Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Not For New Designs | | | * | | Core Processor | HC08 | | Core Size | 8-Bit | | Speed | 8MHz | | Connectivity | CANbus, LINbus, SCI, SPI | | Peripherals | LVD, POR, PWM | | Number of I/O | 21 | | Program Memory Size | 8KB (8K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 1K x 8 | | Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V | | Data Converters | A/D 8x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 32-LQFP | | Supplier Device Package | 32-LQFP (7x7) | | Purchase URL | https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68908gz8cfje | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong | - | | | | <u> </u> | |----|---|---|----|----------| | ıа | n | А | OΤ | Contents | | 6.7
6.7.1
6.7.2 | Low-Power Modes | . 85 | |-----------------------|---|------| | 6.8 | COP Module During Break Mode | | | | · · · · · · · · · · · · · · · · · · · | | | | Chapter 7 Central Processor Unit (CPU) | | | 7.1 | Introduction | 97 | | 7.1
7.2 | Features | | | 7.2
7.3 | CPU Registers | | | 7.3
7.3.1 | Accumulator | | | 7.3.1 | Index Register | | | 7.3.3 | Stack Pointer | | | 7.3.4 | Program Counter | | | 7.3.5 | Condition Code Register | | | 7.4 | Arithmetic/Logic Unit (ALU) | | | 7.5 | Low-Power Modes | | | 7.5.1 | Wait Mode | | | 7.5.2 | Stop Mode | . 91 | | 7.6 | CPU During Break Interrupts | . 91 | | 7.7 | Instruction Set Summary | . 92 | | 7.8 | Opcode Map | . 97 | | | Chamtay 0 | | | | Chapter 8 External Interrupt (IRQ) | | | 8.1 | Introduction | . 99 | | 8.2 | Features | . 99 | | 8.3 | Functional Description | . 99 | | 8.4 | IRQ Pin | 101 | | 8.5 | IRQ Module During Break Interrupts | 101 | | 8.6 | IRQ Status and Control Register | 102 | | | Chapter 9 | | | | Keyboard Interrupt Module (KBI) | | | 9.1 | Introduction | 103 | | 9.2 | Features | | | 9.3 | Functional Description | | | 9.4 | Keyboard Initialization | | | 9.5 | Low-Power Modes | | | 9.5.1 | Wait Mode | | | 9.5.2 | | 107 | | 9.6 | Keyboard Module During Break Interrupts | | | 9.7 | I/O Registers | | | 9.7.1 | Keyboard Status and Control Register | | | 9.7.2 | Keyboard Interrupt Enable Register | | #### **Table of Contents** | 20.2.3 | Low-Power Modes | | |---------|---|-----| | 20.3 | Monitor ROM (MON) | | | 20.3.1 | Functional Description | | | 20.3.1. | | | | 20.3.1. | | | | 20.3.1. | | | | 20.3.1. | | | | 20.3.1. | | | | 20.3.1. | | | | 20.3.1. | | | | 20.3.2 | Security | 285 | | | Chapter 21 | | | 04.4 | Electrical Specifications | | | 21.1 | Introduction | | | 21.2 | Absolute Maximum Ratings | | | 21.3 | Functional Operating Range | | | 21.4 | Thermal Characteristics | 288 | | 21.5 | 5-Vdc Electrical Characteristics | 289 | | 21.6 | 3.3-Vdc Electrical Characteristics | 291 | | 21.7 | 5.0-Volt Control Timing | 293 | | 21.8 | 3.3-Volt Control