

Welcome to E-XFL.COM

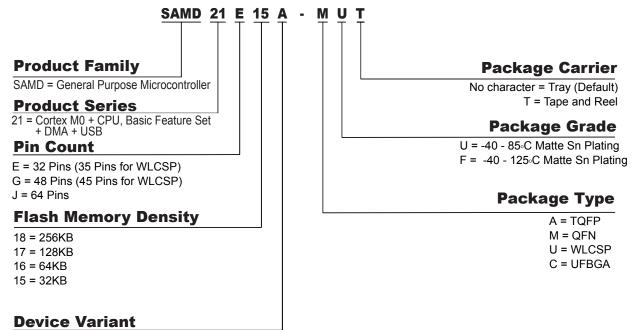
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI


Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	52
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 20x12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamd21j18a-af

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

17.	SYSCTRL – System Controller	150
	17.1. Overview	
	17.2. Features	
	17.3. Block Diagram	
	17.4. Signal Description	
	17.5. Product Dependencies	
	17.6. Functional Description	
	17.7. Register Summary	170
	17.8. Register Description	
18.	WDT – Watchdog Timer	
	18.1. Overview	
	18.2. Features	
	18.3. Block Diagram	
	18.4. Signal Description	
	18.5. Product Dependencies	
	18.6. Functional Description	207
	18.7. Register Summary	212
	18.8. Register Description	212
19.	RTC – Real-Time Counter	218
	19.1. Overview	
	19.2. Features	
	19.3. Block Diagram	219
	19.4. Signal Description	
	19.5. Product Dependencies	
	19.6. Functional Description	221
	19.7. Register Summary	
	19.8. Register Description	
20.	DMAC – Direct Memory Access Controller	
	20.1. Overview	252
	20.2. Features	
	20.3. Block Diagram	
	20.4. Signal Description	
	20.5. Product Dependencies	
	20.6. Functional Description	
	20.7. Register Summary	
	20.8. Register Description	
	20.9. Register Summary - SRAM	
	20.10. Register Description - SRAM	
21.	EIC – External Interrupt Controller	
	21.1. Overview	
	21.2. Features	
	21.3. Block Diagram	
	21.4. Signal Description	
	21.5. Product Dependencies	

3. Ordering Information

A = Default Variant

B = Added RWW support for 32KB and 64KB memory options

C = Silicon revision F for WLCSP35 package option.

3.1 SAM D21E

Table 3-1. Device Variant A

Ordering Code	FLASH (bytes)	SRAM (bytes)	Package	Carrier Type
ATSAMD21E15A-AU	32K	4K	TQFP32	Tray
ATSAMD21E15A-AUT				Tape & Reel
ATSAMD21E15A-AF				Tray
ATSAMD21E15A-AFT				Tape & Reel
ATSAMD21E15A-MU			QFN32	Tray
ATSAMD21E15A-MUT				Tape & Reel
ATSAMD21E15A-MF				Tray
ATSAMD21E15A-MFT				Tape & Reel

Ordering Code	FLASH (bytes)	SRAM (bytes)	Package	Carrier Type
ATSAMD21E16A-AU	64K	8K	TQFP32	Tray
ATSAMD21E16A-AUT	-			Tape & Reel
ATSAMD21E16A-AF	-			Tray
ATSAMD21E16A-AFT	-			Tape & Reel
ATSAMD21E16A-MU	-		QFN32	Tray
ATSAMD21E16A-MUT	-			Tape & Reel
ATSAMD21E16A-MF	-			Tray
ATSAMD21E16A-MFT	-			Tape & Reel
ATSAMD21E17A-AU	128K	16K	TQFP32	Tray
ATSAMD21E17A-AUT	-			Tape & Reel
ATSAMD21E17A-AF	-			Tray
ATSAMD21E17A-AFT	-			Tape & Reel
ATSAMD21E17A-MU	-		QFN32	Tray
ATSAMD21E17A-MUT	-			Tape & Reel
ATSAMD21E17A-MF	-			Tray
ATSAMD21E17A-MFT	-			Tape & Reel
ATSAMD21E18A-AU	256K	32K	TQFP32	Tray
ATSAMD21E18A-AUT	-			Tape & Reel
ATSAMD21E18A-AF	-			Tray
ATSAMD21E18A-AFT				Tape & Reel
ATSAMD21E18A-MU	-		QFN32	Tray
ATSAMD21E18A-MUT				Tape & Reel
ATSAMD21E18A-MF				Tray
ATSAMD21E18A-MFT				Tape & Reel

