

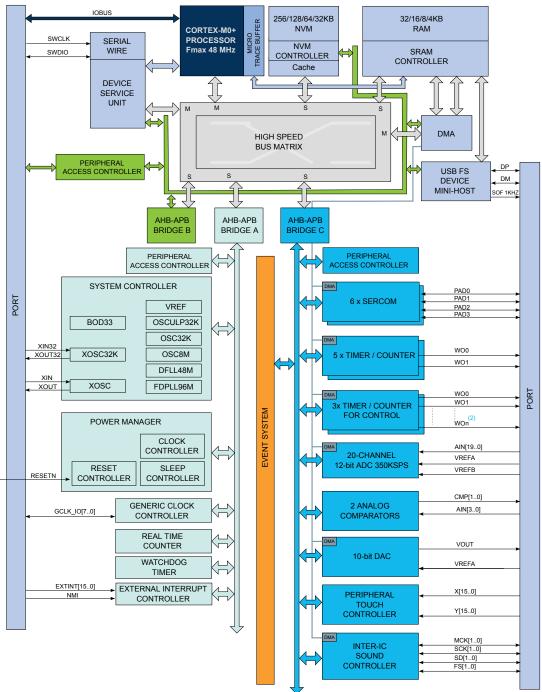
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


ĿХF

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	38
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 14x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamd21g17a-aft

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4. Block Diagram

- 1. Some products have different number of SERCOM instances, Timer/Counter instances, PTC signals and ADC signals. Refer to the Configuration Summary for details.
- The three TCC instances have different configurations, including the number of Waveform Output (WO) lines. Refer to the TCC Configuration for details.

Related Links

Configuration Summary TCC Configurations

Related Links

Electrical Characteristics

8.3 Power-Up

This section summarizes the power-up sequence of the device. The behavior after power-up is controlled by the Power Manager. Refer to *PM – Power Manager* for details.

Related Links

PM – Power Manager

8.3.1 Starting of Clocks

After power-up, the device is set to its initial state and kept in reset, until the power has stabilized throughout the device. Once the power has stabilized, the device will use a 1MHz clock. This clock is derived from the 8MHz Internal Oscillator (OSC8M), which is divided by eight and used as a clock source for generic clock generator 0. Generic clock generator 0 is the main clock for the Power Manager (PM).

Some synchronous system clocks are active, allowing software execution.

Refer to the "Clock Mask Register" section in *PM* – *Power Manager* for the list of default peripheral clocks running. Synchronous system clocks that are running are by default not divided and receive a 1MHz clock through generic clock generator 0. Other generic clocks are disabled except GCLK_WDT, which is used by the Watchdog Timer (WDT).

Related Links

PM – Power Manager

8.3.2 I/O Pins

After power-up, the I/O pins are tri-stated.

8.3.3 Fetching of Initial Instructions

After reset has been released, the CPU starts fetching PC and SP values from the reset address, which is 0x00000000. This address points to the first executable address in the internal flash. The code read from the internal flash is free to configure the clock system and clock sources. Refer to *PM – Power Manager, GCLK – Generic Clock Controller* and *SYSCTRL – System Controller* for details. Refer to the ARM Architecture Reference Manual for more information on CPU startup (http://www.arm.com).

Related Links

PM – Power Manager SYSCTRL – System Controller Clock System

8.4 Power-On Reset and Brown-Out Detector

The SAM D21 embeds three features to monitor, warn and/or reset the device:

- POR: Power-on reset on VDDANA
- BOD33: Brown-out detector on VDDANA
- BOD12: Voltage Regulator Internal Brown-out detector on VDDCORE. The Voltage Regulator Internal BOD is calibrated in production and its calibration configuration is stored in the NVM User Row. This configuration should not be changed if the user row is written to assure the correct behavior of the BOD12.

Related Links

PM – Power Manager

15.5.3 Clocks

The GCLK bus clock (CLK_GCLK_APB) can be enabled and disabled in the Power Manager, and the default state of CLK_GCLK_APB can be found in the Peripheral Clock Masking section of PM – Power Manager.

Related Links

PM – Power Manager

15.5.4 DMA

Not applicable.

15.5.5 Interrupts

Not applicable.

15.5.6 Events

Not applicable.

15.5.7 Debug Operation

Not applicable.

15.5.8 Register Access Protection

All registers with write-access can be optionally write-protected by the Peripheral Access Controller (PAC).

Note: Optional write-protection is indicated by the "PAC Write-Protection" property in the register description.

When the CPU is halted in debug mode, all write-protection is automatically disabled. Write-protection does not apply for accesses through an external debugger.

Related Links

PAC - Peripheral Access Controller

15.5.9 Analog Connections

Not applicable.

15.6 Functional Description

15.6.1 Principle of Operation

The GCLK module is comprised of eight Generic Clock Generators (Generators) sourcing m Generic Clock Multiplexers.

A clock source selected as input to a Generator can either be used directly, or it can be prescaled in the Generator. A generator output is used as input to one or more the Generic Clock Multiplexers to provide a peripheral (GCLK_PERIPHERAL). A generic clock can act as the clock to one or several of peripherals.

