

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	52
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 20x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamd21j16b-au

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PM – Power Manager

11.6 PAC - Peripheral Access Controller

11.6.1 Overview

There is one PAC associated with each AHB-APB bridge. The PAC can provide write protection for registers of each peripheral connected on the same bridge.

The PAC peripheral bus clock (CLK_PACx_APB) can be enabled and disabled in the Power Manager. CLK_PAC0_APB and CLK_PAC1_APB are enabled are reset. CLK_PAC2_APB is disabled at reset. Refer to *PM* – *Power Manager* for details. The PAC will continue to operate in any sleep mode where the selected clock source is running. Write-protection does not apply for debugger access. When the debugger makes an access to a peripheral, write-protection is ignored so that the debugger can update the register.

Write-protect registers allow the user to disable a selected peripheral's write-protection without doing a read-modify-write operation. These registers are mapped into two I/O memory locations, one for clearing and one for setting the register bits. Writing a one to a bit in the Write Protect Clear register (WPCLR) will clear the corresponding bit in both registers (WPCLR and WPSET) and disable the write-protection for the corresponding bit in both registers (WPCLR and WPSET) and enable the write-protection for the corresponding bit in both registers (WPCLR and WPSET) and enable the write-protection for the corresponding bit in both registers (WPCLR and WPSET) and enable the write-protection for the corresponding bit in both registers (WPCLR and WPSET) and enable the write-protection for the corresponding peripheral. Both registers (WPCLR and WPSET) will return the same value when read.

If a peripheral is write-protected, and if a write access is performed, data will not be written, and the peripheral will return an access error (CPU exception).

The PAC also offers a safety feature for correct program execution, with a CPU exception generated on double write-protection or double unprotection of a peripheral. If a peripheral n is write-protected and a write to one in WPSET[n] is detected, the PAC returns an error. This can be used to ensure that the application follows the intended program flow by always following a write-protect with an unprotect, and vice versa. However, in applications where a write-protected peripheral is used in several contexts, e.g., interrupts, care should be taken so that either the interrupt can not happen while the main application or other interrupt levels manipulate the write-protection status, or when the interrupt handler needs to unprotect the peripheral, based on the current protection status, by reading WPSET.

14.3.1.2 Write-Synchronization

Write-Synchronization is triggered by writing to a register in the peripheral clock domain. The Synchronization Busy bit in the Status register (STATUS.SYNCBUSY) will be set when the write-synchronization starts and cleared when the write-synchronization is complete. Refer to Synchronization Delay for details on the synchronization delay.

When the write-synchronization is ongoing (STATUS.SYNCBUSY is one), any of the following actions will cause the peripheral bus to stall until the synchronization is complete:

- Writing a generic clock peripheral core register
- Reading a read-synchronized peripheral core register
- Reading the register that is being written (and thus triggered the synchronization)

Peripheral core registers without read-synchronization will remain static once they have been written and synchronized, and can be read while the synchronization is ongoing without causing the peripheral bus to

In this device, SleepWalking is supported only on GCLK clocks by using the on-demand clock principle of the clock sources. Refer to *On-demand, Clock Requests* for more details.

Related Links

On-demand, Clock Requests

16.6.4 DMA Operation

Not applicable.

16.6.5 Interrupts

The peripheral has the following interrupt sources:

Clock Ready flag

Each interrupt source has an interrupt flag associated with it. The interrupt flag in the Interrupt Flag Status and Clear (INTFLAG) register is set when the interrupt condition occurs. Each interrupt can be individually enabled by writing a one to the corresponding bit in the Interrupt Enable Set (INTENSET) register, and disabled by writing a one to the corresponding bit in the Interrupt Enable Clear (INTENCLR) register. An interrupt request is generated when the interrupt flag is set and the corresponding interrupt is enabled. The interrupt request remains active until the interrupt flag is cleared, the interrupt is disabled or the peripheral is reset. An interrupt flag is cleared by writing a one to the corresponding bit in the INTFLAG register. Each peripheral can have one interrupt request line per interrupt source or one common interrupt request line for all the interrupt sources. Refer to *Nested Vector Interrupt Controller* for details. If the peripheral has one common interrupt request line for all the interrupt sources, the user must read the INTFLAG register to determine which interrupt condition is present.