10. Memories

10.1 Embedded Memories

- Internal high-speed flash with Read-While-Write (RWW) capability on section of the array (Device Variant B).
- Internal high-speed flash
- Internal high-speed RAM, single-cycle access at full speed

10.2 Physical Memory Map

The High-Speed bus is implemented as a bus matrix. All High-Speed bus addresses are fixed, and they are never remapped in any way, even during boot. The 32-bit physical address space is mapped as follow:

Table 10-1.	SAM D21	physical	memory	map ⁽¹⁾
-------------	---------	----------	--------	--------------------

Memory	Start address	Size			
		SAMD21x18	SAMD21x17	SAMD21x16	SAMD21x15
Internal Flash	0x0000000	256Kbytes	128Kbytes	64Kbytes	32Kbytes
Internal RWW section ⁽²⁾	0x00400000	-	-	2Kbytes	1Kbytes
Internal SRAM	0x20000000	32Kbytes	16Kbytes	8Kbytes	4Kbytes
Peripheral Bridge A	0x40000000	64Kbytes	64Kbytes	64Kbytes	64Kbytes
Peripheral Bridge B	0x41000000	64Kbytes	64Kbytes	64Kbytes	64Kbytes
Peripheral Bridge C	0x42000000	64Kbytes	64Kbytes	64Kbytes	64Kbytes

1. x = G, J or E.

2. Only applicable for Device Variant B.

Table 10-2. Flash memory parameters⁽¹⁾

Device	Flash size	Number of pages	Page size
SAMD21x18	256Kbytes	4096	64 bytes
SAMD21x17	128Kbytes	2046	64 bytes
SAMD21x16	64Kbytes	1024	64 bytes
SAMD21x15	32Kbytes	512	64 bytes

1. x = G, J or E.

2. The number of pages (NVMP) and page size (PSZ) can be read from the NVM Pages and Page Size bits in the NVM Parameter register in the NVMCTRL (PARAM.NVMP and PARAM.PSZ, respectively). Refer to *NVM Parameter* (PARAM) register for details.

Table 13-6. Available Features when Operated From The External Address Range and Device is Protected

Features	Availability From The External Address Range and Device is Protected
Chip-Erase command and status	Yes
CRC32	Yes, only full array or full EEPROM
CoreSight Compliant Device identification	Yes
Debug communication channels	Yes
Testing of onboard memories (MBIST)	No
STATUSA.CRSTEXT clearing	No (STATUSA.PERR is set when attempting to do so)

Bit	15	14	13	12	11	10	9	8
		ADDO	FF[3:0]					
Access	R	R	R	R				
Reset	x	x	x	x				
Bit	7	6	5	4	3	2	1	0
							FMT	EPRES
Access		•					R	R
Reset							1	x

Bits 31:12 - ADDOFF[19:0]: Address Offset

The base address of the component, relative to the base address of this ROM table.

Bit 1 – FMT: Format

Always read as '1', indicating a 32-bit ROM table.

