

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	52
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 20x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamd21j16b-mf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Worldwide Sales and Service972

6. Signal Descriptions List

The following table gives details on signal names classified by peripheral.

Signal Name	Function	Туре	Active Level						
Analog Compa	rators - AC								
AIN[3:0]	AC Analog Inputs	Analog							
CMP[:0]	AC Comparator Outputs	Digital							
Analog Digital Converter - ADC									
AIN[19:0]	ADC Analog Inputs	Analog							
VREFA	ADC Voltage External Reference A	Analog							
VREFB	ADC Voltage External Reference B	Analog							
Digital Analog	Converter - DAC								
VOUT	DAC Voltage output	Analog							
VREFA	DAC Voltage External Reference	Analog							
External Interru	upt Controller								
EXTINT[15:0]	External Interrupts	Input							
NMI	External Non-Maskable Interrupt	Input							
Generic Clock	Generator - GCLK								
GCLK_IO[7:0]	Generic Clock (source clock or generic clock generator output)	I/O							
Inter-IC Sound	Controller - I2S								
MCK[1:0]	Master Clock	I/O							
SCK[1:0]	Serial Clock	I/O							
FS[1:0]	I2S Word Select or TDM Frame Sync	I/O							
SD[1:0]	Serial Data Input or Output	I/O							
Power Manage	er - PM								
RESETN	Reset	Input	Low						
Serial Commun	nication Interface - SERCOMx	1							
PAD[3:0]	SERCOM I/O Pads	I/O							
System Control - SYSCTRL									
XIN	Crystal Input	Analog/ Digital							
XIN32	32kHz Crystal Input	Analog/ Digital							
XOUT	Crystal Output	Analog							
XOUT32	32kHz Crystal Output	Analog							

7.2.4 GPIO Clusters

Table 7-5. GPIO Clusters

PACKAGE	CLUSTER								GP	10								SUPPLIES PINS CONNECTED TO THE CLUSTER
64pins	1	PB31	PB30	PA31	PA30													VDDIN pin56/GND pin54
	2	PA28	PA27	PB23	PB22													VDDIN pin56/GND pin54 and VDDIO pin 48/GND pin47
	3	PA25	PA24	PA23	PA22	PA21	PA20	PB17	PB16	PA19	PA18	PA17	PA16					VDDIO pin 48/GND pin47 and VDDIO pin34/GND pin33
	4	PA15	PA14	PA13	PA12	PB15	PB14	PB13	PB12	PB11	PB10							VDDIO pin 34/GND pin33 and VDDIO pin21/GND pin22
	5	PA11	PA10	PA09	PA08													VDDIO pin21/GND pin22
	6	PA07	PA06	PA05	PA04	PB09	PB08	PB07	PB06									VDDANA pin 8/GNDANA pin7
	7	PB05	PB04	PA03	PA02	PA01	PA00	PB03	PB02	PB01	PB00							VDDANA pin 8/GNDANA pin7
48pins	1	PA31	PA30															VDDIN pin44/GND pin42
	2	PA28	PA27	PB23	PB22													VDDIN pin44/GND pin42 and VDDIO pin36/GND pin35
	3	PA25	PA24	PA23	PA22	PA21	PA20	PA19	PA18	PA17	PA16	PA15	PA14	PA13	PA12	PB11	PB10	VDDIO pin36/GND pin35 and VDDIO pin17/GND pin18
	4	PA11	PA10	PA09	PA08													VDDIO pin17/GND pin18
	5	PA07	PA06	PA05	PA04	PB09	PB08											VDDANA pin6/ GNDANA pin5
	6	PA03	PA02	PA01	PA00	PB03	PB02											VDDANA pin6/ GNDANA pin5

Table 13-6. Available Features when Operated From The External Address Range and Device is Protected

Features	Availability From The External Address Range and Device is Protected
Chip-Erase command and status	Yes
CRC32	Yes, only full array or full EEPROM
CoreSight Compliant Device identification	Yes
Debug communication channels	Yes
Testing of onboard memories (MBIST)	No
STATUSA.CRSTEXT clearing	No (STATUSA.PERR is set when attempting to do so)

32-bit ARM-Based Microcontrollers

Value	Name	Description
0x00	XOSC	XOSC oscillator output
0x01	GCLKIN	Generator input pad
0x02	GCLKGEN1	Generic clock generator 1 output
0x03	OSCULP32K	OSCULP32K oscillator output
0x04	OSC32K	OSC32K oscillator output
0x05	XOSC32KReserved	XOSC32K oscillator output
0x06	OSC8M	OSC8M oscillator output
0x07	DFLL48M	DFLL48M output
0x08	FDPLL96M	FDPLL96M output
0x09-0x1 F	Reserved	Reserved for future use

Bits 3:0 – ID[3:0]: Generic Clock Generator Selection

These bits select the generic clock generator that will be configured or read. The value of the ID bit group versus which generic clock generator is configured is shown in the next table.