Related Links

Nested Vector Interrupt Controller

16.6.6 Events

Not applicable.

16.6.7 Sleep Mode Operation

In all IDLE sleep modes, the power manager is still running on the selected main clock.

In STANDDBY sleep mode, the power manager is frozen and is able to go back to ACTIVE mode upon any asynchronous interrupt.

Note: Optional write-protection is indicated by the "PAC Write-Protection" property in the register description.

When the CPU is halted in debug mode, all write-protection is automatically disabled. Write-protection does not apply for accesses through an external debugger.

17.5.7 Analog Connections

When used, the 32.768kHz crystal must be connected between the XIN32 and XOUT32 pins, and the 0.4-32MHz crystal must be connected between the XIN and XOUT pins, along with any required load capacitors. For details on recommended oscillator characteristics and capacitor load, refer to the *Electrical Characteristics* for details.

Related Links

Electrical Characteristics

17.6 Functional Description

17.6.1 Principle of Operation

XOSC, XOSC32K, OSC32K, OSCULP32K, OSC8M, DFLL48M, FDPLL96M, BOD33, BOD12, and VREF are configured via SYSCTRL control registers. Through this interface, the sub-peripherals are enabled, disabled or have their calibration values updated.

The Power and Clocks Status register gathers different status signals coming from the sub-peripherals controlled by the SYSCTRL. The status signals can be used to generate system interrupts, and in some cases wake up the system from standby mode, provided the corresponding interrupt is enabled.

The oscillator must be enabled to run. The oscillator is enabled by writing a one to the ENABLE bit in the respective oscillator control register, and disabled by writing a zero to the oscillator control register. In idle mode, the default operation of the oscillator is to run only when requested by a peripheral. In standby mode, the default operation of the oscillator is to stop. This behavior can be changed by the user, see below for details.

The behavior of the oscillators in the different sleep modes is shown in the table below.

Oscillator	ldle 0, 1, 2	Standby
XOSC	Run on request	Stop
XOSC32K	Run on request	Stop
OSC32K	Run on request	Stop
OSCULP32K	Run	Run
OSC8M	Run on request	Stop
DFLL48M	Run on request	Stop
FDPLL96M	Run on request	Stop

Table 17-1.	Behavior of the Oscillators

To force an oscillator to always run in idle mode, and not only when requested by a peripheral, the oscillator ONDEMAND bit must be written to zero. The default value of this bit is one, and thus the default operation in idle mode is to run only when requested by a peripheral.

19.8.17 Status

	Name: Offset: Reset: Property:	STATUS 0x0A 0x00 -						
Bit	7	6	5	4	3	2	1	0
	SYNCBUS	SY .						
Access	R	·	·					

Reset 0

Bit 7 – SYNCBUSY: Synchronization Busy

This bit is cleared when the synchronization of registers between the clock domains is complete.

This bit is set when the synchronization of registers between clock domains is started.

19.8.18 Debug Control

Name: DBGCTRL Offset: 0x0B Reset: 0x00 Property: -

Bit	7	6	5	4	3	2	1	0
								DBGRUN
Access								R/W
Reset								0

Bit 0 – DBGRUN: Run During Debug

This bit is not reset by a software reset.

Writing a zero to this bit causes the RTC to halt during debug mode.

Writing a one to this bit allows the RTC to continue normal operation during debug mode.

19.8.19 Frequency Correction

Name:FREQCORROffset:0x0CReset:0x00Property:Write-Protected, Write-Synchronized

Bit	7	6	5	4	3	2	1	0
	SIGN				VALUE[6:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bit 7 – SIGN: Correction Sign

Value	Name	Description
0x0	WAKEUPACCESS	NVM block enters low-power mode when entering sleep.
		NVM block exits low-power mode upon first access.
0x1	WAKEUPINSTANT	NVM block enters low-power mode when entering sleep.
		NVM block exits low-power mode when exiting sleep.
0x2	Reserved	
0x3	DISABLED	Auto power reduction disabled.

Bit 7 – MANW: Manual Write

Note that reset value of this bit is '1'.

Value	Description
0	Writing to the last word in the page buffer will initiate a write operation to the page addressed
	by the last write operation. This includes writes to memory and auxiliary rows.
1	Write commands must be issued through the CTRLA.CMD register.

