17.8.6 32kHz External Crystal Oscillator (XOSC32K) Control

Bit 12 – LBYPASS: Lock Bypass

	/alue	Description	
()	Normal Mode: the CLK_FDPLL96M is turned off when lock signal is low.	
•		Lock Bypass Mode: the CLK_FDPLL96M is always running, lock is irrelevant.	

Bits 10:8 – LTIME[2:0]: Lock Time

These bits select Lock Timeout.

LTIME[2:0]	Name	Description
0x0	DEFAULT	No time-out
0x1-0x3		Reserved
0x4	8MS	Time-out if no lock within 8 ms
0x5	9MS	Time-out if no lock within 9 ms
0x6	10MS	Time-out if no lock within 10 ms
0x7	11MS	Time-out if no lock within 11 ms

Bits 5:4 – REFCLK[1:0]: Reference Clock Selection

These bits select the CLK_FDPLL96M_REF source.

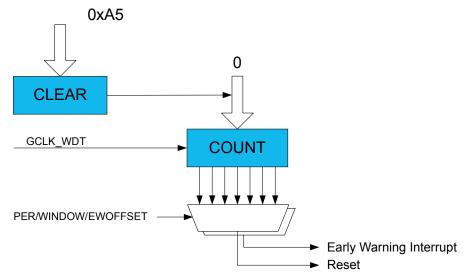
REFCLK[1:0]	Name	Description
0x0	XOSC32	XOSC32 clock reference
0x1	XOSC	XOSC clock reference
0x2	GCLK_DPLL	GCLK_DPLL clock reference
0x3		Reserved

Bit 3 – WUF: Wake Up Fast

Value	Description
0	DPLL CK output is gated until complete startup time and lock time.
1	DPLL CK output is gated until startup time only.

Bit 2 – LPEN: Low-Power Enable

Value	Description
0	The time to digital converter is selected.
1	The time to digital converter is not selected, this will improve power consumption but increase the output jitter.


Bits 1:0 – FILTER[1:0]: Proportional Integral Filter Selection

These bits select the DPLL filter type.

FILTER[1:0]	Name	Description
0x0	DEFAULT	Default filter mode
0x1	LBFILT	Low bandwidth filter

18.3 Block Diagram

Figure 18-1. WDT Block Diagram

18.4 Signal Description

Not applicable.

18.5 Product Dependencies

In order to use this peripheral, other parts of the system must be configured correctly, as described below.

18.5.1 I/O Lines

Not applicable.

18.5.2 Power Management

The WDT can continue to operate in any sleep mode where the selected source clock is running. The WDT interrupts can be used to wake up the device from sleep modes. The events can trigger other operations in the system without exiting sleep modes.

Related Links

PM - Power Manager

18.5.3 Clocks

The WDT bus clock (CLK_WDT_APB) is enabled by default, and can be enabled and disabled in the Power Manager. Refer to *PM* – *Power Manager* for details.

A generic clock (GCLK_WDT) is required to clock the WDT. This clock must be configured and enabled in the Generic Clock Controller before using the WDT. Refer to *GCLK – Generic Clock Controller* for details. This generic clock is asynchronous to the user interface clock (CLK_WDT_APB). Due to this asynchronicity, accessing certain registers will require synchronization between the clock domains. Refer to *Synchronization* for further details.

GCLK_WDT is intended to be sourced from the clock of the internal ultra-low-power (ULP) oscillator. Due to the ultralow- power design, the oscillator is not very accurate, and so the exact time-out period may vary from device to device. This variation must be kept in mind when designing software that uses the