Bit 0 – EPRES: Entry Present

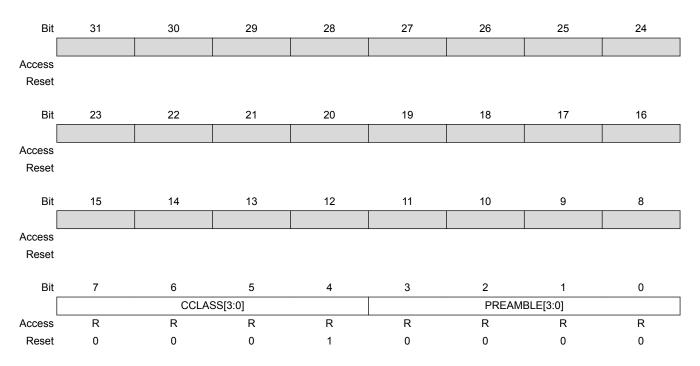
This bit indicates whether an entry is present at this location in the ROM table.

This bit is set at power-up if the device is not protected indicating that the entry is not present.

This bit is cleared at power-up if the device is not protected indicating that the entry is present.

13.13.12 CoreSight ROM Table End

 Name:
 END


 Offset:
 0x1008

 Reset:
 0x0000000

 Property:

Bit	31	30	29	28	27	26	25	24
				END[31:24]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				END[23:16]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				END	[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				END	[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

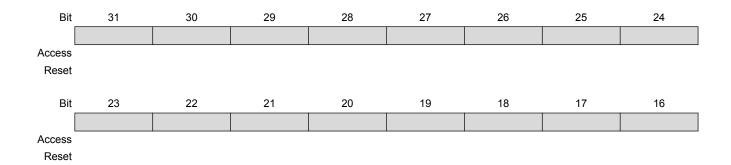
Reset:	0x0000010
Property:	-

Bits 7:4 – CCLASS[3:0]: Component Class

These bits will always return 0x1 when read indicating that this ARM CoreSight component is ROM table (refer to the ARM Debug Interface v5 Architecture Specification at http://www.arm.com).

Bits 3:0 – PREAMBLE[3:0]: Preamble

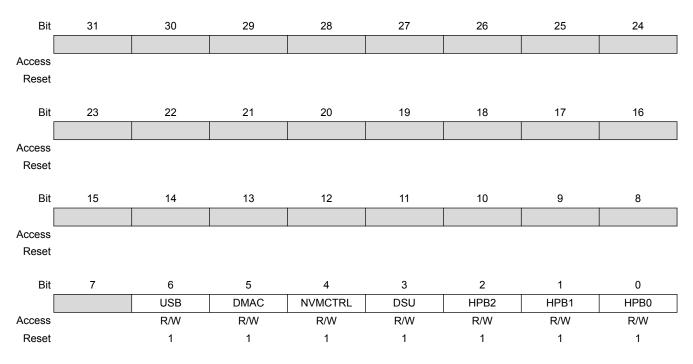
These bits will always return 0x0 when read.


13.13.21 Component Identification 2

 Name:
 CID2

 Offset:
 0x1FF8

 Reset:
 0x00000005


 Property:

APBCDIV[2:0]	Name	Description
0x2	DIV4	Divide by 4
0x3	DIV8	Divide by 8
0x4	DIV16	Divide by 16
0x5	DIV32	Divide by 32
0x6	DIV64	Divide by 64
0x7	DIV128	Divide by 128

16.8.7 AHB Mask

Name:AHBMASKOffset:0x14Reset:0x0000007FProperty:Write-Protected

Bit 6 – USB: USB AHB Clock Mask

Value	Description
0	The AHB clock for the USB is stopped.
1	The AHB clock for the USB is enabled.

Bit 5 – DMAC: DMAC AHB Clock Mask

Value	Description
0	The AHB clock for the DMAC is stopped.
1	The AHB clock for the DMAC is enabled.

The periodic events can also wake up the CPU through the interrupt function of the Event System. In this case, the event must be enabled and connected to an event channel with its interrupt enabled. See *Event System* for more information.

Related Links

EVSYS - Event System

19.6.8 Synchronization

Due to asynchronicity between the main clock domain and the peripheral clock domains, some registers need to be synchronized when written or read.