A power reset will reset the GENCTRL register for all IDs, including the generic clock generator used by the RTC. If a generic clock generator ID other than generic clock generator 0 is not a source of a "locked" generic clock or a source of the RTC generic clock, a user reset will reset the GENCTRL for this ID.

After a power reset, the reset value of the GENCTRL register is as shown in the next table.

GCLK Generator ID	Reset Value after a Power Reset
0x00	0x00010600
0x01	0x0000001
0x02	0x00010302
0x03	0x0000003
0x04	0x0000004
0x05	0x0000005
0x06	0x0000006
0x07	0x0000007
0x08	0x0000008

After a user reset, the reset value of the GENCTRL register is as shown in the table below.

GCLK Generator ID	Reset Value after a User Reset
0x00	0x00010600
0x01	0x00000001 if the generator is not used by the RTC and not a source of a 'locked' generic clock No change if the generator is used by the RTC or used by a GCLK with a WRTLOCK as one

Bit 0 – SWRST: Software Reset

Writing a zero to this bit has no effect.

Writing a one to this bit resets all registers in the RTC, except DBGCTRL, to their initial state, and the RTC will be disabled.

Writing a one to CTRL.SWRST will always take precedence, meaning that all other writes in the same write-operation will be discarded.

Due to synchronization, there is a delay from writing CTRL.SWRST until the reset is complete. CTRL.SWRST and STATUS.SYNCBUSY will both be cleared when the reset is complete.

This bit is not enable-protected.

Value	Description
0	There is no reset operation ongoing.
1	The reset operation is ongoing.

19.8.2 Control - MODE1

Name: CTRL Offset: 0x00 Reset: 0x0000 Property: Enable-Protected, Write-Protected, Write-Synchronized

Bit	15	14	13	12	11	10	9	8		
					PRESCALER[3:0]					
Access					R/W	R/W	R/W	R/W		
Reset					0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
					MOD	E[1:0]	ENABLE	SWRST		
Access					R/W	R/W	R/W	W		
Reset					0	0	0	0		

Bits 11:8 - PRESCALER[3:0]: Prescaler

These bits define the prescaling factor for the RTC clock source (GCLK_RTC) to generate the counter clock (CLK_RTC_CNT).

These bits are not synchronized.

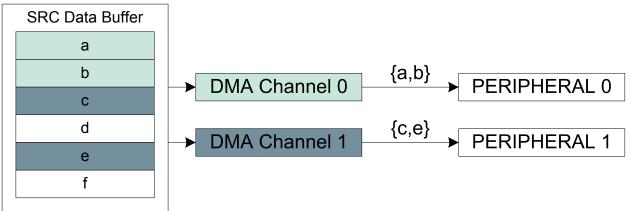
PRESCALER[3:0]	Name	Description
0x0	DIV1	CLK_RTC_CNT = GCLK_RTC/1
0x1	DIV2	CLK_RTC_CNT = GCLK_RTC/2
0x2	DIV4	CLK_RTC_CNT = GCLK_RTC/4
0x3	DIV8	CLK_RTC_CNT = GCLK_RTC/8
0x4	DIV16	CLK_RTC_CNT = GCLK_RTC/16
0x5	DIV32	CLK_RTC_CNT = GCLK_RTC/32
0x6	DIV64	CLK_RTC_CNT = GCLK_RTC/64

Increment Step Size bit group in the Block Transfer Control register (BTCTRL.STEPSIZE). If BTCTRL.STEPSEL=0, the step size for the source incrementation will be the size of one beat.