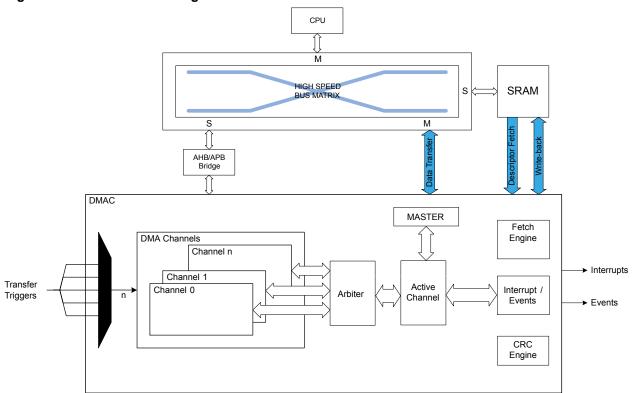

Offset	Name	Bit Pos.								
0x0D										
	Reserved									
0x0F										
0x10	COUNT	7:0		COUI	NT[7:0]					
0x11	COUNT	15:8		COUN	IT[15:8]					
0x12	Reserved									
0x13	Reserved									
0x14	PER	7:0		PEF	R[7:0]					
0x15	PER	15:8	PER[15:8]							
0x16	Reserved									
0x17	Reserved									
0x18	COMPO	7:0	! ! !	COMP[7:0]						
0x19	COMP0	15:8	COMP[15:8]							
0x1A	001454	7:0		CON	IP[7:0]					
0x1B	COMP1	15:8		COM	P[15:8]					

Table 19-3. MODE2 - Mode Register Summary

Offset	Name	Bit Pos.								
0x00	CTRL	7:0	MATCHCLR	CLKREP			MOD	E[1:0]	ENABLE	SWRST
0x01	UTKE	15:8						PRESCA	ALER[3:0]	
0x02	READREQ	7:0					ADDI	R[5:0]		
0x03	READREQ	15:8	RREQ	RCONT						
0x04	EVCTRL	7:0	PEREO7	PEREO6	PEREO5	PEREO4	PEREO3	PEREO2	PEREO1	PEREO0
0x05	EVCIRE	15:8	OVFEO							ALARMEO0
0x06	INTENCLR	7:0	OVF	SYNCRDY						ALARM0
0x07	INTENSET	7:0	OVF	SYNCRDY						ALARM0
0x08	INTFLAG	7:0	OVF	SYNCRDY						ALARM0
0x09	Reserved									
0x0A	STATUS	7:0	SYNCBUSY							
0x0B	DBGCTRL	7:0								DBGRUN
0x0C	FREQCORR	7:0	SIGN			:	VALUE[6:0]	:	:	
0x0D 0x0F	Reserved									
0x10		7:0	MINUT	FE[1:0]			SECO	ND[5:0]		
0x11	CLOCK	15:8		HOU	R[3:0]			MINU	TE[5:2]	
0x12	CLUCK	23:16	MONT	H[1:0]			DAY[4:0]			HOUR[4]
0x13	31:24				YEAI	R[5:0]			MON	TH[3:2]
0x14 0x17	Reserved									

20.3 Block Diagram

Figure 20-1. DMAC Block Diagram

20.4 Signal Description

Not applicable.

20.5 Product Dependencies

In order to use this peripheral, other parts of the system must be configured correctly, as described below.

20.5.1 I/O Lines

Not applicable.

20.5.2 Power Management

The DMAC will continue to operate in any sleep mode where the selected source clock is running. The DMAC's interrupts can be used to wake up the device from sleep modes. Events connected to the event system can trigger other operations in the system without exiting sleep modes. On hardware or software reset, all registers are set to their reset value.

Related Links

PM – Power Manager

20.5.3 Clocks

The DMAC bus clock (CLK_DMAC_APB) must be configured and enabled in the Power Manager before using the DMAC.

Action	CHCTRLB.EVACT	CHCTRLB.TRGSRC
Conditional Transfer on Strobe	TRIG	any peripheral
Conditional Transfer	CTRIG	-
Conditional Block Transfer	CBLOCK	-
Channel Suspend	SUSPEND	
Channel Resume	RESUME	-
Skip Next Block Suspend	SSKIP	

Normal Transfer

The event input is used to trigger a beat or burst transfer on peripherals.

The event is acknowledged as soon as the event is received. When received, both the Channel Pending status bit in the Channel Status register (CHSTATUS.PEND) and the corresponding Channel n bit in the Pending Channels register (PENDCH.PENDCHn) are set. If the event is received while the channel is pending, the event trigger is lost.

The figure below shows an example where beat transfers are enabled by internal events.