Bits 4:1 – RWS[3:0]: NVM Read Wait States

These bits control the number of wait states for a read operation. '0' indicates zero wait states, '1' indicates one wait state, etc., up to 15 wait states.

This register is initialized to 0 wait states. Software can change this value based on the NVM access time and system frequency.

22.8.3 NVM Parameter

Name:PARAMOffset:0x08Reset:0x00000080Property:PAC Write-Protection

Bit	31	30	29	28	27	26	25	24	
				RWWE	EP[11:4]				
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	
Bit	23	22	21	20	19	18	17	16	
Γ		RWWE	EP[3:0]			PSZ[2:0]			
Access	R	R	R	R		R	R	R	
Reset	0	0	0	0		0	0	x	
Bit	15	14	13	12	11	10	9	8	
				NVMF	P[15:8]				
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
				NVM	P[7:0]				
Access	R	R	R	R	R	R	R	R	
Reset	0	0	0	0	0	0	0	x	

23.7 Register Summary

Offset	Name	Bit Pos.									
0x00		7:0				DIR	[7:0]				
0x01		15:8				DIR[15:8]				
0x02	DIR	23:16		DIR[23:16]							
0x03	-	31:24		DIR[31:24]							
0x04		7:0				DIRCL	.R[7:0]				
0x05		15:8				DIRCL	R[15:8]				
0x06	DIRCLR	23:16				DIRCLF	R[23:16]				
0x07	-	31:24				DIRCLF	R[31:24]				
0x08		7:0				DIRSE	ET[7:0]				
0x09	DIDOFT	15:8				DIRSE	T[15:8]				
0x0A	DIRSET	23:16				DIRSE	F[23:16]				
0x0B	-	31:24				DIRSE	Г[31:24]				
0x0C		7:0				DIRTO	GL[7:0]				
0x0D	DIDTO	15:8				DIRTG	L[15:8]				
0x0E	DIRTGL	23:16				DIRTGI	_[23:16]				
0x0F	-	31:24				DIRTGI	[31:24]				
0x10		7:0				OUT	[7:0]				
0x11		15:8				OUT	[15:8]				
0x12	001	23:16		OUT[23:16]							
0x13	31:24		OUT[31:24]								
0x14	7:0		OUTCLR[7:0]								
0x15		15:8		OUTCLR[15:8]							
0x16	OUTCLR	23:16	OUTCLR[23:16]								
0x17	-	31:24		OUTCLR[31:24]							
0x18		7:0		OUTSET[7:0]							
0x19	OUTSET	15:8				OUTSE	T[15:8]				
0x1A	OUISEI	23:16		OUTSET[23:16]							
0x1B	-	31:24				OUTSE	T[31:24]				
0x1C		7:0				OUTTO	GL[7:0]				
0x1D	OUTTO	15:8				OUTTO	GL[15:8]				
0x1E	OUTIGE	23:16	OUTTGL[23:16]								
0x1F		31:24				OUTTG	L[31:24]				
0x20		7:0				IN[7:0]				
0x21	IN	15:8				IN[1	5:8]				
0x22		23:16				IN[23	3:16]				
0x23		31:24				IN[3 [·]	1:24]				
0x24		7:0				SAMPL	ING[7:0]				
0x25	CTRI	15:8				SAMPLI	NG[15:8]				
0x26		23:16				SAMPLIN	NG[23:16]				
0x27		31:24				SAMPLIN	NG[31:24]				
0x28		7:0				PINMA	SK[7:0]				
0x29	WROONEIG	15:8				PINMAS	SK[15:8]				
0x2A		23:16		DRVSTR				PULLEN	INEN	PMUXEN	
0x2B		31:24	HWSEL	WRPINCFG		WRPMUX		PMU	X[3:0]		

PMUXO[3:0]	Name	Description
0x8	I	Peripheral function I selected
0x9-0xF	-	Reserved

Bits 3:0 – PMUXE[3:0]: Peripheral Multiplexing for Even-Numbered Pin

These bits select the peripheral function for even-numbered pins (2*n) of a PORT group, if the corresponding PINCFGy.PMUXEN bit is '1'.

