

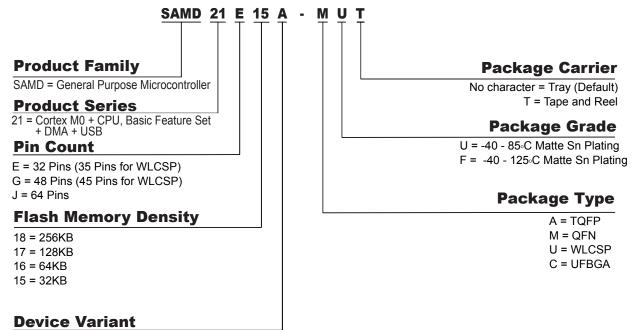
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	52
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 20x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamd21j16b-aut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Ordering Information

A = Default Variant

B = Added RWW support for 32KB and 64KB memory options

C = Silicon revision F for WLCSP35 package option.

3.1 SAM D21E

Table 3-1. Device Variant A

Ordering Code	FLASH (bytes)	SRAM (bytes)	Package	Carrier Type
ATSAMD21E15A-AU	32K	4K	TQFP32	Tray
ATSAMD21E15A-AUT				Tape & Reel
ATSAMD21E15A-AF				Tray
ATSAMD21E15A-AFT				Tape & Reel
ATSAMD21E15A-MU			QFN32	Tray
ATSAMD21E15A-MUT				Tape & Reel
ATSAMD21E15A-MF				Tray
ATSAMD21E15A-MFT				Tape & Reel

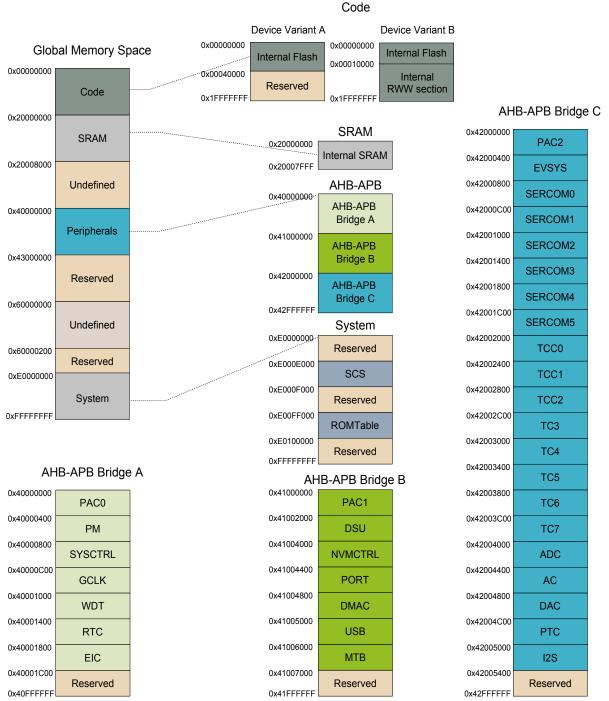

3.3 SAM D21J

Table 3-6. Device Variant A

Ordering Code	FLASH (bytes)	SRAM (bytes)	Package	Carrier Type
ATSAMD21J15A-AU	32K	4K	TQFP64	Tray
ATSAMD21J15A-AUT				Tape & Reel
ATSAMD21J15A-AF				Tray
ATSAMD21J15A-AFT				Tape & Reel
ATSAMD21J15A-MU			QFN64	Tray
ATSAMD21J15A-MUT				Tape & Reel
ATSAMD21J15A-MF				Tray
ATSAMD21J15A-MFT				Tape & Reel
ATSAMD21J16A-AU	64K	8K	TQFP64	Tray
ATSAMD21J16A-AUT				Tape & Reel
ATSAMD21J16A-AF				Tray
ATSAMD21J16A-AFT				Tape & Reel
ATSAMD21J16A-MU			QFN64	Tray
ATSAMD21J16A-MUT				Tape & Reel
ATSAMD21J16A-MF				Tray
ATSAMD21J16A-MFT				Tape & Reel
ATSAMD21J16A-CU			UFBGA64	Tray
ATSAMD21J16A-CUT				Tape & Reel
ATSAMD21J17A-AU	128K	16K	TQFP64	Tray
ATSAMD21J17A-AUT				Tape & Reel
ATSAMD21J17A-AF				Tray
ATSAMD21J17A-AFT				Tape & Reel
ATSAMD21J17A-MU			QFN64	Tray
ATSAMD21J17A-MUT				Tape & Reel
ATSAMD21J17A-MF				Tray
ATSAMD21J17A-MFT				Tape & Reel
ATSAMD21J17A-CU			UFBGA64	Tray
ATSAMD21J17A-CUT				Tape & Reel

9. Product Mapping

Figure 9-1. SAM D21 Product Mapping

This figure represents the full configuration of the SAM D21 with maximum flash and SRAM capabilities and a full set of peripherals. Refer to the Configuration Summary for details.