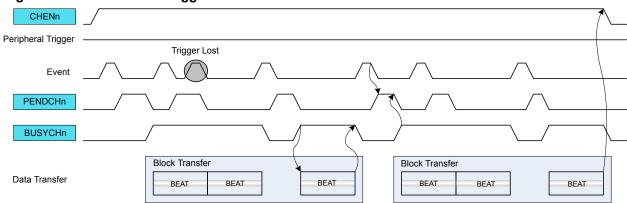
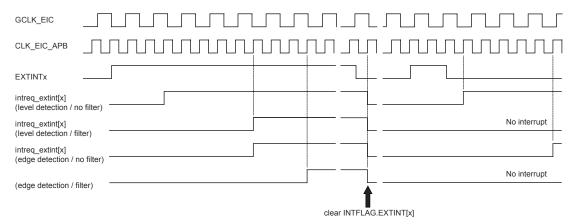


Figure 20-11. Beat Event Trigger Action

Conditional Transfer on Strobe


The event input is used to trigger a transfer on peripherals with pending transfer requests. This event action is intended to be used with peripheral triggers, e.g. for timed communication protocols or periodic transfers between peripherals: only when the peripheral trigger coincides with the occurrence of a (possibly cyclic) event the transfer is issued.

The event is acknowledged as soon as the event is received. The peripheral trigger request is stored internally when the previous trigger action is completed (i.e. the channel is not pending) and when an active event is received. If the peripheral trigger is active, the DMA will wait for an event before the peripheral trigger is internally registered. When both event and peripheral transfer trigger are active, both CHSTATUS.PEND and PENDCH.PENDCHn are set. A software trigger will now trigger a transfer.

The figure below shows an example where the peripheral beat transfer is started by a conditional strobe event action.

When an external interrupt is configured for level detection and when filtering is disabled, detection is done asynchronously. Asynchronuous detection does not require GCLK_EIC, but interrupt and events can still be generated. If filtering or edge detection is enabled, the EIC automatically requests GCLK_EIC to operate. GCLK_EIC must be enabled in the GCLK module.

The detection delay depends on the detection mode.

Table 21-2. Interrupt Latency

Detection mode	Latency (worst case)
Level without filter	Three CLK_EIC_APB periods
Level with filter	Four GCLK_EIC periods + Three CLK_EIC_APB periods
Edge without filter	Four GCLK_EIC periods + Three CLK_EIC_APB periods
Edge with filter	Six GCLK_EIC periods + Three CLK_EIC_APB periods

Related Links

GCLK - Generic Clock Controller

21.6.4 Additional Features

21.6.4.1 Non-Maskable Interrupt (NMI)

The non-maskable interrupt pin can also generate an interrupt on edge or level detection, but it is configured with the dedicated NMI Control register (NMICTRL). To select the sense for NMI, write to the NMISENSE bit group in the NMI Control register (NMICTRL.NMISENSE). NMI filtering is enabled by writing a '1' to the NMI Filter Enable bit (NMICTRL.NMIFILTEN).

If edge detection or filtering is required, enable GCLK_EIC or CLK_ULP32K.

NMI detection is enabled only by the NMICTRL.NMISENSE value, and the EIC is not required to be enabled.

When an NMI is detected, the non-maskable interrupt flag in the NMI Flag Status and Clear register is set (NMIFLAG.NMI). NMI interrupt generation is always enabled, and NMIFLAG.NMI generates an interrupt request when set.

21.6.5 DMA Operation

Not applicable.

Condition	Request							
	DMA	Interrupt	Event					
Data needed for transmit (TX) (Master transmit mode)	Yes (request cleared when data is written)		NA					
Data needed for transmit (RX) (Master transmit mode)	Yes (request cleared when data is read)							
Master on Bus (MB)		Yes						
Stop received (SB)		Yes						
Error (ERROR)		Yes						

28.6.4.1 DMA Operation

Smart mode must be enabled for DMA operation in the Control B register by writing CTRLB.SMEN=1.

Slave DMA

When using the I²C slave with DMA, an address match will cause the address interrupt flag (INTFLAG.ADDRMATCH) to be raised. After the interrupt has been serviced, data transfer will be performed through DMA.

The I²C slave generates the following requests:

- Write data received (RX): The request is set when master write data is received. The request is cleared when DATA is read.
- Read data needed for transmit (TX): The request is set when data is needed for a master read operation. The request is cleared when DATA is written.

Master DMA

When using the I²C master with DMA, the ADDR register must be written with the desired address (ADDR.ADDR), transaction length (ADDR.LEN), and transaction length enable (ADDR.LENEN). When ADDR.LENEN is written to 1 along with ADDR.ADDR, ADDR.LEN determines the number of data bytes in the transaction from 0 to 255. DMA is then used to transfer ADDR.LEN bytes followed by an automatically generated NACK (for master reads) and a STOP.