Not all possible values for this selection may be valid. For more details, refer to the *I/O Multiplexing and Considerations.*

PMUXE[3:0]	Name	Description
0x0	А	Peripheral function A selected
0x1	В	Peripheral function B selected
0x2	С	Peripheral function C selected
0x3	D	Peripheral function D selected
0x4	Е	Peripheral function E selected
0x5	F	Peripheral function F selected
0x6	G	Peripheral function G selected
0x7	Н	Peripheral function H selected
0x8	Ι	Peripheral function I selected
0x9-0xF	-	Reserved

23.8.13 Pin Configuration

There are up to 32 Pin Configuration registers in each PORT group, one for each I/O line.

Name:PINCFGnOffset:0x40 + n*0x01 [n=0..31]Reset:0x00Property:PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
		DRVSTR				PULLEN	INEN	PMUXEN
Access		R/W				R/W	R/W	R/W
Reset		0				0	0	0

Bit 6 – DRVSTR: Output Driver Strength Selection

This bit controls the output driver strength of an I/O pin configured as an output.

Value	Description
0	Pin drive strength is set to normal drive strength.
1	Pin drive strength is set to stronger drive strength.

Value	Description
0	Receive Start interrupt is disabled.
1	Receive Start interrupt is enabled.

Bit 2 – RXC: Receive Complete Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Receive Complete Interrupt Enable bit, which enables the Receive Complete interrupt.

Value	Description
0	Receive Complete interrupt is disabled.
1	Receive Complete interrupt is enabled.

Bit 1 – TXC: Transmit Complete Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Transmit Complete Interrupt Enable bit, which enables the Transmit Complete interrupt.

Value	Description
0	Transmit Complete interrupt is disabled.
1	Transmit Complete interrupt is enabled.

Bit 0 – DRE: Data Register Empty Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Data Register Empty Interrupt Enable bit, which enables the Data Register Empty interrupt.

Value	Description
0	Data Register Empty interrupt is disabled.
1	Data Register Empty interrupt is enabled.

26.8.7 Interrupt Flag Status and Clear

Name:	INTFLAG
Offset:	0x18
Reset:	0x00
Property	': -

Bit	7	6	5	4	3	2	1	0
	ERROR		RXBRK	CTSIC	RXS	RXC	TXC	DRE
Access	R/W		R/W	R/W	R/W	R	R/W	R
Reset	0		0	0	0	0	0	0

Bit 7 – ERROR: Error

This flag is cleared by writing '1' to it.

This bit is set when any error is detected. Errors that will set this flag have corresponding status flags in the STATUS register. Errors that will set this flag are COLL, ISF, BUFOVF, FERR, and PERR.Writing '0' to this bit has no effect.

T = 1 to 2 baud cycles

When CTRLB.MSSEN=0, the \overline{SS} pin(s) is/are controlled by user software and normal GPIO.

27.6.3.6 Slave Select Low Detection

In slave mode, the SPI can wake the CPU when the slave select (\overline{SS}) goes low. When the Slave Select Low Detect is enabled (CTRLB.SSDE=1), a high-to-low transition will set the Slave Select Low interrupt flag (INTFLAG.SSL) and the device will wake up if applicable.

27.6.4 DMA, Interrupts, and Events

Table 27-4. Module Request for SERCOM SPI

Condition	Request						
	DMA	Interrupt	Event				
Data Register Empty (DRE)	Yes (request cleared when data is written)	Yes	NA				
Receive Complete (RXC)	Yes (request cleared when data is read)	Yes					
Transmit Complete (TXC)	NA	Yes					
Slave Select low (SSL)	NA	Yes					
Error (ERROR)	NA	Yes					

27.6.4.1 DMA Operation

The SPI generates the following DMA requests:

- Data received (RX): The request is set when data is available in the receive FIFO. The request is cleared when DATA is read.
- Data transmit (TX): The request is set when the transmit buffer (TX DATA) is empty. The request is cleared when DATA is written.

27.6.4.2 Interrupts

The SPI has the following interrupt sources. These are asynchronous interrupts, and can wake up the device from any sleep mode:

- Data Register Empty (DRE)
- Receive Complete (RXC)
- Transmit Complete (TXC)
- Slave Select Low (SSL)
- Error (ERROR)

Each interrupt source has its own interrupt flag. The interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG) will be set when the interrupt condition is met. Each interrupt can be individually

31. TCC – Timer/Counter for Control Applications

31.1 Overview

The device provides three instances of the Timer/Counter for Control applications (TCC) peripheral, TCC[2:0].