13.13 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional PAC write-protection is denoted by the "PAC Write-Protection" property in each individual register description. For details, refer to Register Access Protection.

13.13.1 Control

Name: CTRL Offset: 0x0000 Reset: 0x00 Property: PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
				CE	MBIST	CRC		SWRST
Access				W	W	W		W
Reset				0	0	0		0

Bit 4 – CE: Chip-Erase

Writing a '0' to this bit has no effect.

Writing a '1' to this bit starts the Chip-Erase operation.

Bit 3 – MBIST: Memory Built-In Self-Test

Writing a '0' to this bit has no effect.

Writing a '1' to this bit starts the memory BIST algorithm.

Bit 2 – CRC: 32-bit Cyclic Redundancy Check

Writing a '0' to this bit has no effect.

Writing a '1' to this bit starts the cyclic redundancy check algorithm.

Bit 0 – SWRST: Software Reset

Writing a '0' to this bit has no effect.

Writing a '1' to this bit resets the module.

13.13.2 Status A

Name:STATUSAOffset:0x0001Reset:0x00Property:PAC Write-Protection

Note: Optional write-protection is indicated by the "PAC Write-Protection" property in the register description.

When the CPU is halted in debug mode, all write-protection is automatically disabled. Write-protection does not apply for accesses through an external debugger.

17.5.7 Analog Connections

When used, the 32.768kHz crystal must be connected between the XIN32 and XOUT32 pins, and the 0.4-32MHz crystal must be connected between the XIN and XOUT pins, along with any required load capacitors. For details on recommended oscillator characteristics and capacitor load, refer to the *Electrical Characteristics* for details.

Related Links

Electrical Characteristics

17.6 Functional Description

17.6.1 Principle of Operation

XOSC, XOSC32K, OSC32K, OSCULP32K, OSC8M, DFLL48M, FDPLL96M, BOD33, BOD12, and VREF are configured via SYSCTRL control registers. Through this interface, the sub-peripherals are enabled, disabled or have their calibration values updated.

The Power and Clocks Status register gathers different status signals coming from the sub-peripherals controlled by the SYSCTRL. The status signals can be used to generate system interrupts, and in some cases wake up the system from standby mode, provided the corresponding interrupt is enabled.

The oscillator must be enabled to run. The oscillator is enabled by writing a one to the ENABLE bit in the respective oscillator control register, and disabled by writing a zero to the oscillator control register. In idle mode, the default operation of the oscillator is to run only when requested by a peripheral. In standby mode, the default operation of the oscillator is to stop. This behavior can be changed by the user, see below for details.

The behavior of the oscillators in the different sleep modes is shown in the table below.

Oscillator	ldle 0, 1, 2	Standby
XOSC	Run on request	Stop
XOSC32K	Run on request	Stop
OSC32K	Run on request	Stop
OSCULP32K	Run	Run
OSC8M	Run on request	Stop
DFLL48M	Run on request	Stop
FDPLL96M	Run on request	Stop

Table 17-1. Benavior of the Oscillators	Table 17-1.	Behavior of the Oscillators
---	-------------	-----------------------------

To force an oscillator to always run in idle mode, and not only when requested by a peripheral, the oscillator ONDEMAND bit must be written to zero. The default value of this bit is one, and thus the default operation in idle mode is to run only when requested by a peripheral.

Value	Description
0	The DFLL Lock Fine interrupt is disabled.
1	The DFLL Lock Fine interrupt is enabled, and an interrupt request will be generated when
	the DFLL Lock Fine Interrupt flag is set.

Bit 5 – DFLLOOB: DFLL Out Of Bounds Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will set the DFLL Out Of Bounds Interrupt Enable bit, which enables the DFLL Out Of Bounds interrupt.

Value	Description
0	The DFLL Out Of Bounds interrupt is disabled.
1	The DFLL Out Of Bounds interrupt is enabled, and an interrupt request will be generated
	when the DFLL Out Of Bounds Interrupt flag is set.

Bit 4 – DFLLRDY: DFLL Ready Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will set the DFLL Ready Interrupt Enable bit, which enables the DFLL Ready interrupt and set the corresponding interrupt request.

Value	Description
0	The DFLL Ready interrupt is disabled.
1	The DFLL Ready interrupt is enabled, and an interrupt request will be generated when the
	DFLL Ready Interrupt flag is set.

Bit 3 – OSC8MRDY: OSC8M Ready Interrupt Enable

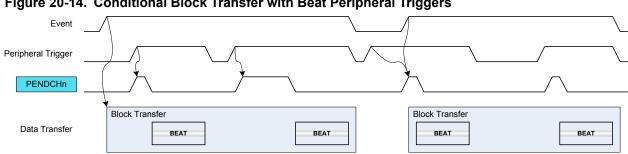
Writing a zero to this bit has no effect.