32-bit ARM-Based Microcontrollers

Bit	7	6	5	4	3	2	1	0
							CPUDIV[2:0]	
Access						R/W	R/W	R/W
Reset						0	0	0

Bits 2:0 – CPUDIV[2:0]: CPU Prescaler Selection

These bits define the division ratio of the main clock prescaler (2ⁿ).

CPUDIV[2:0]	Name	Description
0x0	DIV1	Divide by 1
0x1	DIV2	Divide by 2
0x2	DIV4	Divide by 4
0x3	DIV8	Divide by 8
0x4	DIV16	Divide by 16
0x5	DIV32	Divide by 32
0x6	DIV64	Divide by 64
0x7	DIV128	Divide by 128

16.8.4 APBA Clock Select

Name:APBASELOffset:0x09Reset:0x00Property:Write-Protected

Bit	7	6	5	4	3	2	1	0
							APBADIV[2:0]	
Access						R/W	R/W	R/W
Reset						0	0	0

Bits 2:0 – APBADIV[2:0]: APBA Prescaler Selection

These bits define the division ratio of the APBA clock prescaler (2ⁿ).

APBADIV[2:0]	Name	Description
0x0	DIV1	Divide by 1
0x1	DIV2	Divide by 2
0x2	DIV4	Divide by 4
0x3	DIV8	Divide by 8
0x4	DIV16	Divide by 16
0x5	DIV32	Divide by 32
0x6	DIV64	Divide by 64
0x7	DIV128	Divide by 128

Writing a one to this bit will clear the OSC8M Ready Interrupt Enable bit, which disables the OSC8M Ready interrupt.

Value	Description
0	The OSC8M Ready interrupt is disabled.
1	The OSC8M Ready interrupt is enabled, and an interrupt request will be generated when the
	OSC8M Ready Interrupt flag is set.

Bit 2 – OSC32KRDY: OSC32K Ready Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will clear the OSC32K Ready Interrupt Enable bit, which disables the OSC32K Ready interrupt.

Value	Description
0	The OSC32K Ready interrupt is disabled.
1	The OSC32K Ready interrupt is enabled, and an interrupt request will be generated when
	the OSC32K Ready Interrupt flag is set.

Bit 1 – XOSC32KRDY: XOSC32K Ready Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will clear the XOSC32K Ready Interrupt Enable bit, which disables the XOSC32K Ready interrupt.

Value	Description
0	The XOSC32K Ready interrupt is disabled.
1	The XOSC32K Ready interrupt is enabled, and an interrupt request will be generated when
	the XOSC32K Ready Interrupt flag is set.

Bit 0 – XOSCRDY: XOSC Ready Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will clear the XOSC Ready Interrupt Enable bit, which disables the XOSC Ready interrupt.

Value	Description
0	The XOSC Ready interrupt is disabled.
1	The XOSC Ready interrupt is enabled, and an interrupt request will be generated when the XOSC Ready Interrupt flag is set.

17.8.2 Interrupt Enable Set

Name:	INTENSET
Offset:	0x04
Reset:	0x00000000
Property:	Write-Protected

Bit	31	30	29	28	27	26	25	24
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

32-bit ARM-Based Microcontrollers

Bit	23	22	21	20	19	18	17	16
						LDRFR	AC[3:0]	
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	15	14	13	12	11	10	9	8
						LDR[[11:8]	
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	7	6	5	4	3	2	1	0
	LDR[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

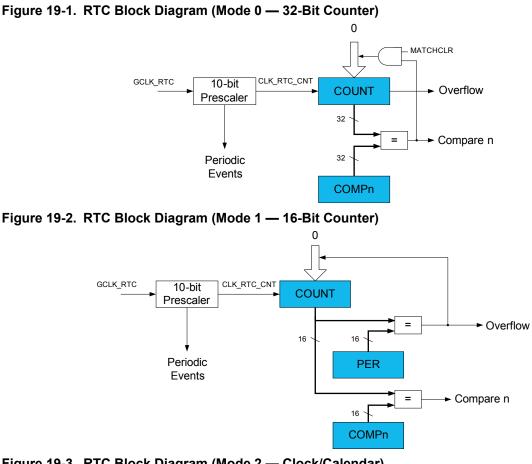
Bits 19:16 – LDRFRAC[3:0]: Loop Divider Ratio Fractional Part

Write this field with the fractional part of the frequency multiplier.

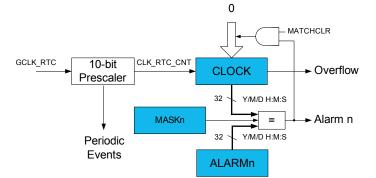
Bits 11:0 – LDR[11:0]: Loop Divider Ratio

Write this field with the integer part of the frequency multiplier.