When source address incrementation is configured (BTCTRL.SRCINC=1), SRCADDR is calculated as follows:

If **BTCTRL**.STEPSEL=1:

 $SRCADDR = SRCADDR_{START} + BTCNT \cdot (BEATSIZE + 1) \cdot 2^{STEPSIZE}$


If **BTCTRL**.STEPSEL=0:

 $SRCADDR = SRCADDR_{START} + BTCNT \cdot (BEATSIZE + 1)$

- SRCADDR_{START} is the source address of the first beat transfer in the block transfer
- BTCNT is the initial number of beats remaining in the block transfer
- BEATSIZE is the configured number of bytes in a beat
- STEPSIZE is the configured number of beats for each incrementation

The following figure shows an example where DMA channel 0 is configured to increment the source address by one beat after each beat transfer (BTCTRL.SRCINC=1), and DMA channel 1 is configured to increment the source address by two beats (BTCTRL.SRCINC=1, BTCTRL.STEPSEL=1, and BTCTRL.STEPSIZE=0x1). As the destination address for both channels are peripherals, destination incrementation is disabled (BTCTRL.DSTINC=0).

Incrementation for the destination address of a block transfer is enabled by setting the Destination Address Incrementation Enable bit in the Block Transfer Control register (BTCTRL.DSTINC=1). The step size of the incrementation is configurable by clearing BTCTRL.STEPSEL=0 and writing BTCTRL.STEPSIZE to the desired step size. If BTCTRL.STEPSEL=1, the step size for the destination incrementation will be the size of one beat.

When the destination address incrementation is configured (BTCTRL.DSTINC=1), SRCADDR must be set and calculated as follows:

$DSTADDR = DSTADDR_{START} + BTCNT \bullet (BEATSIZE + 1) \bullet 2^{STEPSIZE}$	where BTCTRL.STEPSEL is zero
$DSTADDR = DSTADDR_{START} + BTCNT \bullet (BEATSIZE + 1)$	where BTCTRL.STEPSEL is one

- DSTADDR_{START} is the destination address of the first beat transfer in the block transfer
- BTCNT is the initial number of beats remaining in the block transfer

DMAC or CRC module is enabled, the Reset request will be ignored and the DMAC will return an access error.

Value	Description
0	There is no Reset operation ongoing.
1	A Reset operation is ongoing.

20.8.2 CRC Control

Name:CRCCTRLOffset:0x02Reset:0x0000Property:PAC Write-Protection, Enable-Protected

Bit	15	14	13	12	11	10	9	8		
				CRCSRC[5:0]						
Access			R/W	R/W	R/W	R/W	R/W	R/W		
Reset			0	0	0	0	0	0		
Bit	7	6	5	4	3	2	1	0		
					CRCPC	DLY[1:0]	CRCBEA	TSIZE[1:0]		
Access					R/W	R/W	R/W	R/W		
Reset					0	0	0	0		
Reset					0	0	0	0		

Bits 13:8 – CRCSRC[5:0]: CRC Input Source

These bits select the input source for generating the CRC, as shown in the table below. The selected source is locked until either the CRC generation is completed or the CRC module is disabled. This means the CRCSRC cannot be modified when the CRC operation is ongoing. The lock is signaled by the CRCBUSY status bit. CRC generation complete is generated and signaled from the selected source when used with the DMA channel.

Value	Name	Description
0x00	NOACT	No action
0x01	IO	I/O interface
0x02-0x1 F	-	Reserved
0x20	CHN	DMA channel 0
0x21	CHN	DMA channel 1
0x22	CHN	DMA channel 2
0x23	CHN	DMA channel 3
0x24	CHN	DMA channel 4
0x25	CHN	DMA channel 5
0x26	CHN	DMA channel 6
0x27	CHN	DMA channel 7
0x28	CHN	DMA channel 8
0x29	CHN	DMA channel 9
0x2A	CHN	DMA channel 10
0x2B	CHN	DMA channel 11
0x2C	CHN	DMA channel 12
0x2D	CHN	DMA channel 13