When executing an operation that requires synchronization, the Synchronization Busy bit in the Status register (STATUS.SYNCBUSY) will be set immediately, and cleared when synchronization is complete. The Synchronization Ready interrupt can be used to signal when synchronization is complete. This can be accessed via the Synchronization Ready Interrupt Flag in the Interrupt Flag Status and Clear register (INTFLAG.SYNCRDY). If an operation that requires synchronization is executed while STATUS.SYNCBUSY is one, the bus will be stalled. All operations will complete successfully, but the CPU will be stalled and interrupts will be pending as long as the bus is stalled.

The following bits are synchronized when written:

- Software Reset bit in the Control register (CTRL.SWRST)
- Enable bit in the Control register (CTRL.ENABLE)

The following registers are synchronized when written:

- Counter Value register (COUNT)
- Clock Value register (CLOCK)
- Counter Period register (PER)
- Compare n Value registers (COMPn)
- Alarm n Value registers (ALARMn)
- Frequency Correction register (FREQCORR)
- Alarm n Mask register (MASKn)

Required write-synchronization is denoted by the "Write-Synchronized" property in the register description.

The following registers are synchronized when read:

- The Counter Value register (COUNT)
- The Clock Value register (CLOCK)

Required read-synchronization is denoted by the "Read-Synchronized" property in the register description.

Related Links

Register Synchronization

19.6.9 Additional Features

19.6.9.1 Periodic Events

The RTC prescaler can generate events at periodic intervals, allowing flexible system tick creation. Any of the upper eight bits of the prescaler (bits 2 to 9) can be the source of an event. When one of the eight Periodic Event Output bits in the Event Control register (EVCTRL.PEREO[n=0..7]) is '1', an event is generated on the 0-to-1 transition of the related bit in the prescaler, resulting in a periodic event frequency of:

This bit will always read as zero.

Bit 16 – PMUXEN: Peripheral Multiplexer Enable

This bit determines the new value written to PINCFGy.PMUXEN for all pins selected by the WRCONFIG.PINMASK and WRCONFIG.HWSEL bits, when the WRCONFIG.WRPINCFG bit is set.

This bit will always read as zero.

Bits 15:0 – PINMASK[15:0]: Pin Mask for Multiple Pin Configuration

These bits select the pins to be configured within the half-word group selected by the WRCONFIG.HWSEL bit.

These bits will always read as zero.

Value	Description
0	The configuration of the corresponding I/O pin in the half-word group will be left unchanged.
1	The configuration of the corresponding I/O pin in the half-word PORT group will be updated.

23.8.12 Peripheral Multiplexing n

There are up to 16 Peripheral Multiplexing registers in each group, one for every set of two subsequent I/O lines. The n denotes the number of the set of I/O lines.

Name: PMUXn Offset: 0x30 + n*0x01 [n=0..15] Reset: 0x00 Property: PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
	PMUXO[3:0]			PMUXE[3:0]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 7:4 – PMUXO[3:0]: Peripheral Multiplexing for Odd-Numbered Pin

These bits select the peripheral function for odd-numbered pins $(2^n + 1)$ of a PORT group, if the corresponding PINCFGy.PMUXEN bit is '1'.

Not all possible values for this selection may be valid. For more details, refer to the *I/O Multiplexing and Considerations*.

PMUXO[3:0]	Name	Description			
0x0	А	Peripheral function A selected			
0x1	В	Peripheral function B selected			
0x2	С	Peripheral function C selected			
0x3	D	Peripheral function D selected			
0x4	E	E Peripheral function E selected			
0x5	F	Peripheral function F selected			
0x6	G	Peripheral function G selected			
0x7	Н	Peripheral function H selected			

26. SERCOM USART – SERCOM Universal Synchronous and Asynchronous Receiver and Transmitter

26.1 Overview

The Universal Synchronous and Asynchronous Receiver and Transmitter (USART) is one of the available modes in the Serial Communication Interface (SERCOM).