17.8.19 DPLL Control B


Name:DPLLCTRLBOffset:0x4CReset:0x0000000Property:Write-Protected

Bit	31	30	29	28	27	26	25	24
							DIV[10:8]	
Access			•		•	R/W	R/W	R/W
Reset						0	0	0
Bit	23	22	21	20	19	18	17	16
				DIV	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				LBYPASS			LTIME[2:0]	
Access				R/W	· · · · · · · · · · · · · · · · · · ·	R/W	R/W	R/W
Reset				0		0	0	0
Bit	7	6	5	4	3	2	1	0
			REFC	REFCLK[1:0]		LPEN	FILTE	R[1:0]
Access		· · · · · · · · · · · · · · · · · · ·	R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0


Bits 26:16 – DIV[10:0]: Clock Divider

These bits are used to set the XOSC clock source division factor. Refer to Principle of Operation.

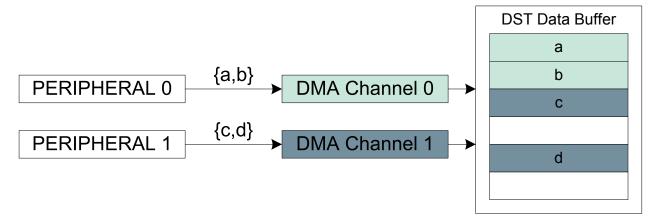
Block Diagram 19.3

19.4 Signal Description

Not applicable.

19.5 **Product Dependencies**

In order to use this peripheral, other parts of the system must be configured correctly, as described below.


19.5.1 I/O Lines

Not applicable.

- BEATSIZE is the configured number of bytes in a beat
- STEPSIZE is the configured number of beats for each incrementation

Figure 20-9shows an example where DMA channel 0 is configured to increment destination address by one beat (BTCTRL.DSTINC=1) and DMA channel 1 is configured to increment destination address by two beats (BTCTRL.DSTINC=1, BTCTRL.STEPSEL=0, and BTCTRL.STEPSIZE=0x1). As the source address for both channels are peripherals, source incrementation is disabled (BTCTRL.SRCINC=0).

Figure 20-9. Destination Address Increment

20.6.2.8 Error Handling

If a bus error is received from an AHB slave during a DMA data transfer, the corresponding active channel is disabled and the corresponding Channel Transfer Error Interrupt flag in the Channel Interrupt Status and Clear register (CHINTFLAG.TERR) is set. If enabled, the optional transfer error interrupt is generated. The transfer counter will not be decremented and its current value is written-back in the write-back memory section before the channel is disabled.

When the DMAC fetches an invalid descriptor (BTCTRL.VALID=0) or when the channel is resumed and the DMA fetches the next descriptor with null address (DESCADDR=0x00000000), the corresponding channel operation is suspended, the Channel Suspend Interrupt Flag in the Channel Interrupt Flag Status and Clear register (CHINTFLAG.SUSP) is set, and the Channel Fetch Error bit in the Channel Status register (CHSTATUS.FERR) is set. If enabled, the optional suspend interrupt is generated.

20.6.3 Additional Features

20.6.3.1 Linked Descriptors

A transaction can consist of either a single block transfer or of several block transfers. When a transaction consist of several block transfers it is called linked descriptors.

Figure Figure 20-3 illustrates how linked descriptors work. When the first block transfer is completed on DMA channel 0, the DMAC fetches the next transfer descriptor which is pointed to by the value stored in the Next Descriptor Address (DESCADDR) register of the first transfer descriptor. Fetching the next transfer descriptor (DESCADDR) is continued until the last transfer descriptor. When the block transfer for the last transfer descriptor is executed and DESCADDR=0x00000000, the transaction is terminated. For further details on how the next descriptor is fetched from SRAM, refer to section Data Transmission.

Adding Descriptor to the End of a List

To add a new descriptor at the end of the descriptor list, create the descriptor in SRAM, with DESCADDR=0x00000000 indicating that it is the new last descriptor in the list, and modify the DESCADDR value of the current last descriptor to the address of the newly created descriptor.

Modifying a Descriptor in a List

In order to add descriptors to a linked list, the following actions must be performed:

20.7 Register Summary

Offset	Name	Bit Pos.										
0x00	OTDI	7:0						CRCENABLE	DMAENABLE	SWRST		
0x01	CTRL	15:8					LVLEN3	LVLEN2	LVLEN1	LVLEN0		
0x02	CDCCTDI	7:0					CRCPO	DLY[1:0]	CRCBEAT	SIZE[1:0]		
0x03	CRCCTRL	15:8					CRCS	RC[5:0]				
0x04		7:0				CRCDA	ATAIN[7:0]					
0x05		15:8				CRCDAT	AIN[15:8]					
0x06	CRCDATAIN	23:16	CRCDATAIN[23:16]									
0x07		31:24				CRCDAT	AIN[31:24]					
0x08		7:0		CRCCHKSUM[7:0]								
0x09	CRCCHKSUM	15:8				CRCCHK	SUM[15:8]					
0x0A	CRECHRSUM	23:16		CRCCHKSUM[23:16]								
0x0B		31:24				CRCCHKS	SUM[31:24]					
0x0C	CRCSTATUS	7:0							CRCZERO	CRCBUSY		
0x0D	DBGCTRL	7:0								DBGRUN		
0x0E	QOSCTRL	7:0			DQO	S[1:0]	FQO	S[1:0]	WRBQ	DS[1:0]		
0x0F	Reserved											
0x10		7:0	SWTRIG7	SWTRIG6	SWTRIG5	SWTRIG4	SWTRIG3	SWTRIG2	SWTRIG1	SWTRIG0		
0x11	SWTRIGCTRL	15:8					SWTRIG11	SWTRIG10	SWTRIG9	SWTRIG8		
0x12	SWINIGONIE	23:16										
0x13		31:24										
0x14		7:0	RRLVLEN0					LVLPF	RI0[3:0]			
0x15	PRICTRL0	15:8	RRLVLEN1					LVLPF	RI1[3:0]			
0x16	TRICTIL	23:16	RRLVLEN2					LVLPF	RI2[3:0]	3:0]		
0x17		31:24	RRLVLEN3					LVLPF	RI3[3:0]			
0x18												
	Reserved											
0x1F												
0x20	INTPEND	7:0						ID[3:0]			
0x21		15:8	PEND	BUSY	FERR			SUSP	TCMPL	TERR		
0x22												
	Reserved											
0x23												
0x24		7:0	CHINT7	CHINT6	CHINT5	CHINT4	CHINT3	CHINT2	CHINT1	CHINT0		
0x25	INTSTATUS	15:8					CHINT11	CHINT10	CHINT9	CHINT8		
0x26		23:16										
0x27		31:24										
0x28		7:0	BUSYCH7	BUSYCH6	BUSYCH5	BUSYCH4	BUSYCH3	BUSYCH2	BUSYCH1	BUSYCH0		
0x29	BUSYCH	15:8					BUSYCH11	BUSYCH10	BUSYCH9	BUSYCH8		
0x2A		23:16										
0x2B		31:24										
0x2C		7:0	PENDCH7	PENDCH6	PENDCH5	PENDCH4	PENDCH3	PENDCH2	PENDCH1	PENDCH0		
0x2D	PENDCH	15:8					PENDCH11	PENDCH10	PENDCH9	PENDCH8		
0x2E		23:16										
0x2F		31:24										

Value	Description
0	The external interrupt x is disabled.
1	The external interrupt x is enabled.

21.8.8 Interrupt Flag Status and Clear

Name:	INTFLAG
Offset:	0x10
Reset:	0x00000000
Property:	-

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
							EXTINT17	EXTINT16
Access							R/W	R/W
Reset							0	0
Bit	15	14	13	12	11	10	9	8
	EXTINT15	EXTINT14	EXTINT13	EXTINT12	EXTINT11	EXTINT10	EXTINT9	EXTINT8
Access	R/W							
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	EXTINT7	EXTINT6	EXTINT5	EXTINT4	EXTINT3	EXTINT2	EXTINT1	EXTINT0
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bits 17,16,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0 – EXTINTx : External Interrupt x [x=17..0] This flag is cleared by writing a one to it.

This flag is set when EXTINTx pin matches the external interrupt sense configuration and will generate an interrupt request if INTENCLR/SET.EXTINT[x] is one.

Writing a zero to this bit has no effect.

Writing a one to this bit clears the External Interrupt x flag.

21.8.9 Wake-Up Enable

Name:WAKEUPOffset:0x14Reset:0x00000000Property:Write-Protected

IDLE No frame is transferred on the communication line. Signal is always high in this state.

26.6.2 Basic Operation

26.6.2.1 Initialization

The following registers are enable-protected, meaning they can only be written when the USART is disabled (CTRL.ENABLE=0):

- Control A register (CTRLA), except the Enable (ENABLE) and Software Reset (SWRST) bits.
- Control B register (CTRLB), except the Receiver Enable (RXEN) and Transmitter Enable (TXEN) bits.
- Baud register (BAUD)

When the USART is enabled or is being enabled (CTRLA.ENABLE=1), any writing attempt to these registers will be discarded. If the peripheral is being disabled, writing to these registers will be executed after disabling is completed. Enable-protection is denoted by the "Enable-Protection" property in the register description.

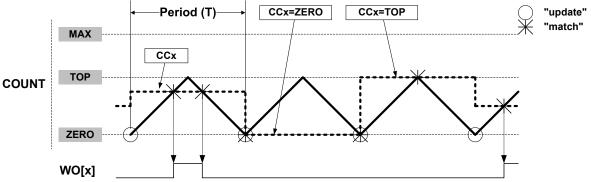
Before the USART is enabled, it must be configured by these steps:

- 1. Select either external (0x0) or internal clock (0x1) by writing the Operating Mode value in the CTRLA register (CTRLA.MODE).
- 2. Select either asynchronous (0) or or synchronous (1) communication mode by writing the Communication Mode bit in the CTRLA register (CTRLA.CMODE).
- 3. Select pin for receive data by writing the Receive Data Pinout value in the CTRLA register (CTRLA.RXPO).
- 4. Select pads for the transmitter and external clock by writing the Transmit Data Pinout bit in the CTRLA register (CTRLA.TXPO).
- 5. Configure the Character Size field in the CTRLB register (CTRLB.CHSIZE) for character size.
- 6. Set the Data Order bit in the CTRLA register (CTRLA.DORD) to determine MSB- or LSB-first data transmission.
- 7. To use parity mode:
 - 7.1. Enable parity mode by writing 0x1 to the Frame Format field in the CTRLA register (CTRLA.FORM).
 - 7.2. Configure the Parity Mode bit in the CTRLB register (CTRLB.PMODE) for even or odd parity.
- 8. Configure the number of stop bits in the Stop Bit Mode bit in the CTRLB register (CTRLB.SBMODE).
- 9. When using an internal clock, write the Baud register (BAUD) to generate the desired baud rate.
- 10. Enable the transmitter and receiver by writing '1' to the Receiver Enable and Transmitter Enable bits in the CTRLB register (CTRLB.RXEN and CTRLB.TXEN).

26.6.2.2 Enabling, Disabling, and Resetting

This peripheral is enabled by writing '1' to the Enable bit in the Control A register (CTRLA.ENABLE), and disabled by writing '0' to it.

Writing '1' to the Software Reset bit in the Control A register (CTRLA.SWRST) will reset all registers of this peripheral to their initial states, except the DBGCTRL register, and the peripheral is disabled.


Refer to the CTRLA register description for details.

29.8 Register Summary

Offset	Name	Bit Pos.								
0x00	CTRLA	7:0			SEREN1	SEREN0	CKEN1	CKEN0	ENABLE	SWRST
0x01										
	Reserved									
0x03										
0x04		7:0	BITDELAY	FSWID	TH[1:0]		NBSLOTS[2:0]		SLOTS	IZE[1:0]
0x05	CLKCTRLn0	15:8				SCKSEL	FSINV			FSSEL
0x06	CERCINEIIO	23:16			MCKDIV[4:0]			MCKEN		MCKSEL
0x07		31:24	MCKOUTINV	SCKOUTINV	FSOUTINV		N	ICKOUTDIV[4:	0]	
0x08		7:0	BITDELAY	FSWID	TH[1:0]		NBSLOTS[2:0]		SLOTS	IZE[1:0]
0x09		15:8				SCKSEL	FSINV			FSSEL
0x0A	CLKCTRLn1	23:16			MCKDIV[4:0]			MCKEN		MCKSEL
0x0B		31:24	MCKOUTINV	SCKOUTINV	FSOUTINV		N	ICKOUTDIV[4:	0]	
0x0C		7:0			RXOR1	RXOR0			RXRDY1	RXRDY0
0x0D	INTENCLR	15:8			TXUR1	TXUR0			TXRDY1	TXRDY0
0x0E										
	Reserved									
0x0F										
0x10	INTENOET	7:0			RXOR1	RXOR0			RXRDY1	RXRDY0
0x11	INTENSET	15:8			TXUR1	TXUR0			TXRDY1	TXRDY0
0x12										
	Reserved									
0x13										
0x14		7:0			RXOR1	RXOR0			RXRDY1	RXRDY0
0x15	INTFLAG	15:8			TXUR1	TXUR0			TXRDY1	TXRDY0
0x16										
	Reserved									
0x17										
0x18	EVALOPTIEX	7:0			SEREN1	SEREN0	CKEN1	CKEN0	ENABLE	SWRST
0x19	SYNCBUSY	15:8							DATA1	DATA0
0x1A										
	Reserved									
0x1F										
0x20		7:0	SLOTADJ		CLKSEL	TXSAME	TXDEFA	ULT[1:0]	SERMC	DE[1:0]
0x21		15:8	BITREV	EXTEN	ND[1:0]	WORDADJ			DATASIZE[2:0]	
0x22	SERCTRLn0	23:16	SLOTDIS8	SLOTDIS7	SLOTDIS6	SLOTDIS5	SLOTDIS4	SLOTDIS3	SLOTDIS1	SLOTDIS0
0x23		31:24						RXLOOP	DMA	MONO
0x24		7:0	SLOTADJ		CLKSEL	TXSAME	TXDEFA	ULT[1:0]	SERMC	DE[1:0]
0x25		15:8	BITREV	EXTEN	ND[1:0]	WORDADJ			DATASIZE[2:0]	
0x26	SERCTRLn1	23:16	SLOTDIS8	SLOTDIS7	SLOTDIS6	SLOTDIS5	SLOTDIS4	SLOTDIS3	SLOTDIS1	SLOTDIS0
0x27		31:24						RXLOOP	DMA	MONO
0x28										
	Reserved									
0x2F										

In DSBOTH operation, a second update time occurs on TOP when circular buffer is enabled.

Using dual-slope PWM results in a lower maximum operation frequency compared to single-slope PWM generation. The period (TOP) defines the PWM resolution. The minimum resolution is 1 bit (TOP=0x00000001).