20.9 Register Summary - SRAM

Offset	Name	Bit Pos.									
0x00	BTCTRL	7:0			BLOCKACT[1:0]		EVOSEL[1:0]		VALID		
0x01	BICIRL	15:8	STEPSIZE[2:0]		STEPSEL	DSTINC	SRCINC	BEATS	IZE[1:0]		
0x02	BTCNT	7:0			BTCN	T[7:0]					
0x03	BICNI	15:8			BTCN	T[15:8]					
0x04		7:0			SRCAD	DR[7:0]					
0x05	SRCADDR	15:8	SRCADDR[15:8]								
0x06	SRCADDR	23:16	SRCADDR[23:16]								
0x07		31:24		SRCADDR[31:24]							
0x08		7:0			DSTAD	DR[7:0]					
0x09	DSTADDR	15:8		DSTADDR[15:8]							
0x0A	DSTADDR	23:16			DSTADD	R[23:16]					
0x0B		31:24		DSTADDR[31:24]							
0x0C	7:0 DESCADDR[7:0]										
0x0D	DESCADDR	15:8		DESCADDR[15:8]							
0x0E	DESCADDR	23:16			DESCADI	DR[23:16]					
0x0F		31:24		DESCADDR[31:24]							

20.10 Register Description - SRAM

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional PAC write-protection is denoted by the "PAC Write-Protection" property in each individual register description. For details, refer to Register Access Protection.

Some registers are enable-protected, meaning they can only be written when the peripheral is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

20.10.1 Block Transfer Control

The BTCTRL register offset is relative to (BASEADDR or WRBADDR) + Channel Number * 0x10

Name: BTCTRL Offset: 0x00 Reset: -Property: -

Bit	15	14	13	12	11	10	9	8
	STEPSIZE[2:0]			STEPSEL	DSTINC	SRCINC	BEATSI	ZE[1:0]
Access								

Reset

24. EVSYS – Event System

24.1 Overview

The Event System (EVSYS) allows autonomous, low-latency and configurable communication between peripherals.

Several peripherals can be configured to generate and/or respond to signals known as events. The exact condition to generate an event, or the action taken upon receiving an event, is specific to each peripheral. Peripherals that respond to events are called event users. Peripherals that generate events are called event generators. A peripheral can have one or more event generators and can have one or more event users.

Communication is made without CPU intervention and without consuming system resources such as bus or RAM bandwidth. This reduces the load on the CPU and other system resources, compared to a traditional interrupt-based system.

24.2 Features

- 12 configurable event channels, where each channel can:
 - Be connected to any event generator.
 - Provide a pure asynchronous, resynchronized or synchronous path
- 74 event generators.
- 29 event users.
- Configurable edge detector.
- Peripherals can be event generators, event users, or both.
- SleepWalking and interrupt for operation in sleep modes.
- Software event generation.
- Each event user can choose which channel to respond to.

24.3 Block Diagram

Figure 24-1. Event System Block Diagram

Bit 7 – ERROR: Error Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Error Interrupt Enable bit, which enables the Error interrupt.

Value	Description
0	Error interrupt is disabled.
1	Error interrupt is enabled.

Bit 3 – SSL: Slave Select Low Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Slave Select Low Interrupt Enable bit, which enables the Slave Select Low interrupt.

Value	Description
0	Slave Select Low interrupt is disabled.
1	Slave Select Low interrupt is enabled.

Bit 2 – RXC: Receive Complete Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Receive Complete Interrupt Enable bit, which enables the Receive Complete interrupt.

Value	Description
0	Receive Complete interrupt is disabled.
1	Receive Complete interrupt is enabled.

Bit 1 – TXC: Transmit Complete Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Transmit Complete Interrupt Enable bit, which enables the Transmit Complete interrupt.

Value	Description
0	Transmit Complete interrupt is disabled.
1	Transmit Complete interrupt is enabled.

Bit 0 – DRE: Data Register Empty Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the Data Register Empty Interrupt Enable bit, which enables the Data Register Empty interrupt.

Value	Description
0	Data Register Empty interrupt is disabled.
1	Data Register Empty interrupt is enabled.

27.8.6 Interrupt Flag Status and Clear

Name:	INTFLAG
Offset:	0x18
Reset:	0x00

- Data register (DATA)
- Address register (ADDR)

Optional PAC Write-Protection is denoted by the "PAC Write-Protection" property in each individual register description.

Write-protection does not apply to accesses through an external debugger.

Related Links

PAC - Peripheral Access Controller

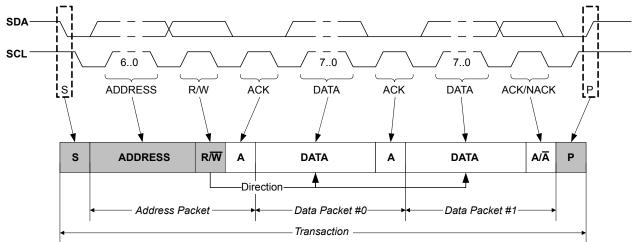
28.5.9 Analog Connections

Not applicable.