Writing a one to this bit will set the OSC8M Ready Interrupt Enable bit, which enables the OSC8M Ready interrupt.

Value	Description
0	The OSC8M Ready interrupt is disabled.
1	The OSC8M Ready interrupt is enabled, and an interrupt request will be generated when the
	OSC8M Ready Interrupt flag is set.

Bit 2 – OSC32KRDY: OSC32K Ready Interrupt Enable

Writing a zero to this bit has no effect.


Writing a one to this bit will set the OSC32K Ready Interrupt Enable bit, which enables the OSC32K Ready interrupt.

Value	Description
0	The OSC32K Ready interrupt is disabled.
1	The OSC32K Ready interrupt is enabled, and an interrupt request will be generated when
	the OSC32K Ready Interrupt flag is set.

Bit 1 – XOSC32KRDY: XOSC32K Ready Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will set the XOSC32K Ready Interrupt Enable bit, which enables the XOSC32K Ready interrupt.

Figure 20-14. Conditional Block Transfer with Beat Peripheral Triggers

Channel Suspend

The event input is used to suspend an ongoing channel operation. The event is acknowledged when the current AHB access is completed. For further details on Channel Suspend, refer to Channel Suspend.

Channel Resume

The event input is used to resume a suspended channel operation. The event is acknowledged as soon as the event is received and the Channel Suspend Interrupt Flag (CHINTFLAG.SUSP) is cleared. For further details refer to Channel Suspend.

Skip Next Block Suspend

This event can be used to skip the next block suspend action. If the channel is suspended before the event rises, the channel operation is resumed and the event is acknowledged. If the event rises before a suspend block action is detected, the event is kept until the next block suspend detection. When the block transfer is completed, the channel continues the operation (not suspended) and the event is acknowledged.

Related Links

USER

20.6.3.5 Event Output Selection

Event output selection is available only for the least significant DMA channels. The pulse width of an event output from a channel is one AHB clock cycle.

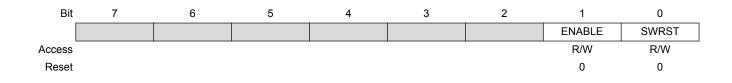
The output of channel events is enabled by writing a '1' to the Channel Event Output Enable bit in the Control B register (CHCTRLB.EVOE). The event output cause is selected by writing to the Event Output Selection bits in the Block Transfer Control register (BTCTRL.EVOSEL). It is possible to generate events after each block transfer (BTCTRL.EVOSEL=0x1) or beat transfer (BTCTRL.EVOSEL=0x3). To enable an event being generated when a transaction is complete, the block event selection must be set in the last transfer descriptor only.

The figure Figure 20-15 shows an example where the event output generation is enabled in the first block transfer, and disabled in the second block.

32-bit ARM-Based Microcontrollers

Offset	Name	Bit Pos.								
		F05.								
0x10		7:0	EXTINT7	EXTINT6	EXTINT5	EXTINT4	EXTINT3	EXTINT2	EXTINT1	EXTINT0
0x11	INTFLAG	15:8	EXTINT15	EXTINT14	EXTINT13	EXTINT12	EXTINT11	EXTINT10	EXTINT9	EXTINT8
0x12	INTLAG	23:16							EXTINT17	EXTINT16
0x13		31:24								
0x14		7:0	WAKEUPEN7	WAKEUPEN6	WAKEUPEN5	WAKEUPEN4	WAKEUPEN3	WAKEUPEN2	WAKEUPEN1	WAKEUPEN0
0x15		15:8	WAKEUPEN1 5	WAKEUPEN1 4	WAKEUPEN1 3	WAKEUPEN1 2	WAKEUPEN1 1	WAKEUPEN1 0	WAKEUPEN9	WAKEUPEN8
0x16	WAKEUP	23:16							WAKEUPEN1 7	WAKEUPEN1 6
0x17		31:24								
0x18		7:0	FILTEN1		SENSE1[2:0]		FILTEN0		SENSE0[2:0]	1
0x19		15:8	FILTEN3		SENSE3[2:0]		FILTEN2		SENSE2[2:0]	
0x1A	CONFIG0	23:16	FILTEN5		SENSE5[2:0]		FILTEN4		SENSE4[2:0]	
0x1B		31:24	FILTEN7		SENSE7[2:0]		FILTEN6		SENSE6[2:0]	
0x1C		7:0	FILTEN9		SENSE9[2:0]		FILTEN8		SENSE8[2:0]	
0x1D		15:8	FILTEN11		SENSE11[2:0]		FILTEN10		SENSE10[2:0]	
0x1E	CONFIG1	23:16	FILTEN13		SENSE13[2:0]		FILTEN12		SENSE12[2:0]	
0x1F		31:24	FILTEN15		SENSE15[2:0]		FILTEN14		SENSE14[2:0]	
0x20		7:0	FILTEN25		SENSE25[2:0]		FILTEN24		SENSE24[2:0]	
0x21	- CONFIG2	15:8	FILTEN27		SENSE27[2:0]		FILTEN26		SENSE26[2:0]	
0x22		23:16	FILTEN29		SENSE29[2:0]		FILTEN28		SENSE28[2:0]	
0x23		31:24	FILTEN31		SENSE31[2:0]		FILTEN30		SENSE30[2:0]	