The following equation calculates the exact resolution for dual-slope PWM ($R_{PWM DS}$):

 $R_{\text{PWM}_{\text{DS}}} = \frac{\log(\text{PER}+1)}{\log(2)}.$

The PWM frequency $f_{PWM_{DS}}$ depends on the period setting (TOP) and the peripheral clock frequency $f_{GCLK TCC}$, and can be calculated by the following equation:

$$f_{\text{PWM}_{\text{DS}}} = \frac{f_{\text{GCLK}_{\text{TCC}}}}{2N \cdot \text{PER}}$$

N represents the prescaler divider used. The waveform generated will have a maximum frequency of half of the TCC clock frequency ($f_{GCLK TCC}$) when TOP is set to 0x00000001 and no prescaling is used.

The pulse width (P_{PWM_DS}) depends on the compare channel (CCx) register value and the peripheral clock frequency ($f_{GCLK TCC}$), and can be calculated by the following equation:

$$P_{\text{PWM}_\text{DS}} = \frac{2N \cdot (\text{TOP} - \text{CCx})}{f_{\text{GCLK}_\text{TCC}}}$$

N represents the prescaler divider used.

Note: In DSTOP, DSBOTTOM and DSBOTH operation, when TOP is lower than MAX/2, the CCx MSB bit defines the ramp on which the CCx Match interrupt or event is generated. (Rising if CCx[MSB]=0, falling if CCx[MSB]=1.)

Related Links

Circular Buffer

Dual-Slope Critical PWM Generation Dual-Slope Critical PWM Generation

Critical mode generation allows generation of non-aligned centered pulses. In this mode, the period time is controlled by PER while CCx control the generated waveform output edge during up-counting and CC(x+CC_NUM/2) control the generated waveform output edge during down-counting.

- Decrement the counter on event
- Period and pulse width capture
- Non-recoverable fault

The TCC can take the following actions on counter Event 0 (TCCx EV0):

- Counter re-trigger
- Count on event (increment or decrement, depending on counter direction)
- Counter start start counting on the event rising edge. Further events will not restart the counter; the counter will keep on counting using prescaled GCLK_TCCx, until it reaches TOP or ZERO, depending on the direction.
- Counter increment on event. This will increment the counter, irrespective of the counter direction.
- Count during active state of an asynchronous event (increment or decrement, depending on counter direction). In this case, the counter will be incremented or decremented on each cycle of the prescaled clock, as long as the event is active.
- Non-recoverable fault

The counter Event Actions are available in the Event Control registers (EVCTRL.EVACT0 and EVCTRL.EVACT1). For further details, refer to EVCTRL.

Writing a '1' ('0') to an Event Input bit in the Event Control register (EVCTRL.MCEIx or EVCTRL.TCEIx) enables (disables) the corresponding action on input event.

Note: When several events are connected to the TCC, the enabled action will apply for each of the incoming events. Refer to *EVSYS – Event System* for details on how to configure the event system.

Related Links

EVSYS – Event System

31.6.5 Sleep Mode Operation

The TCC can be configured to operate in any sleep mode. To be able to run in standby the RUNSTDBY bit in the Control A register (CTRLA.RUNSTDBY) must be '1'. The MODULE can in any sleep mode wake up the device using interrupts or perform actions through the Event System.

31.6.6 Synchronization

Due to asynchronicity between the main clock domain and the peripheral clock domains, some registers need to be synchronized when written or read.

The following bits are synchronized when written:

• Software Reset and Enable bits in Control A register (CTRLA.SWRST and CTRLA.ENABLE)

The following registers are synchronized when written:

- Control B Clear and Control B Set registers (CTRLBCLR and CTRLBSET)
- Status register (STATUS)
- Pattern and Pattern Buffer registers (PATT and PATTB)
- Waveform register (WAVE)
- Count Value register (COUNT)
- Period Value and Period Buffer Value registers (PER and PERB)
- Compare/Capture Channel x and Channel x Compare/Capture Buffer Value registers (CCx and CCBx)

The following registers are synchronized when read:

Offset: 0x40 Reset: 0xFFFFFFF Property: Write-Synchronized

Bit	31	30	29	28	27	26	25	24			
Access											
Reset											
Bit	23	22	21	20	19	18	17	16			
	PER[17:10]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	1	1	1	1	1	1	1	1			
Bit	15	14	13	12	11	10	9	8			
				PER	[9:2]						
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	1	1	1	1	1	1	1	1			
Bit	7	6	5	4	3	2	1	0			
	PER	[1:0]	DITHER[5:0]								
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	1	1	1	1	1	1	1	1			

Bits 23:6 – PER[17:0]: Period Value

These bits hold the value of the period buffer register.

Note: When the TCC is configured as 16-bit timer/counter, the excess bits are read zero.

Note: This bit field occupies the MSB of the register, [23:m]. m is dependent on the Resolution bit in the Control A register (CTRLA.RESOLUTION):

CTRLA.RESOLUTION	Bits [23:m]
0x0 - NONE	23:0
0x1 - DITH4	23:4
0x2 - DITH5	23:5
0x3 - DITH6	23:6 (depicted)

Bits 5:0 – DITHER[5:0]: Dithering Cycle Number

These bits hold the number of extra cycles that are added on the PWM pulse period every 64 PWM frames.