Timing | 293 | | 21.9 | Clock Generation Module Characteristics | 294 | | 21.9.1 | CGM Component Specifications | | | 21.9.2 | CGM Electrical Specifications | | | 21.10 | 5.0-Volt ADC Characteristics | | | 21.11 | 3.3-Volt ADC Characteristics | | | 21.12 | 5.0-Volt SPI Characteristics | | | 21.13 | 3.3-Volt SPI Characteristics | | | _ | Timer Interface Module Characteristics | | | | Memory Characteristics | | | 21.13 | · | 302 | | | Chapter 22 Ordering Information and Mechanical Specifications | | | 22.1 | • | 202 | | | Introduction | | | 22.2 | MC Order Numbers | | | 22.3 | Package Dimensions | 303 | | | Appendix A | | | | MC68HC908GZ8 | _ | | A.1 | Introduction | | | A.2 | Block Diagram | | | A.3 | Memory | | | A.4 | Ordering Information | 314 | is used when compatibility with 8-bit ADC designs are required. No interlocking between ADRH and ADRL is present. #### NOTE Quantization error is affected when only the most significant eight bits are used as a result. See Figure 3-3. Figure 3-3. Bit Truncation Mode Error # 3.4 Monotonicity The conversion process is monotonic and has no missing codes. # 3.5 Interrupts When the AIEN bit is set, the ADC module is capable of generating CPU interrupts after each ADC conversion. A CPU interrupt is generated if the COCO bit is at logic 0. The COCO bit is not used as a conversion complete flag when interrupts are enabled. #### 3.6 Low-Power Modes The WAIT and STOP instruction can put the MCU in low power-consumption standby modes. #### **Configuration Register (CONFIG)** #### **COPD** — **COP** Disable Bit COPD disables the COP module. See Chapter 6 Computer Operating Properly (COP) Module. - 1 = COP module disabled - 0 = COP module enabled #### **Central Processor Unit (CPU)** Figure 7-1. CPU Registers #### 7.3.1 Accumulator The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and the results of arithmetic/logic operations. Figure 7-2. Accumulator (A) ### 7.3.2 Index Register The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of the index register, and X is the lower byte. H:X is the concatenated 16-bit index register. In the indexed addressing modes, the CPU uses the contents of the index register to determine the conditional address of the operand. The index register can serve also as a temporary data storage location. Figure 7-3. Index Register (H:X) MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 # MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 | | ı | |---|-----| | • | ╮ | | (| D | | 7 | ñ | | • | 2 | | (| n | | (| . つ | | (| וו | | : | = | | (| D | | | _ | | 1 | • | | • | ₹. | | (| U. | | - | 3 | | | _ | | 7 | ≂ | | (| ر. | | (| כ | | • | Ē | | 7 | ⋜ | | , | _ | | ç | = | | (| 7 | | 7 | 4 | | Ċ | 7 | | 3 | ≼ | | | • | | | | | | | | | | | | | | | | | | • | | | |------------|----------|----------|--------|-----|-----|---------|-----|-----|----|-----|-----|--| | | Bit Mani | pulation | Branch | | | Control | | | | | | | | | DIR | DIR | REL | DIR | INH | INH | IX1 | SP1 | IX | INH | INH | | | MSB