If a NACK is received by the slave for a master write transaction before ADDR.LEN bytes, a STOP will be automatically generated and the length error (STATUS.LENERR) will be raised along with the INTFLAG.ERROR interrupt.

The I²C master generates the following requests:

- Read data received (RX): The request is set when master read data is received. The request is cleared when DATA is read.
- Write data needed for transmit (TX): The request is set when data is needed for a master write operation. The request is cleared when DATA is written.

28.6.4.2 Interrupts

The I²C slave has the following interrupt sources. These are asynchronous interrupts. They can wake-up the device from any sleep mode:

Error (ERROR)

Data bits are sent on the falling edge of the Serial Clock and sampled on the rising edge of the Serial Clock. The Word Select line indicates the channel in transmission, a low level for the left channel and a high level for the right channel.

In I²S format, typical configurations are described below. These configurations do not list all necessary settings, but only basic ones. Other configuration settings are to be done as per requirement such as clock and DMA configurations.

Case 1: I²S 16-bit compact stereo

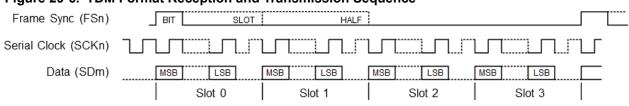
- Slot size configured as 16 bits (CLKCTRL0.SLOTSIZE = 0x1)
- Number of slots configured as 2 (CLKCTRL0.NBSLOTS = 0x1)
- Data size configured as 16-bit compact stereo (SERCTRL0.DATASIZE = 0x05)
- Data delay from Frame Sync configured as 1-bit delay (CLKCTRLn.BITDELAY = 0x01)
- Frame Sync Width configured as HALF frame (CLKCTRLn.FSWIDTH = 0x01)

Case 2: I²S 24-bit stereo Transmitterwith 24-bit slot

- Slot size configured as 24 bits (CLKCTRL0.SLOTSIZE = 0x2)
- Number of slots configured as 2 (CLKCTRL0.NBSLOTS = 0x1)
- Data size configured as 24 bits (SERCTRL0.DATASIZE = 0x01)
- Data delay from Frame Sync configured as 1-bit delay (CLKCTRLn.BITDELAY = 0x01)
- Frame Sync Width configured as HALF frame (CLKCTRLn.FSWIDTH = 0x01)

In both cases, it will ensure that Word select signal is 'low level' for the left channel and 'high level' for the right channel.

The length of transmitted words can be chosen among 8, 16, 18, 20, 24, and 32 bits by writing the Data Word Size bit group in the Serializer Control mregister (SERCTRLm.DATASIZE).


If the slot allows for more data bits than the number of bits specified in the respective DATASIZE field, additional bits are appended to the transmitted or received data word as specified in the SERCTRLm.EXTEND field. If the slot allows less data bits than programmed, the extra bits are not transmitted, or received data word is extended based on the EXTEND field value.

29.6.5 TDM Format - Reception and Transmission Sequence

In Time Division Multiplexed (TDM) format, the number of data slots sent or received within each frame will be (CLKCTRLn.NBSLOTS + 1).

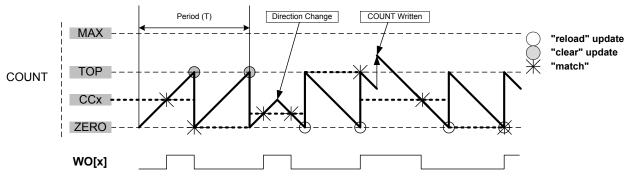
By configuring the CLKCTRLn register (CLKCTRLn.FSWIDTH and CLKCTRLn.FSINV), the Frame Sync pulse width and polarity can be modified.

By configuring SERCTRLm, data bits can be left-adjusted or right-adjusted in the slot. It can also configure the data transmission/reception with either the MSB or the LSB transmitted/received first and starting the transmission/reception either at the transition of the FSn pin or one clock period after.