The USART uses the SERCOM transmitter and receiver, see Block Diagram. Labels in uppercase letters are synchronous to CLK_SERCOMx_APB and accessible for CPU. Labels in lowercase letters can be programmed to run on the internal generic clock or an external clock.

The transmitter consists of a single write buffer, a shift register, and control logic for different frame formats. The write buffer support data transmission without any delay between frames. The receiver consists of a two-level receive buffer and a shift register. Status information of the received data is available for error checking. Data and clock recovery units ensure robust synchronization and noise filtering during asynchronous data reception.

Related Links

SERCOM - Serial Communication Interface

26.2 USART Features

- Full-duplex operation
- Asynchronous (with clock reconstruction) or synchronous operation
- Internal or external clock source for asynchronous and synchronous operation
- Baud-rate generator
- Supports serial frames with 5, 6, 7, 8 or 9 data bits and 1 or 2 stop bits
- Odd or even parity generation and parity check
- Selectable LSB- or MSB-first data transfer
- Buffer overflow and frame error detection
- Noise filtering, including false start-bit detection and digital low-pass filter
- Collision detection
- Can operate in all sleep modes
- Operation at speeds up to half the system clock for internally generated clocks
- Operation at speeds up to the system clock for externally generated clocks
- RTS and CTS flow control
- IrDA modulation and demodulation up to 115.2kbps
- Start-of-frame detection
- Can work with DMA

Related Links

Features

Value	Description
0x0	Standard-mode (Sm) up to 100 kHz and Fast-mode (Fm) up to 400 kHz
0x1	Fast-mode Plus (Fm+) up to 1 MHz
0x2	High-speed mode (Hs-mode) up to 3.4 MHz
0x3	Reserved

Bit 23 – SEXTTOEN: Slave SCL Low Extend Time-Out

This bit enables the slave SCL low extend time-out. If SCL is cumulatively held low for greater than 25ms from the initial START to a STOP, the slave will release its clock hold if enabled and reset the internal state machine. Any interrupt flags set at the time of time-out will remain set. If the address was recognized, PREC will be set when a STOP is received.

This bit is not synchronized.

Value	Description
0	Time-out disabled
1	Time-out enabled

Bits 21:20 – SDAHOLD[1:0]: SDA Hold Time

These bits define the SDA hold time with respect to the negative edge of SCL.

These bits are not synchronized.

Value	Name	Description
0x0	DIS	Disabled
0x1	75	50-100ns hold time
0x2	450	300-600ns hold time
0x3	600	400-800ns hold time

Bit 16 – PINOUT: Pin Usage

This bit sets the pin usage to either two- or four-wire operation:

This bit is not synchronized.

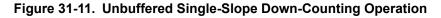
Value	Description
0	4-wire operation disabled
1	4-wire operation enabled

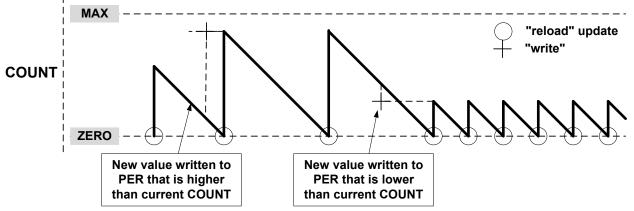
Bit 7 – RUNSTDBY: Run in Standby

This bit defines the functionality in standby sleep mode.

This bit is not synchronized.

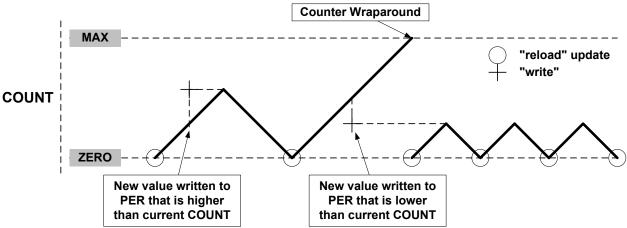
Value	Description
0	Disabled – All reception is dropped.
1	Wake on address match, if enabled.