21.8 Register Description


Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16-, and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers require synchronization when read and/or written. Synchronization is denoted by the "Read-Synchronized" and/or "Write-Synchronized" property in each individual register description.

Some registers are enable-protected, meaning they can only be written when the module is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

21.8.1 Control

Name: CTRL Offset: 0x00 Reset: 0x00 Property: Write-Protected, Write-Synchronized

This bit will always read as zero.

Bit 16 – PMUXEN: Peripheral Multiplexer Enable

This bit determines the new value written to PINCFGy.PMUXEN for all pins selected by the WRCONFIG.PINMASK and WRCONFIG.HWSEL bits, when the WRCONFIG.WRPINCFG bit is set.

This bit will always read as zero.

Bits 15:0 – PINMASK[15:0]: Pin Mask for Multiple Pin Configuration

These bits select the pins to be configured within the half-word group selected by the WRCONFIG.HWSEL bit.

These bits will always read as zero.

Value	Description
0	The configuration of the corresponding I/O pin in the half-word group will be left unchanged.
1	The configuration of the corresponding I/O pin in the half-word PORT group will be updated.

23.8.12 Peripheral Multiplexing n

There are up to 16 Peripheral Multiplexing registers in each group, one for every set of two subsequent I/O lines. The n denotes the number of the set of I/O lines.

Name: PMUXn Offset: 0x30 + n*0x01 [n=0..15] Reset: 0x00 Property: PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
	PMUXO[3:0]				PMUXE[3:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:4 – PMUXO[3:0]: Peripheral Multiplexing for Odd-Numbered Pin

These bits select the peripheral function for odd-numbered pins $(2^n + 1)$ of a PORT group, if the corresponding PINCFGy.PMUXEN bit is '1'.

Not all possible values for this selection may be valid. For more details, refer to the *I/O Multiplexing and Considerations*.

PMUXO[3:0]	Name	Description
0x0	А	Peripheral function A selected
0x1	В	Peripheral function B selected
0x2	С	Peripheral function C selected
0x3	D	Peripheral function D selected
0x4	E	Peripheral function E selected
0x5	F	Peripheral function F selected
0x6	G	Peripheral function G selected
0x7	Н	Peripheral function H selected

Figure 25-3. Baud Rate Generator

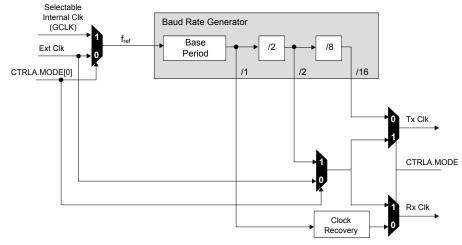


Table 25-2 contains equations for the baud rate (in bits per second) and the BAUD register value for each operating mode.

For asynchronous operation, there are two different modes: In *arithmetic mode*, the BAUD register value is 16 bits (0 to 65,535). In *fractional mode*, the BAUD register is 13 bits, while the fractional adjustment is 3 bits. In this mode the BAUD setting must be greater than or equal to 1.

For synchronous operation, the BAUD register value is 8 bits (0 to 255).

Operating Mode	Condition	Baud Rate (Bits Per Second)	BAUD Register Value Calculation
Asynchronous Arithmetic	$f_{BAUD} \leq \frac{f_{ref}}{S}$	$f_{BAUD} = \frac{f_{ref}}{S} \left(1 - \frac{BAUD}{65536} \right)$	$BAUD = 65536 \cdot \left(1 - S \cdot \frac{f_{BAUD}}{f_{ref}}\right)$
Asynchronous Fractional	$f_{BAUD} \le \frac{f_{ref}}{S}$	$f_{BAUD} = \frac{f_{ref}}{S \cdot \left(BAUD + \frac{FP}{8}\right)}$	$BAUD = \frac{f_{ref}}{S \cdot f_{BAUD}} - \frac{FP}{8}$
Synchronous	$f_{BAUD} \leq \frac{f_{ref}}{2}$	$f_{BAUD} = \frac{f_{ref}}{2 \cdot (BAUD + 1)}$	$BAUD = \frac{f_{ref}}{2 \cdot f_{BAUD}} - 1$