Figure 29-6. TDM Format Reception and Transmission Sequence

Name	Operation	ТОР	Update	Output Waveform		OVFIF/Event		
				On Match	On Update	Up	Down	
NPWM	Single- slope PWM	PER	TOP/ ZERO	See section Polarity' belo	•	TOP	ZERO	
DSCRITICAL	Dual-slope PWM	PER	ZERO	-		-	ZERO	
DSBOTTOM	Dual-slope PWM	PER	ZERO			-	ZERO	
DSBOTH	Dual-slope PWM	PER	TOP ⁽¹⁾ & ZERO			ТОР	ZERO	
DSTOP	Dual-slope PWM	PER	ZERO			TOP	-	

1. The UPDATE condition on TOP only will occur when circular buffer is enabled for the channel.


Related Links

Circular Buffer PORT: IO Pin Controller

Normal Frequency (NFRQ)

For Normal Frequency generation, the period time (T) is controlled by the period register (PER). The waveform generation output (WO[x]) is toggled on each compare match between COUNT and CCx, and the corresponding Match or Capture Channel x Interrupt Flag (EVCTRL.MCEOx) will be set.

Figure 31-4. Normal Frequency Operation

Match Frequency (MFRQ)

For Match Frequency generation, the period time (T) is controlled by CC0 register instead of PER. WO[0] toggles on each update condition.

32.7 Register Summary

The register mapping depends on the Operating Mode field in the Control A register (CTRLA.MODE). The register summary is detailed below.

32.7.1 Common Device Summary

Offset	Name	Bit Pos.									
0x00	CTRLA	7:0	MODE					RUNSTBY	ENABLE	SWRST	
0x01	Reserved										
0x02	SYNCBUSY	7:0							ENABLE	SWRST	
0x03	QOSCTRL	7:0		DQOS[1:0] CQOS[1						S[1:0]	
0x0D	FSMSTATUS	7:0					FSMSTATE[6:0)]			
0x24		7:0				DESCA	DD[7:0]				
0x25	DESCADD	15:8				DESCA	DD[15:8]				
0x26	DESCADD	23:16				DESCA	DD[23:16]				
0x27		31:24		DESCADD[31:24]							
0x28	PADCAL	7:0	TRANSN[1:0] TRANSP[4:0]								
0x29	FADCAL	15:8		TRIM[2:0]						TRANSN[4:2]	

32.7.2 Device Summary

Table 32-1. General Device Registers

Offset	Name	Bit Pos.								
0x04	Reserved									
0x05	Reserved									
0x06	Reserved									
0x07	Reserved									
0x08	CTRLB	7:0				NREPLY	SPDCC	DNF[1:0]	UPRSM	DETACH
0x09	CIRLB	15:8					LPMHD	DSK[1:0]	GNAK	
0x0A	DADD		ADDEN				DADD[6:0]			
0x0B	Reserved									
0x0C	STATUS	7:0	LINESTA	ATE[1:0]			SPEE	D[1:0]		
0x0E	Reserved									
0x0F	Reserved									
0x10	FNUM	7:0			FNUM[4:0]					
0x11	FINUM	15:8	FNCERR				FNUM[10:5]			
0x12	Reserved									
0x14	INTENCLR	7:0	RAMACER	UPRSM	EORSM	WAKEUP	EORST	SOF		SUSPEND
0x15	INTENCLR	15:8							LPMSUSP	LPMNYET
0x16	Reserved									
0x17	Reserved									
0x18	INTENOET	7:0	RAMACER	UPRSM	EORSM	WAKEUP	EORST	SOF		SUSPEND
0x19	INTENSET	15:8							LPMSUSP	LPMNYET
0x1A	Reserved									
0x1B	Reserved									
0x1C		7:0	RAMACER	UPRSM	EORSM	WAKEUP	EORST	SOF		SUSPEND
0x1D	INTFLAG	15:8							LPMSUSP	LPMNYET

Offset	Name	Bit Pos.					
0x1E	Reserved						
0x1F	Reserved						
0x20	EPINTSMRY	7:0		EPIN	T[7:0]		
0x21	EPINISWIRT	15:8		EPIN	[15:8]		
0x22	Reserved						
0x23	Reserved						

Table 32-2. Device Endpoint Register n

Offset	Name	Bit Pos.								
0x1m0	EPCFGn	7:0			EPTYPE1[1:0]				EPTYPE0[1:0]]
0x1m1	Reserved									
0x1m2	Reserved									
0x1m3	Reserved									
0x1m4	EPSTATUSCLRn	7:0	BK1RDY	BK0RDY	STALLRQ1	STALLRQ0		CURBK	DTGLIN	DTGLOUT
0x1m5	EPSTATUSSETn	7:0	BK1RDY	BK0RDY	STALLRQ1	STALLRQ0		CURBK	DTGLIN	DTGLOUT
0x1m6	EPSTATUSn	7:0	BK1RDY	BK0RDY	STALLRQ1	STALLRQ0		CURBK	DTGLIN	DTGLOUT
0x1m7	EPINTFLAGn	7:0		STALL1	STALL0	RXSTP	TRFAIL1	TRFAIL0	TRCPT1	TRCPT0
0x1m8	EPINTENCLRn	7:0		STALL1	STALL0	RXSTP	TRFAIL1	TRFAIL0	TRCPT1	TRCPT0
0x1m9	EPINTENSETn	7:0		STALL1	STALL0	RXSTP	TRFAIL1	TRFAIL0	TRCPT1	TRCPT0
0x1mA	Reserved									
0x1mB	Reserved									