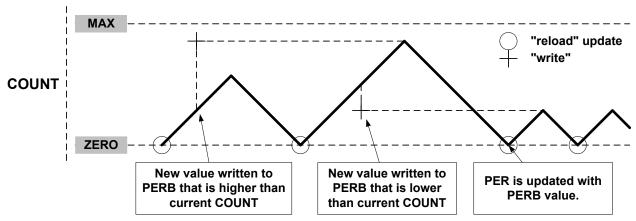

Bits 4:2 – MODE[2:0]: Operating Mode


These bits must be written to 0x04 to select the I²C slave serial communication interface of the SERCOM.

These bits are not synchronized.

Bit 1 – ENABLE: Enable


Due to synchronization, there is delay from writing CTRLA.ENABLE until the peripheral is enabled/ disabled. The value written to CTRL.ENABLE will read back immediately and the Enable Synchronization


A counter wraparound can occur in any operation mode when up-counting without buffering, see Figure 31-10. COUNT and TOP are continuously compared, so when a new value that is lower than the current COUNT is written to TOP, COUNT will wrap before a compare match.

When double buffering is used, the buffer can be written at any time and the counter will still maintain correct operation. The period register is always updated on the update condition, as shown in Figure 31-13. This prevents wraparound and the generation of odd waveforms.

Figure 31-13. Changing the Period Using Buffering

Property: PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
				PTYPE[2:0]		BK	PTOK	EN[1:0]
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bits 5:3 – PTYPE[2:0]: Type of the Pipe

These bits contains the pipe type.

PTYPE[2:0]	Description
0x0	Pipe is disabled
0x1	Pipe is enabled and configured as CONTROL
0x2	Pipe is enabled and configured as ISO
0x3	Pipe is enabled and configured as BULK
0x4	Pipe is enabled and configured as INTERRUPT
0x5	Pipe is enabled and configured as EXTENDED
0x06-0x7	Reserved

These bits are cleared upon sending a USB reset.

Bit 2 – BK: Pipe Bank

This bit selects the number of banks for the pipe.

For control endpoints writing a zero to this bit is required as only Bank0 is used for Setup/In/Out transactions.

This bit is cleared when a USB reset is sent.

BK <mark>(1)</mark>	Description	
0x0	Single-bank endpoint	
0x1	Dual-bank endpoint	

1. Bank field is ignored when PTYPE is configured as EXTENDED.

Value	Description
0	A single bank is used for the pipe.
1	A dual bank is used for the pipe.

Bits 1:0 – PTOKEN[1:0]: Pipe Token

These bits contains the pipe token.

PTOKEN[1:0] 1)	Description	
0x0	SETUP(2)	
0x1	IN	

Writing this bit to zero will have no effect.

Value	Description
0	No flush action.
1	"Writing a '1' to this bit will flush the ADC pipeline. A flush will restart the ADC clock on the next peripheral clock edge, and all conversions in progress will be aborted and lost. This bit will be cleared after the ADC has been flushed.
	After the flush, the ADC will resume where it left off; i.e., if a conversion was pending, the ADC will start a new conversion.

33.8.8 Input Control

Offset: 0x10

Reset: 0x0000000

Property: Write-Protected, Write-Synchronized

Bit	31	30	29	28	27	26	25	24
					GAIN[3:0]			
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	23	22	21	20	19	18	17	16
		INPUTOF	FSET[3:0]			INPUTS	CAN[3:0]	
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
					MUXNEG[4:0]			
Access			•	R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				MUXPOS[4:0]				
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bits 27:24 – GAIN[3:0]: Gain Factor Selection

These bits set the gain factor of the ADC gain stage.

GAIN[3:0]	Name	Description
0x0	1X	1x
0x1	2X	2x
0x2	4X	4x
0x3	8X	8x
0x4	16X	16x

Bit 19 – HYST: Hysteresis Enable

This bit indicates the hysteresis mode of comparator n. Hysteresis is available only for continuous mode (COMPCTRLn. SINGLE=0). COMPCTRLn.HYST can be written only while COMPCTRLn.ENABLE is zero.