Each TCC instance consists of a counter, a prescaler, compare/capture channels and control logic. The counter can be set to count events or clock pulses. The counter together with the compare/capture channels can be configured to time stamp input events, allowing capture of frequency and pulse-width. It can also perform waveform generation such as frequency generation and pulse-width modulation.

Waveform extensions are intended for motor control, ballast, LED, H-bridge, power converters, and other types of power control applications. They allow for low- and high-side output with optional dead-time insertion. Waveform extensions can also generate a synchronized bit pattern across the waveform output pins. The fault options enable fault protection for safe and deterministic handling, disabling and/or shut down of external drivers.

Figure 31-1 shows all features in TCC.

Related Links

TCC Configurations

31.2 Features

- Up to four compare/capture channels (CC) with:
 - Double buffered period setting
 - Double buffered compare or capture channel
 - Circular buffer on period and compare channel registers
- Waveform generation:
 - Frequency generation
 - Single-slope pulse-width modulation (PWM)
 - Dual-slope pulse-width modulation with half-cycle reload capability
- Input capture:
 - Event capture
 - Frequency capture
 - Pulse-width capture
- Waveform extensions:
 - Configurable distribution of compare channels outputs across port pins
 - Low- and high-side output with programmable dead-time insertion
 - Waveform swap option with double buffer support
 - Pattern generation with double buffer support
 - Dithering support
- Fault protection for safe disabling of drivers:
 - Two recoverable fault sources
 - Two non-recoverable fault sources
 - Debugger can be source of non-recoverable fault

In DSBOTH operation, a second update time occurs on TOP when circular buffer is enabled.

Using dual-slope PWM results in a lower maximum operation frequency compared to single-slope PWM generation. The period (TOP) defines the PWM resolution. The minimum resolution is 1 bit (TOP=0x00000001).

The following equation calculates the exact resolution for dual-slope PWM ($R_{PWM DS}$):

 $R_{\text{PWM}_{\text{DS}}} = \frac{\log(\text{PER}+1)}{\log(2)}.$

The PWM frequency $f_{PWM_{DS}}$ depends on the period setting (TOP) and the peripheral clock frequency $f_{GCLK TCC}$, and can be calculated by the following equation:

$$f_{\text{PWM}_{\text{DS}}} = \frac{f_{\text{GCLK}_{\text{TCC}}}}{2N \cdot \text{PER}}$$

N represents the prescaler divider used. The waveform generated will have a maximum frequency of half of the TCC clock frequency ($f_{GCLK TCC}$) when TOP is set to 0x00000001 and no prescaling is used.

The pulse width (P_{PWM_DS}) depends on the compare channel (CCx) register value and the peripheral clock frequency ($f_{GCLK TCC}$), and can be calculated by the following equation:

$$P_{\text{PWM}_{\text{DS}}} = \frac{2N \cdot (\text{TOP} - \text{CCx})}{f_{\text{GCLK}_{\text{TCC}}}}$$

N represents the prescaler divider used.

Note: In DSTOP, DSBOTTOM and DSBOTH operation, when TOP is lower than MAX/2, the CCx MSB bit defines the ramp on which the CCx Match interrupt or event is generated. (Rising if CCx[MSB]=0, falling if CCx[MSB]=1.)

Related Links

Circular Buffer

Dual-Slope Critical PWM Generation Dual-Slope Critical PWM Generation

Critical mode generation allows generation of non-aligned centered pulses. In this mode, the period time is controlled by PER while CCx control the generated waveform output edge during up-counting and CC(x+CC_NUM/2) control the generated waveform output edge during down-counting.

Reset:	0x00000000
Property:	-

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
		CCB3	CCB2	CCB1	CCB0	PERB	WAVEB	PATTB
Access		R	R	R	R	R	R	R
Reset		0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
					CC3	CC2	CC1	CC0
Access				•	R	R	R	R
Reset					0	0	0	0
Bit	7	6	5	4	3	2	1	0
	PER	WAVE	PATT	COUNT	STATUS	CTRLB	ENABLE	SWRST
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 19, 20, 21, 22 – CCBn: Compare/Capture Buffer Channel x Synchronization Busy

This bit is cleared when the synchronization of Compare/Capture Buffer Channel x register between the clock domains is complete.