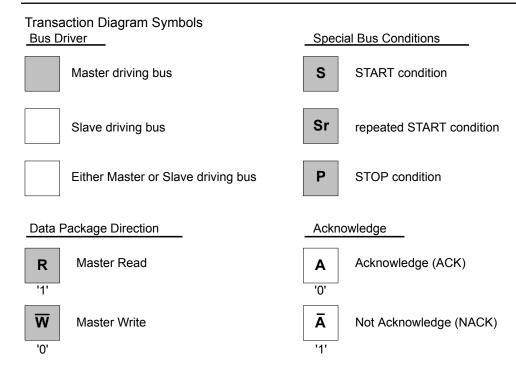
Table 25-2. Baud Rate Equations

S - Number of samples per bit. Can be 16, 8, or 3.

The Asynchronous Fractional option is used for auto-baud detection.

The baud rate error is represented by the following formula:

$$Error = 1 - \left(\frac{ExpectedBaudRate}{ActualBaudRate}\right)$$


Asynchronous Arithmetic Mode BAUD Value Selection

The formula given for f_{BAUD} calculates the average frequency over 65536 f_{ref} cycles. Although the BAUD register can be set to any value between 0 and 65536, the actual average frequency of f_{BAUD} over a single frame is more granular. The BAUD register values that will affect the average frequency over a single frame lead to an integer increase in the cycles per frame (CPF)

$$CPF = \frac{f_{ref}}{f_{BAUD}}(D+S)$$

where

32-bit ARM-Based Microcontrollers

28.6.2 Basic Operation

28.6.2.1 Initialization

The following registers are enable-protected, meaning they can be written only when the I²C interface is disabled (CTRLA.ENABLE is '0'):

- Control A register (CTRLA), except Enable (CTRLA.ENABLE) and Software Reset (CTRLA.SWRST) bits
- Control B register (CTRLB), except Acknowledge Action (CTRLB.ACKACT) and Command (CTRLB.CMD) bits
- Baud register (BAUD)
- Address register (ADDR) in slave operation.

When the I²C is enabled or is being enabled (CTRLA.ENABLE=1), writing to these registers will be discarded. If the I²C is being disabled, writing to these registers will be completed after the disabling.

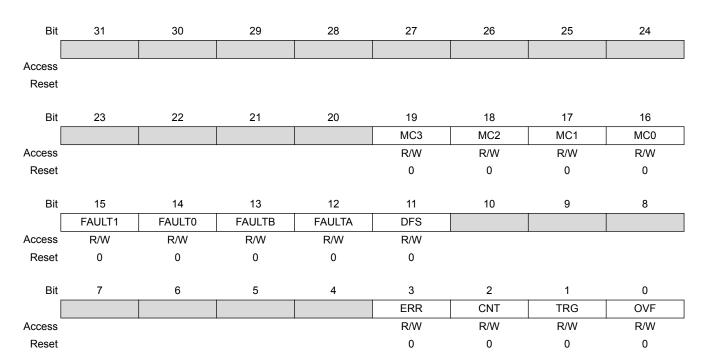
Enable-protection is denoted by the "Enable-Protection" property in the register description.

Before the I²C is enabled it must be configured as outlined by the following steps:

- 1. Select I²C Master or Slave mode by writing 0x4 or 0x5 to the Operating Mode bits in the CTRLA register (CTRLA.MODE).
- 2. If desired, select the SDA Hold Time value in the CTRLA register (CTRLA.SDAHOLD).
- 3. If desired, enable smart operation by setting the Smart Mode Enable bit in the CTRLB register (CTRLB.SMEN).
- 4. If desired, enable SCL low time-out by setting the SCL Low Time-Out bit in the Control A register (CTRLA.LOWTOUT).
- 5. In Master mode:
 - 5.1. Select the inactive bus time-out in the Inactive Time-Out bit group in the CTRLA register (CTRLA.INACTOUT).
 - 5.2. Write the Baud Rate register (BAUD) to generate the desired baud rate.

In Slave mode:

32-bit ARM-Based Microcontrollers


Bit	15	14	13	12	11	10	9	8
				DATA	[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	DATA[7:0]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:0 - DATA[31:0]: Sample Data

This register is used to transfer data from the Rx Serializer.

Data samples received by Rx Serializer will be available for reading from RXDATA register, through the Receive Formatting Unit, according to formatting information for Rx Serializer in the RXCTRL register.

Offset: 0x28 Reset: 0x00000000 Property: PAC Write-Protection

Bits 19,18,17,16 – MCx: Match or Capture Channel x Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the corresponding Match or Capture Channel x Interrupt Disable/Enable bit, which enables the Match or Capture Channel x interrupt.