This bit is not synchronized.

These bits are not synchronized.

Value	Name
0	Hysteresis is disabled.
1	Hysteresis is enabled.

Bits 17:16 – OUT[1:0]: Output

These bits configure the output selection for comparator n. COMPCTRLn.OUT can be written only while COMPCTRLn.ENABLE is zero.

These bits are not synchronized.

Value	Name	Description
0x0	OFF	The output of COMPn is not routed to the COMPn I/O port
0x1	ASYNC	The asynchronous output of COMPn is routed to the COMPn I/O port
0x2	SYNC	The synchronous output (including filtering) of COMPn is routed to the COMPn I/O port
0x3	N/A	Reserved

Bit 15 – SWAP: Swap Inputs and Invert

This bit swaps the positive and negative inputs to COMPn and inverts the output. This function can be used for offset cancellation. COMPCTRLn.SWAP can be written only while COMPCTRLn.ENABLE is zero.

These bits are not synchronized.

Value	Description
0	The output of MUXPOS connects to the positive input, and the output of MUXNEG connects
	to the negative input.
1	The output of MUXNEG connects to the positive input, and the output of MUXPOS connects
	to the negative input.

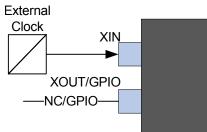
Bits 13:12 – MUXPOS[1:0]: Positive Input Mux Selection

These bits select which input will be connected to the positive input of comparator n. COMPCTRLn.MUXPOS can be written only while COMPCTRLn.ENABLE is zero.

These bits are not synchronized.

Value	Name	Description
0x0	PIN0	I/O pin 0
0x1	PIN1	I/O pin 1
0x2	PIN2	I/O pin 2
0x3	PIN3	I/O pin 3

Bits 10:8 – MUXNEG[2:0]: Negative Input Mux Selection


These bits select which input will be connected to the negative input of comparator n. COMPCTRLn.MUXNEG can only be written while COMPCTRLn.ENABLE is zero.

39.5 Clocks and Crystal Oscillators

The SAM D21 can be run from internal or external clock sources, or a mix of internal and external sources. An example of usage will be to use the internal 8MHz oscillator as source for the system clock, and an external 32.768kHz watch crystal as clock source for the Real-Time counter (RTC).

39.5.1 External Clock Source

Figure 39-5. External Clock Source Example Schematic

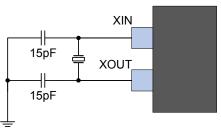


Table 39-4. External Clock Source Connections

Signal Name	Recommended Pin Connection	Description
XIN	XIN is used as input for an external clock signal	Input for inverting oscillator pin
XOUT/GPIO	Can be left unconnected or used as normal GPIO	

39.5.2 Crystal Oscillator

Figure 39-6. Crystal Oscillator Example Schematic

The crystal should be located as close to the device as possible. Long signal lines may cause too high load to operate the crystal, and cause crosstalk to other parts of the system.

Table 39-5. Crystal Oscillator Checklist

Signal Name	Recommended Pin Connection	Description
XIN	Load capacitor 15pF ⁽¹⁾⁽²⁾	External crystal between 0.4 to 30MHz
XOUT	Load capacitor 15pF ⁽¹⁾⁽²⁾	

- 1. These values are given only as typical example.
- 2. Decoupling capacitor should be placed close to the device for each supply pin pair in the signal group.