28.6 Functional Description

28.6.1 Principle of Operation

The I²C interface uses two physical lines for communication:


- Serial Data Line (SDA) for packet transfer
- Serial Clock Line (SCL) for the bus clock

A transaction starts with the I²C master sending the start condition, followed by a 7-bit address and a direction bit (read or write to/from the slave).

The addressed I²C slave will then acknowledge (ACK) the address, and data packet transactions can begin. Every 9-bit data packet consists of 8 data bits followed by a one-bit reply indicating whether the data was acknowledged or not.

If a data packet is not acknowledged (NACK), whether by the I²C slave or master, the I²C master takes action by either terminating the transaction by sending the stop condition, or by sending a repeated start to transfer more data.

The figure below illustrates the possible transaction formats and Transaction Diagram Symbols explains the transaction symbols. These symbols will be used in the following descriptions.

Figure 28-2. Basic I²C Transaction Diagram

Reset: 0x0000 Property: PAC Write-Protection

Bit	15	14	13	12	11	10	9	8
			TXUR1	TXUR0			TXRDY1	TXRDY0
Access			R/W	R/W			R/W	R/W
Reset			0	0			0	0
Bit	7	6	5	4	3	2	1	0
			RXOR1	RXOR0			RXRDY1	RXRDY0
Access			R/W	R/W			R/W	R/W
Reset			0	0			0	0
Reset			0	0			0	0

Bits 13,12 – TXURx : Transmit Underrun x Interrupt Enable [x=1..0]

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Transmit Underrun x Interrupt Enable bit, which disables the Transmit Underrun x interrupt.

Value	Description
0	The Transmit Underrun x interrupt is disabled.
1	The Transmit Underrun x interrupt is enabled.

Bits 9,8 – TXRDYx : Transmit Ready x Interrupt Enable [x=1..0]

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Transmit Ready x Interrupt Enable bit, which disables the Transmit Ready x interrupt.

Value	Description
0	The Transmit Ready x interrupt is disabled.
1	The Transmit Ready x interrupt is enabled.

Bits 4,5 – RXORx : Receive Overrun x Interrupt Enable [x=1..0]

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Receive Overrun x Interrupt Enable bit, which disables the Receive Overrun x interrupt.

Value	Description
0	The Receive Overrun x interrupt is disabled.
1	The Receive Overrun x interrupt is enabled.

Bits 1,0 – RXRDYx : Receive Ready x Interrupt Enable [x=1..0]

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Receive Ready x Interrupt Enable bit, which disables the Receive Ready x interrupt.

Value	Description
0	The Receive Ready x interrupt is disabled.
1	The Receive Ready x interrupt is enabled.

inverted high side (HS) of the waveform output with optional dead-time insertion between LS and HS switching. The SWAP unit can swap the LS and HS pin outputs, and can be used for fast decay motor control.

The pattern generation unit can be used to generate synchronized waveforms with constant logic level on TCC UPDATE conditions. This is useful for easy stepper motor and full bridge control.

The non-recoverable fault module enables event controlled fault protection by acting directly on the generated waveforms of the timer/counter compare channel outputs. When a non-recoverable fault condition is detected, the output waveforms are forced to a safe and pre-configured value that is safe for the application. This is typically used for instant and predictable shut down and disabling high current or voltage drives.

The count event sources (TCE0 and TCE1) are shared with the non-recoverable fault extension. The events can be optionally filtered. If the filter options are not used, the non-recoverable faults provide an immediate asynchronous action on waveform output, even for cases where the clock is not present. For further details on how to configure asynchronous events routing, refer to section *EVSYS – Event System*.

Related Links

EVSYS – Event System

31.6.2 Basic Operation

31.6.2.1 Initialization

The following registers are enable-protected, meaning that they can only be written when the TCC is disabled(CTRLA.ENABLE=0):

- Control A (CTRLA) register, except Run Standby (RUNSTDBY), Enable (ENABLE) and Software Reset (SWRST) bits
- Recoverable Fault n Control registers (FCTRLA and FCTRLB)
- Waveform Extension Control register (WEXCTRL)
- Drive Control register (DRVCTRL)
- Event Control register (EVCTRL)

Enable-protected bits in the CTRLA register can be written at the same time as CTRLA.ENABLE is written to '1', but not at the same time as CTRLA.ENABLE is written to '0'. Enable-protection is denoted by the "Enable-Protected" property in the register description.