Value	Description
0	The Match or Capture Channel x interrupt is disabled.
1	The Match or Capture Channel x interrupt is enabled.

Bits 15,14 – FAULTx: Non-Recoverable Fault x Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the Non-Recoverable Fault x Interrupt Disable/Enable bit, which enables the Non-Recoverable Fault x interrupt.

Value	Description
0	The Non-Recoverable Fault x interrupt is disabled.
1	The Non-Recoverable Fault x interrupt is enabled.

Bit 13 – FAULTB: Recoverable Fault B Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the Recoverable Fault B Interrupt Disable/Enable bit, which enables the Recoverable Fault B interrupt.

Value	Description
0	Comparison will not start on any incoming event.
1	Comparison will start on any incoming event.

Bit 4 – WINEO0: Window 0 Event Output Enable

These bits indicate whether the window 0 function can generate a peripheral event or not.

Value	Description
0	Window 0 Event is disabled.
1	Window 0 Event is enabled.

Bits 1,0 – COMPEOx: Comparator x Event Output Enable

These bits indicate whether the comparator x output can generate a peripheral event or not.

Value	Description
0	COMPx event generation is disabled.
1	COMPx event generation is enabled.

34.8.4 Interrupt Enable Clear

This register allows the user to disable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Set register (INTENSET).

Name:INTENCLROffset:0x04Reset:0x00Property:PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
				WIN0			COMP1	COMP0
Access				R/W			R/W	R/W
Reset				0			0	0

Bit 4 – WIN0: Window 0 Interrupt Enable

Reading this bit returns the state of the Window 0 interrupt enable.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit disables the Window 0 interrupt.

Value	Description
0	The Window 0 interrupt is disabled.
1	The Window 0 interrupt is enabled.

Bits 1,0 – COMPx: Comparator x Interrupt Enable

Reading this bit returns the state of the Comparator x interrupt enable.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit disables the Comparator x interrupt.

Value	Description
0	The Comparator x interrupt is disabled.
1	The Comparator x interrupt is enabled.

Bit 7 – SYNCBUSY: Synchronization Busy

This bit is cleared when the synchronization of registers between the clock domains is complete.

This bit is set when the synchronization of registers between clock domains is started.

Bits 1,0 – READYx: Comparator x Ready

This bit is cleared when the comparator x output is not ready. This bit is set when the comparator x output is ready.

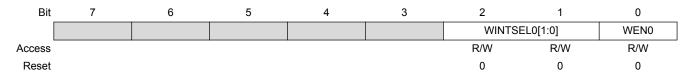
34.8.9 Status A

Name:	STATUSC
Offset:	0x0A
Reset:	0x00
Property:	-

Bit	7	6	5	4	3	2	1	0
			WSTATE0[1:0]				STATE1	STATE0
Access			R	R			R	R
Reset			0	0			0	0

Bits 5:4 – WSTATE0[1:0]: Window 0 Current State

These bits show the current state of the signal if the window 0 mode is enabled.


Value	Name	Description
0x0	ABOVE	Signal is above window
0x1	INSIDE	Signal is inside window
0x2	BELOW	Signal is below window
0x3		Reserved

Bits 1,0 – STATEx: Comparator x Current State

This bit shows the current state of the output signal from COMPx. STATEx is valid only when STATUSB.READYx is one.

34.8.10 Window Control

Name:WINCTRLOffset:0x0CReset:0x00Property:PAC Write-Protection, Write-Synchronized

Bits 2:1 – WINTSEL0[1:0]: Window 0 Interrupt Selection

These bits configure the interrupt mode for the comparator window 0 mode.

36. PTC - Peripheral Touch Controller

36.1 Overview

The Peripheral Touch Controller (PTC) acquires signals in order to detect touch on capacitive sensors. The external capacitive touch sensor is typically formed on a PCB, and the sensor electrodes are connected to the analog front end of the PTC through the I/O pins in the device. The PTC supports both self- and mutual-capacitance sensors.

In mutual-capacitance mode, sensing is done using capacitive touch matrices in various X-Y configurations, including indium tin oxide (ITO) sensor grids. The PTC requires one pin per X-line and one pin per Y-line.

In self-capacitance mode, the PTC requires only one pin (Y-line) for each touch sensor.

The number of available pins and the assignment of X- and Y-lines is depending on both package type and device configuration. Refer to the Configuration Summary and I/O Multiplexing table for details.