Table 32-3. Device Endpoint n Descriptor Bank 0

Offset 0x n0 + index	Name	Bit Pos.									
0x00		7:0				ADE	D[7:0]				
0x01	ADDR	15:8				ADD	[15:8]				
0x02	ADDR	23:16				ADD	23:16]				
0x03		31:24				ADD	31:24]				
0x04		7:0				BYTE_C	OUNT[7:0]				
0x05	DOVOITE	15:8	MULTI_PACK	ET_SIZE[1:0]	BYTE_COUNT[13:8]						
0x06	PCKSIZE	23:16			MULTI_PACKET_SIZE[9:2]						
0x07		31:24	AUTO_ZLP		SIZE[2:0]			MULTI_PACK	ET_SIZE[13:10]	0]	
0x08	EVTREO	7:0		VARIAE	BLE[3:0]			SUBF	PID[3:0]		
0x09	EXTREG	15:8					VARIABLE[10:4	4]			
0x0A	STATUS_BK	7:0							ERRORFLOW	CRCERR	
0x0B	Reserved	7:0									
0x0C	Reserved	7:0									
0x0D	Reserved	7:0									
0x0E	Reserved	7:0									
0x0F	Reserved	7:0									

- Control B (CTRLB)
- Software Trigger (SWTRIG)
- Window Monitor Control (WINCTRL)
- Input Control (INPUTCTRL)
- Window Upper/Lower Threshold (WINUT/WINLT)

Required write-synchronization is denoted by the "Write-Synchronized" property in the register description.

The following registers are synchronized when read:

- Software Trigger (SWTRIG)
- Input Control (INPUTCTRL)

Required read-synchronization is denoted by the "Read-Synchronized" property in the register description.

Related Links

Register Synchronization

33.7 Register Summary

Offset	Name	Bit								
		Pos.								
0x00	CTRLA	7:0						RUNSTDBY	ENABLE	SWRST
0x01	REFCTRL	7:0	REFCOMP					REFSI	EL[3:0]	
0x02	AVGCTRL	7:0			ADJRES[2:0]			SAMPLE	NUM[3:0]	
0x03	SAMPCTRL	7:0					SAMPL	EN[5:0]		
0x04		7:0			RESS	EL[1:0]	CORREN	FREERUN	LEFTADJ	DIFFMODE
0x05	CTRLB	15:8						Р	RESCALER[2:	0]
0x06	Reserved									
0x07	Reserved									
0x08	WINCTRL	7:0							WINMODE[2:0]	
0x09										
	Reserved									
0x0B										
0x0C	SWTRIG	7:0							START	FLUSH
0x0D										
	Reserved									
0x0F										
0x10		7:0						MUXPOS[4:0]		
0x11	INPUTCTRL	15:8						MUXNEG[4:0]		
0x12	INFOICINE	23:16		INPUTO	FFSET[3:0]			INPUTS	CAN[3:0]	
0x13		31:24						GAIN	V [3:0]	
0x14	EVCTRL	7:0			WINMONEO	RESRDYEO			SYNCEI	STARTEI
0x15	Reserved									
0x16	INTENCLR	7:0					SYNCRDY	WINMON	OVERRUN	RESRDY
0x17	INTENSET	7:0					SYNCRDY	WINMON	OVERRUN	RESRDY
0x18	INTFLAG	7:0					SYNCRDY	WINMON	OVERRUN	RESRDY
0x19	STATUS	7:0	SYNCBUSY							