Before the TCC is enabled, it must be configured as outlined by the following steps:

- 1. Enable the TCC bus clock (CLK_TCCx_APB).
- 2. If Capture mode is required, enable the channel in capture mode by writing a '1' to the Capture Enable bit in the Control A register (CTRLA.CPTEN).

Optionally, the following configurations can be set before enabling TCC:

- 1. Select PRESCALER setting in the Control A register (CTRLA.PRESCALER).
- 2. Select Prescaler Synchronization setting in Control A register (CTRLA.PRESCSYNC).
- 3. If down-counting operation is desired, write the Counter Direction bit in the Control B Set register (CTRLBSET.DIR) to '1'.
- 4. Select the Waveform Generation operation in the WAVE register (WAVE.WAVEGEN).
- 5. Select the Waveform Output Polarity in the WAVE register (WAVE.POL).
- 6. The waveform output can be inverted for the individual channels using the Waveform Output Invert Enable bit group in the Driver register (DRVCTRL.INVEN).

Bits 7:5 – CMD[2:0]: TCC Command

These bits can be used for software control of re-triggering and stop commands of the TCC. When a command has been executed, the CMD bit field will read back zero. The commands are executed on the next prescaled GCLK_TCC clock cycle.

Writing zero to this bit group has no effect.

Writing a '1' to any of these bits will clear the pending command.

Value	Name	Description
0x0	NONE	No action
0x1	RETRIGGER	Clear start, restart or retrigger
0x2	STOP	Force stop
0x3	UPDATE	Force update of double buffered registers
0x4	READSYNC	Force COUNT read synchronization

Bits 4:3 – IDXCMD[1:0]: Ramp Index Command

These bits can be used to force cycle A and cycle B changes in RAMP2 and RAMP2A operation. On timer/counter update condition, the command is executed, the IDX flag in STATUS register is updated and the IDXCMD command is cleared.

Writing zero to these bits has no effect.

Writing a '1' to any of these bits will clear the pending command.

Value	Name	Description
0x0	DISABLE	DISABLE Command disabled: IDX toggles between cycles A and B
0x1	SET	Set IDX: cycle B will be forced in the next cycle
0x2	CLEAR	Clear IDX: cycle A will be forced in next cycle
0x3	HOLD	Hold IDX: the next cycle will be the same as the current cycle.

Bit 2 – ONESHOT: One-Shot

This bit controls one-shot operation of the TCC. When one-shot operation is enabled, the TCC will stop counting on the next overflow/underflow condition or on a stop command.

Writing a '0' to this bit has no effect

Writing a '1' to this bit will disable the one-shot operation.

Value	Description
0	The TCC will update the counter value on overflow/underflow condition and continue
	operation.
1	The TCC will stop counting on the next underflow/overflow condition.

Bit 1 – LUPD: Lock Update

This bit controls the update operation of the TCC buffered registers.

When CTRLB.LUPD is set, no any update of the registers with value of its buffered register is performed on hardware UPDATE condition. Locking the update ensures that all buffer registers are valid before an hardware update is performed. After all the buffer registers are loaded correctly, the buffered registers can be unlocked.

This bit has no effect when input capture operation is enabled.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will enable updating.

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
RES	Input resolution			-	-	10	Bits
INL	Integral non-linearity	V _{REF} = Ext 1.0V	V _{DD} = 1.6V	0.75	1.1	2.5	LSB
			V _{DD} = 3.6V	0.6	1.2	1.5	
		$V_{REF} = V_{DDANA}$	V _{DD} = 1.6V	1.4	2.2	2.5	
			V _{DD} = 3.6V	0.9	1.4	1.5	
		V _{REF} = INT1V	V _{DD} = 1.6V	0.75	1.3	1.5	
			V _{DD} = 3.6V	0.8	1.2	1.5	
DNL	Differential non-linearity	V _{REF} = Ext 1.0V	V _{DD} = 1.6V	+/-0.9	+/-1.2	+/-1.5	LSB
			V _{DD} = 3.6V	+/-0.9	+/-1.1	+/-1.2	
		V _{REF} = V _{DDANA}	V _{DD} = 1.6V	+/-1.1	+/-1.5	+/-1.7	
			V _{DD} = 3.6V	+/-1.0	+/-1.1	+/-1.2	
		V _{REF} = INT1V	V _{DD} = 1.6V	+/-1.1	+/-1.4	+/-1.5	
			V _{DD} = 3.6V	+/-1.0	+/-1.5	+/-1.6	
	Gain error	Ext. V _{REF}		+/-1.5	+/-5	+/-10	mV
	Offset error	Ext. V _{REF}		+/-2	+/-3	+/-6	mV