39.5.3 External Real Time Oscillator

The low frequency crystal oscillator is optimized for use with a 32.768kHz watch crystal. When selecting crystals, load capacitance and crystal's Equivalent Series Resistance (ESR) must be taken into consideration. Both values are specified by the crystal vendor.

are already active, the channel number of the new channel enabled must be greater than the other channel numbers.
2 – If data is written to CRCDATAIN in two consecutive instructions, the CRC computation may be incorrect. Errata reference: 13507 Fix/Workaround:
Add a NOP instruction between each write to CRCDATAIN register.
 1 – When the EIC is configured to generate an interrupt on a low level or rising edge or both edges (CONFIGn.SENSEx) with the filter enabled (CONFIGn.FILTENx), a spurious flag might appear for the dedicated pin on the INTFLAG.EXTINT[x] register as soon as the EIC is enabled using CTRLA ENABLE bit. Errata reference: 15341 Fix/Workaround: Clear the INTFLAG bit once the EIC enabled and before enabling the interrupts.
1 – Default value of MANW in NVM.CTRLB is 0. This can lead to spurious writes to the NVM if a data write is done through a pointer with a wrong address corresponding to NVM area. Errata reference: 13134 Fix/Workaround: Set MANW in the NVM.CTRLB to 1 at startup
 1 – I2S RX serializer in LSBIT mode (SERCTRL.BITREV set) only works when the slot size is 32 bits. Errata reference: 13320 Fix/Workaround: In SERCTRL.SERMODE RX, SERCTRL.BITREV LSBIT must be used with CLKCTRL.SLOTSIZE 32.
1 – In USART autobaud mode, missing stop bits are not recognized as inconsistent sync (ISF) or framing (FERR) errors. Errata reference: 13852 Fix/Workaround: None
1 – FCTRLX.CAPTURE[CAPTMARK] does not work as described in the datasheet. CAPTMARK cannot be used to identify captured values triggered by fault inputs source A or B on the same channel. Errata reference: 13316 Fix/Workaround: Use two different channels to timestamp FaultA and FaultB.

Abbreviation	Description
ULP	Ultra-low power
USART	Universal Synchronous and Asynchronous Serial Receiver and Transmitter
USB	Universal Serial Bus
V _{DD}	Common voltage to be applied to VDDIO, VDDIN and VDDANA
V _{DDIN}	Digital supply voltage
V _{DDIO}	Digital supply voltage
V _{DDANA}	Analog supply voltage
VREF	Voltage reference
WDT	Watchdog Timer
XOSC	Crystal Oscillator

43. Datasheet Revision History

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

43.1 Rev. A – 01/2017

General	 Template: Updated from Atmel to Microchip template. Document number: Changed from the Atmel 42181 to Microchip xxxxx. Document revision letter reset to A. ISBN number added.
Electrical Characteristics	 Die Revision F final characterization added. Power Consumption: Added Standby typical numbers for Device Variant C / Die Revision F. Fractional Digital Phase Locked Loop (FDPLL96M) Characteristics: Added characterization data for Device Variant C / Die Revision F.
Errata	 New errata added: B Device Variant A: Errata reverence 15625, 15683, 15753 added. Device Variant B: Errata reverence 15625, 15683, 15753 added. Device Variant C: Errata reverence 15625, 15683, 15753 added.
Appendix A. Electrical Characteristics at 125°C	 Die Revision F final characterization is preliminary. Power Consumption: Added Standby typical numbers for Device Variant C / Die Revision F. Fractional Digital Phase Locked Loop (FDPLL96M) Characteristics: Added characterization data for Device Variant C / Die Revision F.

43.2 Rev. O – 12/2016

General	Introduced Device Variant C.
Electrical Characteristics	 Die Revision F characterization is preliminary. Power Consumption: Added Standby typical numbers for Device Variant C / Die Revision F. Fractional Digital Phase Locked Loop (FDPLL96M) Characteristics: Added characterization data for Device Variant C / Die Revision F.
Appendix A. Electrical Characteristics at 125°C	 Die Revision F characterization is preliminary. Power Consumption: Added Standby typical numbers for Device Variant C / Die Revision F. Fractional Digital Phase Locked Loop (FDPLL96M) Characteristics: Added characterization data for Device Variant C / Die Revision F.