USB Device state	Conditions	Тур.	Units
Wait connection	GCLK_USB is off, using USB wakeup asynchronous interrupt. USB bus not connected.	0.10	μA
Wait connection	GCLK_USB is on. USB bus not connected.	0.19	mA
Suspend	GCLK_USB is off, using USB wakeup asynchronous interrupt. USB bus in suspend mode.	201	μA
Suspend	GCLK_USB is on. USB bus in suspend mode.	0.83	mA
IDLE	Start Of Frame is running. No packet transferred.	1.17	mA
Active OUT	Start Of Frame is running. Bulk OUT on 100% bandwidth.	2.17	mA
Active IN	Start Of Frame is running. Bulk IN on 100% bandwidth.	10.3	mA

Table 37-13.	. Typical USB Host Full Speed mode Current Consumption
--------------	--

37.8 I/O Pin Characteristics

37.8.1 Normal I/O Pins

Table 37-14. Normal I/O Pins Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
R _{PULL}	Pull-up - Pull- down resistance	All pins except for PA24 and PA25	20	40	60	kΩ
V _{IL} Input low-level		V _{DD} =1.62V-2.7V	-	-	0.25*V _{DD}	V
	voltage	V _{DD} =2.7V-3.63V	-	-	0.3*V _{DD}	
VIH	Input high-level voltage	V _{DD} =1.62V-2.7V	0.7*V _{DD}	-	-	
		V _{DD} =2.7V-3.63V	0.55*V _{DD}	-	-	
V _{OL}	Output low-level voltage	V _{DD} >1.6V, I _{OL} maxl	-	0.1*V _{DD}	0.2*V _{DD}	
V _{OH}	Output high-level voltage	V _{DD} >1.6V, I _{OH} maxII	0.8*V _{DD}	0.9*V _{DD}	-	

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
f _{IN}	Input frequency		32	-	2000	KHz	
f _{OUT}	Output frequency		48	-	96	MHz	
I _{FDPLL96M}	Current consumption	f _{IN} = 32 kHz, f _{OUT} = 48 MHz	-	500	700	μA	
		f _{IN} = 32 kHz, f _{OUT} = 96 MHz	-	900	1200		
J _p	Period jitter	f _{IN} = 32 kHz, f _{OUT} = 48 MHz	-	1.5	2.1	%	
		f _{IN} = 32 kHz, f _{OUT} = 96 MHz	-	4.0	10.0		
		f _{IN} = 2 MHz, f _{OUT} = 48 MHz	-	1.6	2.2		
		f _{IN} = 2 MHz, f _{OUT} = 96 MHz	-	4.6	10.2		
t _{LOCK}	Lock Time	After start-up, time to get lock signal. f _{IN} = 32 kHz, f _{OUT} = 96 MHz	-	1.2	2	ms	
		f _{IN} = 2 MHz, f _{OUT} = 96 MHz	-	25	50	μs	
Duty	Duty cycle		40	50	60	%	

Table 37-57. FDPLL96M Characteristics ⁽	^{I)} (Device Variant B / Die Revision E)
--	---

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units		
f _{IN}	Input frequency		32	-	2000	KHz		
f _{OUT}	Output frequency		48	-	96	MHz		
I _{FDPLL96M}	Current consumption	f _{IN} = 32 kHz, f _{OUT} = 48 MHz	-	500	-	μA		
		f _{IN} = 32 kHz, f _{OUT} = 96 MHz	-	900	-			
J _p	Period jitter	f _{IN} = 32 kHz, f _{OUT} = 48 MHz	-	2.2	3.0	%		
		f _{IN} = 32 kHz, f _{OUT} = 96 MHz	-	3.7	9.0			
		f _{IN} = 2 MHz, f _{OUT} = 48 MHz	-	2.2	3.0			
		f _{IN} = 2 MHz, f _{OUT} = 96 MHz	-	4.4	9.7			
t _{LOCK}	Lock Time	After start-up, time to get lock signal. f _{IN} = 32 kHz, f _{OUT} = 96 MHz	-	1.0	2	ms		
		f _{IN} = 2 MHz, f _{OUT} = 96 MHz	-	22	50	μs		
Duty	Duty cycle		40	50	60	%		

Note:

1. All values have been characterized with FILTSEL[1/0] as default value.

44.8.2 External 32 kHz Crystal Oscillator (XOSC32K) Characteristics

44.8.2.1 Digital Clock Characteristics

The following table describes the characteristics for the oscillator when a digital clock is applied on XIN32 pin.