This bit is set when the synchronization of Compare/Capture Buffer Channel x register between clock domains is started.

CCBx bit is available only for existing Compare/Capture Channels. For details on CC channels number, refer to each TCC feature list.

Bit 18 – PERB: PER Buffer Synchronization Busy

This bit is cleared when the synchronization of PERB register between the clock domains is complete.

This bit is set when the synchronization of PERB register between clock domains is started.

Bit 17 – WAVEB: WAVE Buffer Synchronization Busy

This bit is cleared when the synchronization of WAVEB register between the clock domains is complete.

This bit is set when the synchronization of WAVEB register between clock domains is started.

Bit 16 – PATTB: PATT Buffer Synchronization Busy

This bit is cleared when the synchronization of PATTB register between the clock domains is complete.

This bit is set when the synchronization of PATTB register between clock domains is started.

Bits 8, 9, 10, 11 – CCn: Compare/Capture Channel x Synchronization Busy

This bit is cleared when the synchronization of Compare/Capture Channel x register between the clock domains is complete.

Bit	15	14	13	12	11	10	9	8			
	PGV0[7:0]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
	PGE0[7:0]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

Property: Write-Synchronized

Bits 8:15, 16:23, 24:31, 32:39, 40:47, 48:55, 56:63, 64:71 – PGVn: Pattern Generation Output Value This register holds the values of pattern for each waveform output.

Bits 0:7, 8:15, 16:23, 24:31, 32:39, 40:47, 48:55, 56:63 – PGEn: Pattern Generation Output Enable This register holds the enable status of pattern generation for each waveform output. A bit written to '1' will override the corresponding SWAP output with the corresponding PGVn value.

31.8.16 Waveform

Name:WAVEOffset:0x3CReset:0x00000000Property:Write-Synchronized

Bit	31	30	29	28	27	26	25	24
					SWAP3	SWAP2	SWAP1	SWAP0
Access				•	R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	23	22	21	20	19	18	17	16
					POL3	POL2	POL1	POL0
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	15	14	13	12	11	10	9	8
					CICCEN3	CICCEN2	CICCEN1	CICCEN0
Access		•			R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	7	6	5	4	3	2	1	0
	CIPEREN RAMP[1:0]				WAVEGEN[2:0]			
Access	R/W		R/W	R/W		R/W	R/W	R/W
Reset	0		0	0		0	0	0

Bits 24, 25, 26, 27 – SWAPn: Swap DTI Output Pair x

Setting these bits enables output swap of DTI outputs [x] and [x+WO_NUM/2]. Note the DTIxEN settings will not affect the swap operation.

32.7 Register Summary

The register mapping depends on the Operating Mode field in the Control A register (CTRLA.MODE). The register summary is detailed below.

32.7.1 Common Device Summary

Offset	Name	Bit Pos.									
0x00	CTRLA	7:0	MODE					RUNSTBY	ENABLE	SWRST	
0x01	Reserved										
0x02	SYNCBUSY	7:0							ENABLE	SWRST	
0x03	QOSCTRL	7:0			DQOS[1:0]				CQOS[1:0]		
0x0D	FSMSTATUS	7:0	FSMSTATE[6:0]								
0x24		7:0				DESCA	DD[7:0]				
0x25	DESCADD	15:8		DESCADD[15:8]							
0x26	DESCADD	23:16				DESCAD	DD[23:16]				
0x27		31:24				DESCAD	DD[31:24]				
0x28	PADCAL	7:0	TRANSN[1:0] TRANSP[4:0]								
0x29	TADOAL	15:8		TRIM[2:0] TRANSN[4:2]							