Note: This bit field consists of the n LSB of the register. n is dependent on the value of the Resolution bits in the Control A register (CTRLA.RESOLUTION):

CTRLA.RESOLUTION	Bits [n:0]
0x0 - NONE	-
0x1 - DITH4	3:0

32-bit ARM-Based Microcontrollers

Offset	Name	Bit Pos.								
0x1B	Reserved									
0x1C	INTFLAG	7:0	RAMACER	UPRSM	DNRSM	WAKEUP	RST	HSOF		
0x1D	INTELAG	15:8							DDISC	DCONN
0x1E	Reserved									
0x1F	Reserved									
0x20	PINTSMRY	7:0			:	PIN	F[7:0]		:	:
0x21	FINTSWIRT	15:8				PINT	[15:8]			
0x22	Reserved									
0x23										

Table 32-6. Host Pipe Register n

Offset	Name	Bit Pos.								
0x1m0	PCFGn	7:0				PTYPE[2:0]		BK	PTOK	EN[1:0]
0x1m1	Reserved									
0x1m2	Reserved									
0x1m3	BINTERVAL	7:0				BINTER	VAL[7:0]			
0x1m4	PSTATUSCLRn	7:0	BK1RDY	BK0RDY		PFREEZE		CURBK		DTGL
0x1m5	PSTATUSETn	7:0	BK1RDY	BK0RDY		PFREEZE		CURBK		DTGL
0x1m6	PSTATUSn	7:0	BK1RDY	BK0RDY		PFREEZE		CURBK		DTGL
0x1m7	PINTFLAGn	7:0			STALL	TXSTP	PERR	TRFAIL	TRCPT1	TRCPT0
0x1m8	PINTENCLRn	7:0			STALL	TXSTP	PERR	TRFAIL	TRCPT1	TRCPT0
0x1m9	PINTENSETn	7:0			STALL	TXSTP	PERR	TRFAIL	TRCPT1	TRCPT0
0x1mA	Reserved									
0x1mB	Reserved									

Table 32-7. Host Pipe n Descriptor Bank 0

Offset 0x n0 + index	Name	Bit Pos.								
0x00		7:0				ADD	0[7:0]			
0x01		15:8				ADD	[15:8]			
0x02	ADDR	23:16		ADD[23:16]						
0x03		31:24				ADD[31:24]			
0x04		7:0		BYTE_COUNT[7:0]						
0x05	DOVOIZE	15:8	MULTI_PACK	ET_SIZE[1:0]			BYTE_CO	UNT[13:8]		
0x06	PCKSIZE	23:16				MULTI_PACK	ET_SIZE[9:2]			
0x07		31:24	AUTO_ZLP		SIZE[2:0]			MULTI_PACK	ET_SIZE[13:10]	
0x08	EXTREG	7:0		VARIAE	BLE[3:0]			SUBF	PID[3:0]	
0x09	EXTREG	15:8				١	ARIABLE[10:4]		
0x0A	STATUS_BK	7:0							ERRORFLOW	CRCERR
0x0B		15:8								
0x0C		7:0					PDADDR[6:0]			
0x0D	CTRL_PIPE	15:8		PEPMAX[3:0] PEPNUM[3:0]						
0x0E		7:0		ERCNT[2:0]		CRC16ER	TOUTER	PIDER	DAPIDER	DTGLER
0x0F	STATUS_PIPE	15:8								

GAIN[3:0]	Name	Description
0x5-0xE		Reserved
0xF	DIV2	1/2x

Bits 23:20 – INPUTOFFSET[3:0]: Positive Mux Setting Offset

The pin scan is enabled when INPUTSCAN != 0. Writing these bits to a value other than zero causes the first conversion triggered to be converted using a positive input equal to MUXPOS + INPUTOFFSET. Setting this register to zero causes the first conversion to use a positive input equal to MUXPOS.

After a conversion, the INPUTOFFSET register will be incremented by one, causing the next conversion to be done with the positive input equal to MUXPOS + INPUTOFFSET. The sum of MUXPOS and INPUTOFFSET gives the input that is actually converted.

Bits 19:16 – INPUTSCAN[3:0]: Number of Input Channels Included in Scan

This register gives the number of input sources included in the pin scan. The number of input sources included is INPUTSCAN + 1. The input channels included are in the range from MUXPOS + INPUTOFFSET to MUXPOS + INPUTOFFSET + INPUTSCAN.

The range of the scan mode must not exceed the number of input channels available on the device.

Bits 12:8 – MUXNEG[4:0]: Negative Mux Input Selection

These bits define the Mux selection for the negative ADC input. selections.

Value	Name	Description
0x00	PIN0	ADC AIN0 pin
0x01	PIN1	ADC AIN1 pin
0x02	PIN2	ADC AIN2 pin
0x03	PIN3	ADC AIN3 pin
0x04	PIN4	ADC AIN4 pin
0x05	PIN5	ADC AIN5 pin
0x06	PIN6	ADC AIN6 pin
0x07	PIN7	ADC AIN7 pin
0x08-0x1 7	Reserved	
0x18	GND	Internal ground
0x19	IOGND	I/O ground
0x1A-0x1 F	Reserved Note: 1. Only available in SAM R21G.	