Table 44-35. Digital Clock Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
f _{CPXIN32}	XIN32 clock frequency		-	32.768	-	kHz
	XIN32 clock duty cycle		-	50	-	%

44.8.2.2 Crystal Oscillator Characteristics

Figure 37-6 and the equation in also applies to the 32 kHz oscillator connection. The user must choose a crystal oscillator where the crystal load capacitance C_L is within the range given in the table. The exact value of C_L can be found in the crystal datasheet.

Table 44-36. 32kHz Crystal Oscillator Characteristics (Device Variant A)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
f _{OUT}	Crystal oscillator frequency		-	32768	-	Hz
t _{startup}	Startup time	$ ESR_{XTAL} = 39.9 k\Omega, C_{L} = 12.5 pF $	-	28K	31K	cycles
CL	Crystal load capacitance		-	-	12.5	pF
C _{SHUNT}	Crystal shunt capacitance		-	0.1	-	
C _{XIN32}	Parasitic capacitor load	TQFP64/48/32 packages	-	3.1	-	
C _{XOUT32}	Parasitic capacitor load		-	3.3	-	
I _{XOSC32K}	Current consumption		-	1.22	2.44	μA
ESR	Crystal equivalent series resistance f=32.768kHz , Safety Factor = 3	C _L =12.5pF	-	-	141	kΩ

Table 44-37. 32kHz Crystal Oscillator Characteristics (Device Variant B)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
f _{OUT}	Crystal oscillator frequency		-	32768	-	Hz
t _{startup}	Startup time	$ ESR_{XTAL} = 39.9 k\Omega, C_{L} = 12.5 pF $	-	28K	30K	cycles
CL	Crystal load capacitance		-	-	12.5	pF
C _{SHUNT}	Crystal shunt capacitance		-	0.1	-	
C _{XIN32}	Parasitic capacitor load	TQFP64/48/32 packages	-	3.2	-	
C _{XOUT32}	Parasitic capacitor load		-	3.7	-	

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
fout	Output frequency	Calibrated against a 8MHz reference at 25°C, over [-40, +85]°C, over [1.62, 3.63]V	7.54	8	8.19	MHz
		Calibrated against a 8MHz reference at 25°C, at V_{DD}=3.3V	7.94	8	8.06	
		Calibrated against a 8MHz reference at 25°C, over [1.62, 3.63]V	7.92	8	8.06	
I _{OSC8M}	Current consumption	IIDLEIDLE2 on OSC32K versus IDLE2 on calibrated OSC8M enabled at 8MHz (FRANGE=1, PRESC=0)		64	96	μA
t _{startup}	Startup time		-	2.4	3.3	μs
Duty	Duty cycle		-	50	-	%

Table 44-47. Internal 8MHz RC Oscillato	r Characteristics (Device Variant B)
---	--------------------------------------

44.8.7 Fractional Digital Phase Locked Loop (FDPLL96M) Characteristics Table 44-48. FDPLL96M Characteristics⁽¹⁾ (Device Variant A)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
f _{IN}	Input frequency		32	-	2000	KHz
f _{OUT}	Output frequency		48	-	96	MHz
I _{FDPLL96M}	Current consumption	f _{IN} = 32 kHz, f _{OUT} = 48 MHz	-	500	700	μA
		f _{IN} = 32 kHz, f _{OUT} = 96 MHz	-	900	1200	
Jp	Period jitter	f _{IN} = 32 kHz, f _{OUT} = 48 MHz	-	1.5	2.0	%
		f _{IN} = 32 kHz, f _{OUT} = 96 MHz	-	3.0	10.0	
		f _{IN} = 2 MHz, f _{OUT} = 48 MHz	-	1.3	2.0	
		f _{IN} = 2 MHz, f _{OUT} = 96 MHz	-	3.0	7.0	
t _{LOCK}	Lock Time	After start-up, time to get lock signal. f _{IN} = 32 kHz, f _{OUT} = 96 MHz	-	1.3	2	ms
		f _{IN} = 2 MHz, f _{OUT} = 96 MHz	-	25	50	μs
Duty	Duty cycle		40	50	60	%

Table 44-49. FDPLL96M Characteristics⁽¹⁾ (Device Variant B, Die Revision E)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
f _{IN}	Input frequency		32	-	2000	KHz
f _{OUT}	Output frequency		48	-	96	MHz
I _{FDPLL96M}	Current consumption	f _{IN} = 32 kHz, f _{OUT} = 48 MHz	-	500	740	μA
		f _{IN} = 32 kHz, f _{OUT} = 96 MHz	-	900	1262	