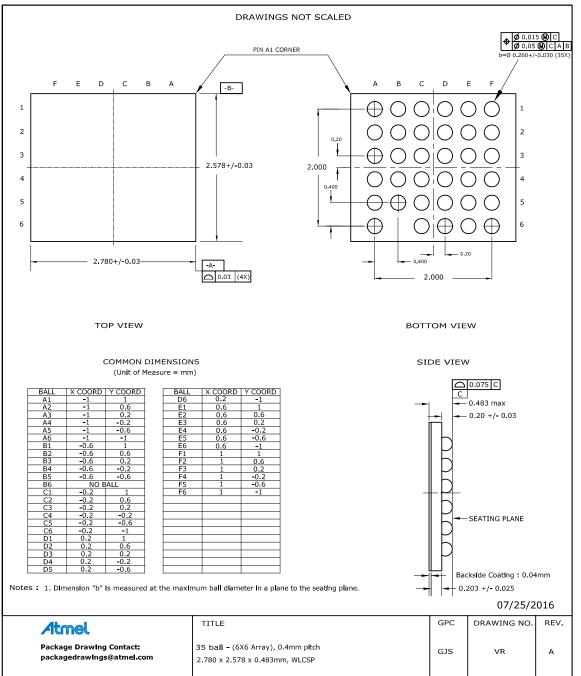
Related Links

I/O Multiplexing and Considerations Configuration Summary

36.2 Features

- Low-power, high-sensitivity, environmentally robust capacitive touch buttons, sliders, wheels
- Supports wake-up on touch from Standby sleep mode
- Supports mutual capacitance and self-capacitance sensing
 - 6/10/16 buttons in self-capacitance mode, for 32-/48-/64- pins respectively
 - 60/120/256 buttons in mutual-capacitance mode, for 32-/48-/64- pins respectively
 - Mix-and-match mutual-and self-capacitance sensors
- One pin per electrode no external components
- Load compensating charge sensing
 - Parasitic capacitance compensation and adjustable gain for superior sensitivity
- Zero drift over the temperature and V_{DD} range
 - Auto calibration and re-calibration of sensors
- Single-shot and free-running charge measurement
- Hardware noise filtering and noise signal de-synchronization for high conducted immunity
- Selectable channel change delay allows choosing the settling time on a new channel, as required
- Acquisition-start triggered by command or through auto-triggering feature
- Low CPU utilization through interrupt on acquisition-complete
- Supported by the Atmel[®] QTouch[®] Composer development tools. See also Atmel|Start and Atmel Studio documentation.

Related Links


I/O Multiplexing and Considerations Configuration Summary

32-bit ARM-Based Microcontrollers

Name	Description	Mode	V)D=1.8	8V	VI	DD=3.	3V	Units
			Min.	Тур.	Мах	Min.	Тур.	Max.	
d _{M_MCKI}	I2S MCK duty cycle	Master mode, pin is input (1b)		50			50		%
t _{M_SCKOR}	I2S SCK rise time ⁽³⁾	Master mode / Capacitive load CL = 15 pF			9			4.6	ns
t _{M_SCKOF}	I2S SCK fall time ⁽³⁾	Master mode / Capacitive load CL = 15 pF			9.7			4.5	ns
d _{M_SCKO}	I2S SCK duty cycle	Master mode	45.6		50	45.6		50	%
f _{M_SCKO} ,1/ t _{M_SCKO}	I2S SCK frequency	Master mode,Supposing external device response delay is 30ns			8			9.5	MHz
f _{S_SCKI} ,1/ t _{S_SCKI}	I2S SCK frequency	Slave mode,Supposing external device response delay is 30ns			14.4			14.8	MHz
d _{S_SCKO}	I2S SCK duty cycle	Slave mode		50			50		%
t _{M_FSOV}	FS valid time	Master mode			4.1			4	ns
t _{M_FSOH}	FS hold time	Master mode	-0.9			-0.9			ns
t _{S_FSIS}	FS setup time	Slave mode	2.3			1.5			ns
t _{S_FSIH}	FS hold time	Slave mode	0			0			ns
t _{M_SDIS}	Data input setup time	Master mode	34.7			24.5			ns
t _{M_SDIH}	Data input hold time	Master mode	-8.2			-8.2			ns
ts_sdis	Data input setup time	Slave mode	4.6			3.9			ns
t _{S_SDIH}	Data input hold time	Slave mode	1.2			1.2			ns
t _{M_SDOV}	Data output valid time	Master transmitter			5.6			4.8	ns
t _{M_SDOH}	Data output hold time	Master transmitter	-0.5			-0.5			ns
t _{S_SDOV}	Data output valid time	Slave transmitter			36.2			25.9	ns
t _{S_SDOH}	Data output hold time	Slave transmitter	36			25.7			ns
t _{PDM2LS}	Data input setup time	Master mode PDM2 Left	34.7			24.5			ns
t _{PDM2LH}	Data input hold time	Master mode PDM2 Left	-8.2			-8.2			ns

Table 38-27. Package Characteristics						
Moisture Sensitivity Level	MSL1					
Table 38-28. Package Reference						
JEDEC Drawing Reference	MO-220					

38.2.10 35 ball WLCSP (Device Variant C)

6 – In two ramp mode, two events will be generated per cycle, one on each ramp's end. EVCTRL.CNTSEL.END cannot be used to identify the end of a double ramp cycle. Errata reference: 12224

Errata reference: 1222

Fix/Workaround:

None

7 – If an input event triggered STOP action is performed at the same time as the counter overflows, the first pulse width of the subsequent counter start can be altered with one prescaled clock cycle. Errata reference: 12107

Fix/Workaround:

None

8 – When the RUNSTDBY bit is written after the TCC is enabled, the respective TCC APB bus is stalled and the RUNDSTBY bit in the TCC CTRLA register is not enabled-protected.