32.7.2 Device Summary

Table 32-1. General Device Registers

Offset	Name	Bit Pos.								
0x04	Reserved									
0x05	Reserved									
0x06	Reserved									
0x07	Reserved									
0x08		7:0				NREPLY	SPDCC	ONF[1:0]	UPRSM	DETACH
0x09	CIRLB	15:8					LPMHE	OSK[1:0]	GNAK	
0x0A	DADD		ADDEN		DADD[6:0]					
0x0B	Reserved									
0x0C	STATUS	7:0	LINEST	TE[1:0] SPEED[1:0]			D[1:0]			
0x0E	Reserved									
0x0F	Reserved									
0x10		7:0			FNUM[4:0]					
0x11	FINOIVI	15:8	FNCERR	FNUM[10:5]						
0x12	Reserved									
0x14		7:0	RAMACER	UPRSM	EORSM	WAKEUP	EORST	SOF		SUSPEND
0x15	INTENCLR	15:8							LPMSUSP	LPMNYET
0x16	Reserved									
0x17	Reserved									
0x18	INTENOET	7:0	RAMACER	UPRSM	EORSM	WAKEUP	EORST	SOF		SUSPEND
0x19	INTENSET	15:8							LPMSUSP	LPMNYET
0x1A	Reserved									
0x1B	Reserved									
0x1C		7:0	RAMACER	UPRSM	EORSM	WAKEUP	EORST	SOF		SUSPEND
0x1D	INTELAG	15:8							LPMSUSP	LPMNYET

Writing a one to COMPCTRLn.ENABLE will prevent further changes to the other bits in COMPCTRLn. These bits remain protected until COMPCTRLn.ENABLE is written to zero and the write is synchronized.

34.8.12 Scaler n

Name:SCALERnOffset:0x20 + n*0x01 [n=0..1]Reset:0x00Property:PAC Write-Protection

Bit	7	6	5	4	3	2	1	0				
				VALUE[5:0]								
Access			R/W	R/W	R/W	R/W	R/W	R/W				
Reset			0	0	0	0	0	0				

Bits 5:0 – VALUE[5:0]: Scaler Value

These bits define the scaling factor for channel n of the V_{DD} voltage scaler. The output voltage, V_{SCALE} , is:

$$V_{\text{SCALE}} = \frac{V_{\text{DD}} \cdot (\text{VALUE}+1)}{64}$$

35. DAC – Digital-to-Analog Converter

35.1 Overview

The Digital-to-Analog Converter (DAC) converts a digital value to a voltage. The DAC has one channel with 10-bit resolution, and it is capable of converting up to 350,000 samples per second (350ksps).

35.2 Features

- DAC with 10-bit resolution
- Up to 350ksps conversion rate
- Multiple trigger sources
- High-drive capabilities
- Output can be used as input to the Analog Comparator (AC)
- DMA support

35.3 Block Diagram

Figure 35-1. DAC Block Diagram

35.4 Signal Description

Signal Name	Туре	Description
VOUT	Analog output	DAC output
VREFA	Analog input	External reference

Related Links

I/O Multiplexing and Considerations

35.5 **Product Dependencies**

In order to use this peripheral, other parts of the system must be configured correctly, as described below.

35.5.1 I/O Lines

Using the DAC Controller's I/O lines requires the I/O pins to be configured using the port configuration (PORT).

Bit	7	6	5	4	3	2	1	0
						SYNCRDY	EMPTY	UNDERRUN
Access						R/W	R/W	R/W
Reset						0	0	0

Bit 2 – SYNCRDY: Synchronization Ready Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Synchronization Ready Interrupt Enable bit, which disables the Synchronization Ready interrupt.

Value	Description
0	The Synchronization Ready interrupt is disabled.
1	The Synchronization Ready interrupt is enabled.

Bit 1 – EMPTY: Data Buffer Empty

This flag is cleared by writing a '1' to it or by writing new data to DATABUF.

This flag is set when data is transferred from DATABUF to DATA, and the DAC is ready to receive new data in DATABUF, and will generate an interrupt request if INTENCLR/SET.EMPTY is one.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Data Buffer Empty interrupt flag.

Bit 0 – UNDERRUN: Underrun

This flag is cleared by writing a '1' to it.

This flag is set when a start conversion event occurs when DATABUF is empty, and will generate an interrupt request if INTENCLR/SET.UNDERRUN is one.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Underrun interrupt flag.