Bits 4:0 – MUXPOS[4:0]: Positive Mux Input Selection

These bits define the Mux selection for the positive ADC input. The following table shows the possible input selections. If the internal bandgap voltage or temperature sensor input channel is selected, then the Sampling Time Length bit group in the SamplingControl register must be written.

MUXPOS[4:0]	Group configuration	Description
0x00	PINO	ADC AIN0 pin
0x01	PIN1	ADC AIN1 pin
0x02	PIN2	ADC AIN2 pin

34. AC – Analog Comparators

34.1 Overview

The Analog Comparator (AC) supports two individual comparators. Each comparator (COMP) compares the voltage levels on two inputs, and provides a digital output based on this comparison. Each comparator may be configured to generate interrupt requests and/or peripheral events upon several different combinations of input change.

Hysteresis and propagation delay are two important properties of the comparators' dynamic behavior. Both parameters may be adjusted to achieve the optimal operation for each application.

The input selection includes four shared analog port pins and several internal signals. Each comparator output state can also be output on a pin for use by external devices.

The comparators are always grouped in pairs on each port. The AC peripheral implements one pair of comparators. These are called Comparator 0 (COMP0) and Comparator 1 (COMP1) They have identical behaviors, but separate control registers. The pair can be set in window mode to compare a signal to a voltage range instead of a single voltage level.

34.2 Features

- Two individual comparators
- Selectable propagation delay versus current consumption
- Selectable hysteresis
 - 4-levels or Off
- Analog comparator outputs available on pins
 - Asynchronous or synchronous
- Flexible input selection:
 - Four pins selectable for positive or negative inputs
 - Ground (for zero crossing)
 - Bandgap reference voltage
 - 64-level programmable VDD scaler per comparator
 - DAC
- Interrupt generation on:
 - Rising or falling edge
 - Toggle
 - End of comparison
- Window function interrupt generation on:
 - Signal above window
 - Signal inside window
 - Signal below window
 - Signal outside window
- Event generation on:
 - Comparator output
 - Window function inside/outside window

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
ENOB	Effective Number Of Bits	With gain compensation	-	10.5	10.9	bits
TUE	Total Unadjusted Error	1x Gainn	1.5	4.3	17.0	LSB
INLI	Integral Non Linearity	1x Gainn	1.0	1.3	6.5	LSB
DNL	Differential Non Linearity	1x Gainn	+/-0.3	+/-0.5	+/-0.95	LSB
	Gain Error	Ext. Ref 1x	-15.0	2.5	+20.0	mV
		V _{REF} =V _{DDANA} /1.48	-20.0	-1.5	+20.0	mV
		Bandgap	-15.0	-5.0	+15.0	mV
	Gain Accuracy ⁽⁵⁾	Ext. Ref. 0.5x	+/-0.1	+/-0.2	+/-0.45	%
		Ext. Ref. 2x to 16x	+/-0.1	+/-0.2	+/-2.0	%
	Offset Error	Ext. Ref. 1x	-10.0	-1.5	+10.0	mV
		V _{REF} =V _{DDANA} /1.48	-10.0	0.5	+15.0	mV
		Bandgap	-10.0	3.0	+15.0	mV
SFDR	Spurious Free Dynamic Range	1x Gain	64.2	70.0	78.9	dB
SINAD	Signal-to-Noise and Distortion	F _{CLK_ADC} = 2.1MHz F _{IN} = 40kHz A _{IN} = 95%FSR	64.1	65.0	66	dB
SNR	Signal-to-Noise Ratio		64.3	65.5	66.0	dB
THD	Total Harmonic Distortion		-74.8	-64.0	-65.0	dB
	Noise RMS	T=25°C	0.6	1.0	1.6	mV

Table 44-15.	Differential	Mode	(Device	Variant A)
--------------	--------------	------	---------	------------

Table 44-16. Differential Mode (Device Variant B)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
ENOB	Effective Number Of Bits	With gain compensation	-	10.5	10.8	bits
TUE	Total Unadjusted Error	1x Gainn	1.5	2.7	14	LSB
INLI	Integral Non Linearity	1x Gainn	0.9	1.3	4	LSB
DNL	Differential Non Linearity	1x Gainn	+/-0.3	+/-0.5	+/-0.95	LSB
Gain Error	Gain Error	Ext. Ref 1x	-10.0	-1.3	+10	mV
		V _{REF} =V _{DDANA} /1.48	-25.0	-10.1	+10.0	mV
		Bandgap	-25.0	+2	+10.0	mV
	Gain Accuracy ⁽⁵⁾	Ext. Ref. 0.5x	+/-0.005	+/-0.05	+/-0.15	%
		Ext. Ref. 2x to 16x	+/-0.1	+/-0.03	+/-0.5	%
	Offset Error	Ext. Ref. 1x	-8.0	-1.0	+8.0	mV
		V _{REF} =V _{DDANA} /1.48	-8.0	0.6	+8.0	mV
		Bandgap	-6.0	-1.0	+8.0	mV

Quality Management System Certified by DNV

ISO/TS 16949

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC[®] MCUs and dsPIC[®] DSCs, KEELOQ[®] code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.