Errata reference: 12477

Fix/Workaround:

None.

9 – TCC fault filtering on inverted fault is not working. Errata reference: 12512

Fix/Workaround:

Use only non-inverted faults.

10 – When waking up from the STANDBY power save mode, the SYNCBUSY.CTRLB, SYNCBUSY.STATUS, SYNCBUSY.COUNT, SYNCBUSY.PATT, SYNCBUSY.WAVE, SYNCBUSY.PER and SYNCBUSY.CCx bits may be locked to 1.

Errata reference: 12227

Fix/Workaround:

After waking up from STANDBY power save mode, perform a software reset of the TCC if you are using the SYNCBUSY.CTRLB, SYNCBUSY.STATUS, SYNCBUSY.COUNT, SYNCBUSY.PATT, SYNCBUSY.WAVE, SYNCBUSY.PER or SYNCBUSY.CCx bits

11 – When the Peripheral Access Controller (PAC) protection is enabled, writing to WAVE or WAVEB registers will not cause a hardware exception. Errata reference: 11468 Fix/Workaround: None

12 – If the MCx flag in the INTFLAG register is set when enabling the DMA, this will trigger an immediate DMA transfer and overwrite the current buffered value in the TCC register. Errata reference: 12155

Fix/Workaround:

None

40.1.4.14 PTC

1 – WCOMP interrupt flag is not stable. The WCOMP interrupt flag will not always be set as described in the datasheet. Errata reference: 12860

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
f _{OUT}	Output frequency	Calibrated against a 8MHz reference at 25°C, over [-40, +85]°C, over [1.62, 3.63]V	7.54	8	8.19	MHz
		Calibrated against a 8MHz reference at 25°C, at V_{DD}=3.3V	7.94	8	8.06	
		Calibrated against a 8MHz reference at 25°C, over [1.62, 3.63]V	7.92	8	8.06	
I _{OSC8M}	Current consumption	IIDLEIDLE2 on OSC32K versus IDLE2 on calibrated OSC8M enabled at 8MHz (FRANGE=1, PRESC=0)		64	96	μA
t _{startup}	Startup time		-	2.4	3.3	μs
Duty	Duty cycle		-	50	-	%

Table 44-47. Internal 8MHz RC Oscillato	r Characteristics (Device Variant B)
---	--------------------------------------

44.8.7 Fractional Digital Phase Locked Loop (FDPLL96M) Characteristics Table 44-48. FDPLL96M Characteristics⁽¹⁾ (Device Variant A)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
f _{IN}	Input frequency		32	-	2000	KHz
f _{OUT}	Output frequency		48	-	96	MHz
I _{FDPLL96M}	Current consumption	f _{IN} = 32 kHz, f _{OUT} = 48 MHz	-	500	700	μA
		f _{IN} = 32 kHz, f _{OUT} = 96 MHz	-	900	1200	
J _p	Period jitter	f _{IN} = 32 kHz, f _{OUT} = 48 MHz	-	1.5	2.0	%
		f _{IN} = 32 kHz, f _{OUT} = 96 MHz	-	3.0	10.0	
		f _{IN} = 2 MHz, f _{OUT} = 48 MHz	-	1.3	2.0	
		f _{IN} = 2 MHz, f _{OUT} = 96 MHz	-	3.0	7.0	
t _{LOCK}	Lock Time	After start-up, time to get lock signal. f _{IN} = 32 kHz, f _{OUT} = 96 MHz	-	1.3	2	ms
		f _{IN} = 2 MHz, f _{OUT} = 96 MHz	-	25	50	μs
Duty	Duty cycle		40	50	60	%

Table 44-49. FDPLL96M Characteristics⁽¹⁾ (Device Variant B, Die Revision E)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
f _{IN}	Input frequency		32	-	2000	KHz
f _{OUT}	Output frequency		48	-	96	MHz
I _{FDPLL96M}	Current consumption	f _{IN} = 32 kHz, f _{OUT} = 48 MHz	-	500	740	μA
		f _{IN} = 32 kHz, f _{OUT} = 96 MHz	-	900	1262	