35.8.7 Status

Name: STATUS Offset: 0x07 Reset: 0x00 Property: -

Bit	7	6	5	4	3	2	1	0
	SYNCBUSY							
Access	R				-			
Reset	0							

Bit 7 – SYNCBUSY: Synchronization Busy Status

This bit is cleared when the synchronization of registers between the clock domains is complete.

This bit is set when the synchronization of registers between clock domains is started.

35.8.8 Data DAC

4. All single-shot measurements are performed with $V_{DDANA} > 3.0V$ (cf. ADC errata)

Table 44-14. (Operating	Conditions	(Device	Variant B)
----------------	-----------	------------	---------	------------

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
RES	Resolution		8	-	12	bits
f _{CLK_ADC}	ADC Clock frequency		30	-	2100	kHz
	Conversion speed		10		1000	ksps
	Sample rate ⁽¹⁾	Single shot	5	-	300	ksps
		Free running	5	-	350	ksps
	Sampling time ⁽¹⁾		0.5	-	-	cycles
	Conversion time ⁽¹⁾	1x Gain	6	-	-	cycles
V _{REF}	Voltage reference range		1.0	-	V _{DDANA} -0.6	V
V _{REFINT1V}	Internal 1V reference		-	1.0	-	V
V _{REFINTVCC0}	Internal ratiometric reference 0 ⁽²⁾		-	V _{DDANA} / 1.48	-	V
V _{REFINTVCC0} Voltage Error	Internal ratiometric reference 0 ⁽²⁾ error	2.0V < V _{DDANA} <3.63V	-1.0	-	+1.0	%
V _{REFINTVCC1}	Internal ratiometric reference 1 ⁽²⁾	V _{DDANA} >2.0V	-	V _{DDANA} /2	-	V
V _{REFINTVCC1} Voltage Error	Internal ratiometric reference 1 ⁽²⁾ error	2.0V < V _{DDANA} <3.63V	-1.0	-	+1.0	%
	Conversion range ⁽¹⁾	Differential mode	-V _{REF} / GAIN	-	+V _{REF} /GAIN	V
		Single-ended mode	0.0	-	+V _{REF} /GAIN	V
C _{SAMPLE}	Sampling capacitance ⁽²⁾		-	3.5	-	pF
R _{SAMPLE}	Input channel source resistance ⁽²⁾		-	-	3.5	kΩ
I _{DD}	DC supply current ⁽¹⁾	$f_{CLK_ADC} =$ 2.1MHz ⁽³⁾	-	1.25	1.85	mA

Note:

- 1. These values are based on characterization. These values are not covered by test limits in production.
- 2. These values are based on simulation. These values are not covered by test limits in production or characterization.
- 3. In this condition and for a sample rate of 350ksps, 1 Conversion at gain 1x takes 6 clock cycles of the ADC clock (conditions: 1X gain, 12-bit resolution, differential mode, free-running).

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
I _{DFLL}	Power consumption on V_{DDIN}	f _{REF} = 32 .768kHz	-	425	482	μA
t _{LOCK}	Lock time	f _{REF} = 32 .768kHz DFLLVAL.COARSE = DFLL48M COARSE CAL	100	200	500	μs
		DFLLVAL.FINE = 512				
		DFLLCTRL.BPLCKC = 1				
		DFLLCTRL.QLDIS = 0				
		DFLLCTRL.CCDIS = 1				
		DFLLMUL.FSTEP = 10				

Table 44-41. DFLL48M Characteristics - Closed Loop Mode⁽¹⁾, Device Variant B

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
f _{OUT}	Average Output frequency	f _{REF} = 32 .768kHz	47.76	48	48.24	MHz
f_{REF}	Reference frequency		0.732	32.768	33	kHz
Jitter	Cycle to Cycle jitter	f _{REF} = 32 .768kHz	-	-	0.42	ns
I _{DFLL}	Power consumption on V_{DDIN}	f _{REF} = 32 .768kHz	-	403	453	μA
t _{LOCK}	Lock time	f _{REF} = 32 .768kHz DFLLVAL.COARSE = DFLL48M COARSE CAL	-	200	500	μs
		DFLLVAL.FINE = 512				
		DFLLCTRL.BPLCKC = 1				
		DFLLCTRL.QLDIS = 0				
		DFLLCTRL.CCDIS = 1				
		DFLLMUL.FSTEP = 10				