Table 37-33. Accuracy Characteristics⁽¹⁾ (Device Variant B and C)

Symbol	Parameter	Conditions		Min.	Тур.	Max.	Units
RES	Input resolution			-	-	10	Bits
INL	Integral non-linearity	V _{REF} = Ext 1.0V	V _{DD} = 1.6V	0.7	0.75	2	LSB
			V _{DD} = 3.6V	0.6	0.65	1.5	
		$V_{REF} = V_{DDANA}$	V _{DD} = 1.6V	0.6	0.85	2	
			V _{DD} = 3.6V	0.5	0.8	1.5	
		V _{REF} = INT1V	V _{DD} = 1.6V	0.5	0.75	1.5	
			V _{DD} = 3.6V	0.7	0.8	1.5	
DNL	Differential non-linearity	V _{REF} = Ext 1.0V	V _{DD} = 1.6V	+/-0.3	+/-0.4	+/-1.0	LSB
			V _{DD} = 3.6V	+/-0.25	+/-0.4	+/-0.75	
		V _{REF} = V _{DDANA}	V _{DD} = 1.6V	+/-0.4	+/-0.55	+/-1.5	
			V _{DD} = 3.6V	+/-0.2	+/-0.3	+/-0.75	
		V _{REF} = INT1V	V _{DD} = 1.6V	+/-0.5	+/-0.7	+/-1.5	
			V _{DD} = 3.6V	+/-0.4	+/-0.7	+/-1.5	

Figure 37-15. 1 Sensor / PTC_GCLK = 2MHz / FREQ_MODE_HOP

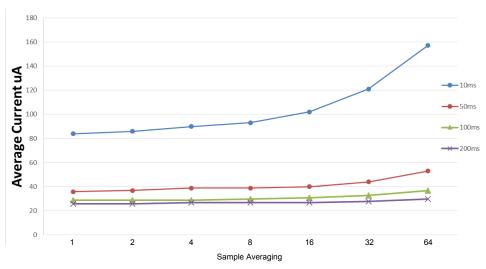
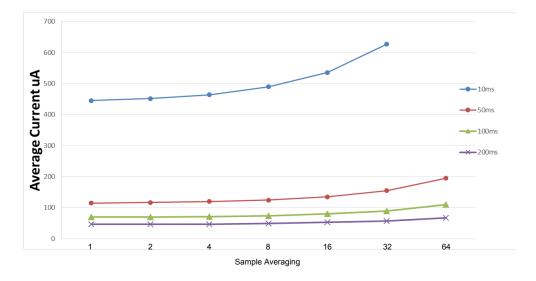



Figure 37-16. 10 Sensor / PTC_GCLK = 4MHz / FREQ_MODE_NONE

	Errata reference: 12164 Fix/Workaround: Do a power cycle to reset the GCLK generators after an external XOSC32K failure.
40.1.4.2 DSU	
	 1 – If a debugger has issued a DSU Cold-Plugging procedure and then released the CPU from the resulting ""CPU Reset Extension"", the CPU will be held in ""CPU Reset Extension"" after any upcoming reset event. Errata reference: 12015 Fix/workaround: The CPU must be released from the ""CPU Reset Extension"" either by writing a one in the DSU STATUSA.CRSTEXT register or by applying an external reset with SWCLK high or by power cycling the device.
	2 – The MBIST ""Pause-on-Error"" feature is not functional on this device.
	Errata reference: 14324 Fix/Workaround: Do not use the ""Pause-on-Error"" feature.
40.1.4.3 PM	
	 1 – In debug mode, if a watchdog reset occurs, the debug session is lost. Errata reference: 12196 Fix/Workaround: A new debug session must be restart after a watchdog reset.
40.1.4.4 DFLL48M	
	 1 – The DFLL clock must be requested before being configured otherwise a write access to a DFLL register can freeze the device. Errata reference: 9905 Fix/Workaround: Write a zero to the DFLL ONDEMAND bit in the DFLLCTRL register before configuring the DFLL module.
	 2 – The DFLL status bits in the PCLKSR register during the USB clock recovery mode can be wrong after a USB suspend state. Errata reference: 11938 Fix/Workaround: Do not monitor the DFLL status bits in the PCLKSR register during the USB clock recovery mode.
	3 – If the DFLL48M reaches the maximum or minimum COARSE or FINE calibration values during the locking sequence, an out of bounds interrupt will be generated. These interrupts will be generated even if the final calibration values at DFLL48M lock are not at maximum or minimum, and might therefore be false out of bounds interrupts. Errata reference: 10669 Fix/Workaround:

3 – Advance capture mode (CAPTMIN CAPTMAX LOCMIN LOCMAX DERIV0) doesn't work if an upper channel is not in one of these mode. Example: when CC[0]=CAPTMIN, CC[1]=CAPTMAX, CC[2]=CAPTEN, and CC[3]=CAPTEN, CAPTMIN and CAPTMAX won't work. Errata reference: 14817 Fix/Workaround: Basic capture mode must be set in lower channel and advance capture mode in upper channel. Example: CC[0]=CAPTEN, CC[1]=CAPTEN, CC[2]=CAPTMIN, CC[3]=CAPTMAX All capture will be done as expected.

40.3 Device Variant C

The device variant (last letter of the ordering number) is independent of the die revision (DSU.DID.REVISION): The device variant denotes functional differences, whereas the die revision marks evolution of the die.

40.3.1 Die Revision F

40.3.1.1 Device

1 – The SYSTICK calibration value is incorrect. Errata reference: 14155 Fix/Workaround:

The correct SYSTICK calibration value is 0x4000000. This value should not be used to initialize the Systick RELOAD value register, which should be initialized instead with a value depending on the main clock frequency and on the tick period required by the application. For a detailed description of the SYSTICK module, refer to the official ARM Cortex-M0+ documentation.

2 – On pin PA24 and PA25 the pull-up and pull-down configuration is not disabled automatically when alternative pin function is enabled except for USB.

Errata reference: 12368

Fix/Workaround:

For pin PA24 and PA25, the GPIO pull-up and pull-down must be disabled before enabling alternative functions on them.

3 – If APB clock is stopped and GCLK clock is running, APB read access to read-synchronized registers will freeze the system. The CPU and the DAP AHB-AP are stalled, as a consequence debug operation is impossible.

Errata reference: 10416

Fix/Workaround:

Do not make read access to read-synchronized registers when APB clock is stopped and GCLK is running. To recover from this situation, power cycle the device or reset the device using the RESETN pin.

4 – If the external XOSC32K is broken, neither the external pin RST nor the GCLK software reset can reset the GCLK generators using XOSC32K as source clock. Errata reference: 12164 Fix/Workaround:

32-bit ARM-Based Microcontrollers

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
I _{DFLL}	Power consumption on V_{DDIN}	f _{REF} = 32 .768kHz	-	425	482	μA
t _{LOCK}	Lock time	f _{REF} = 32 .768kHz DFLLVAL.COARSE = DFLL48M COARSE CAL	100	200	500	μs
		DFLLVAL.FINE = 512				
		DFLLCTRL.BPLCKC = 1				
		DFLLCTRL.QLDIS = 0				
		DFLLCTRL.CCDIS = 1				
		DFLLMUL.FSTEP = 10				

Table 44-41. DFLL48M Characteristics - Closed Loop Mode⁽¹⁾, Device Variant B

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
f _{OUT}	Average Output frequency	f _{REF} = 32 .768kHz	47.76	48	48.24	MHz
f _{REF}	Reference frequency		0.732	32.768	33	kHz
Jitter	Cycle to Cycle jitter	f _{REF} = 32 .768kHz	-	-	0.42	ns
I _{DFLL}	Power consumption on V_{DDIN}	f _{REF} = 32 .768kHz	-	403	453	μA
t _{LOCK}	Lock time	f _{REF} = 32 .768kHz DFLLVAL.COARSE = DFLL48M COARSE CAL	-	200	500	μs
		DFLLVAL.FINE = 512				
		DFLLCTRL.BPLCKC = 1				
		DFLLCTRL.QLDIS = 0				
		DFLLCTRL.CCDIS = 1				
		DFLLMUL.FSTEP = 10				