.SB | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 9E6 | 7 | 8 | 9 | | | | DIL Mani | | branch | • | | | Control Register/Memory | | | | | | | | | | | | | |------------|----------------------|---------------------|-------------------|--------------------|--------------------|---------------------|-------------------------|--------------------|--------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------| | | DIR | DIR | REL | DIR | INH | INH | IX1 | SP1 | IX | INH | INH | IMM | DIR | EXT | IX2 | SP2 | IX1 | SP1 | IX | | MSB
LSB | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 9E6 | 7 | 8 | 9 | Α | В | С | D | 9ED | E | 9EE | F | | 0 | 5
BRSET0
3 DIR | 4
BSET0
2 DIR | 3
BRA
2 REL | 4
NEG
2 DIR | 1
NEGA
1 INH | 1
NEGX
1 INH | 4
NEG
2 IX1 | 5
NEG
3 SP1 | 3
NEG
1 IX | 7
RTI
1 INH | 3
BGE
2 REL | SUB
2 IMM | 3
SUB
2 DIR | SUB
3 EXT | 4
SUB
3 IX2 | 5
SUB
4 SP2 | 3
SUB
2 IX1 | 4
SUB
3 SP1 | SUB
1 IX | | 1 | 5
BRCLR0
3 DIR | 4
BCLR0
2 DIR | 3
BRN
2 REL | 5
CBEQ
3 DIR | 3 IMM | _ | 5
CBEQ
3 IX1+ | 6
CBEQ
4 SP1 | | 4
RTS
1 INH | | | | 4
CMP
3 EXT | 4
CMP
3 IX2 | 5
CMP
4 SP2 | | 4
CMP
3 SP1 | 2
CMP
1 IX | | 2 | 5
BRSET1
3 DIR | | 3
BHI
2 REL | | 5
MUL
1 INH | 7
DIV
1 INH | 3
NSA
1 INH | | 2
DAA
1 INH | | | SBC
2 IMM | | | | 5
SBC
4 SP2 | | 4
SBC
3 SP1 | SBC
1 IX | | 3 | | 4
BCLR1
2 DIR | | COM
2 DIR | | COMX
1 INH | 4
COM
2 IX1 | | COM
1 IX | 9
SWI
1 INH | | | 3
CPX
2 DIR | | | | 3
CPX
2 IX1 | 4
CPX
3 SP1 | CPX
1 IX | | 4 | 5
BRSET2
3 DIR | | | 4
LSR
2 DIR | | | 4
LSR
2 IX1 | 5
LSR
3 SP1 | | 2
TAP
1 INH | 2
TXS
1 INH | | | | | 5
AND
4 SP2 | | 4
AND
3 SP1 | 2
AND
1 IX | | 5 | 5
BRCLR2
3 DIR | | | 4
STHX
2 DIR | 3
LDHX
3 IMM | 4
LDHX
2 DIR | 3
CPHX
3 IMM | | 4
CPHX
2 DIR | 1
TPA
1 INH | 2
TSX
1 INH | | | 4
BIT
3 EXT | | 5
BIT
4 SP2 | | 4
BIT
3 SP1 | BIT
1 IX | | 6 | BRSET3
3 DIR | BSET3
2 DIR | | 4
ROR
2 DIR | 1
RORA
1 INH | 1
RORX
1 INH | 4
ROR
2 IX1 | 5
ROR
3 SP1 | 3
ROR
1 IX | 2
PULA
1 INH | | 2
LDA
2 IMM | 3
LDA
2 DIR | 4
LDA
3 EXT | 4
LDA
3 IX2 | 5
LDA
4 SP2 | 3
LDA
2 IX1 | 4
LDA
3 SP1 | 2
LDA
1 IX | | 7 | 5
BRCLR3
3 DIR | 4
BCLR3
2 DIR | | 4
ASR
2 DIR | 1
ASRA
1 INH | 1
ASRX
1 INH | 4
ASR
2 IX1 | 5
ASR
3 SP1 | 3
ASR
1 IX | 2
PSHA
1 INH | 1
TAX
1 INH | AIS
2 IMM | | | _ | 5
STA
4 SP2 | | 4
STA
3 SP1 | 2
STA
1 IX | | 8 | 5
BRSET4
3 DIR | 4
BSET4
2 DIR | | 4
LSL
2 DIR | 1
LSLA
1 INH | 1
LSLX
1 INH | 4
LSL
2 IX1 | 5
LSL
3 SP1 | 3
LSL
1 IX | 2
PULX
1 INH | 1
CLC
1 INH | EOR
2 IMM | 3
EOR
2 DIR | 4
EOR
3 EXT | 4
EOR
3 IX2 | 5
EOR
4 SP2 | 3
EOR
2 IX1 | 4
EOR
3 SP1 | EOR
1 IX | | 9 | 5
BRCLR4
3 DIR | 4
BCLR4
2 DIR | | 4
ROL
2 DIR | 1
ROLA
1 INH | 1
ROLX
1 INH | 4
ROL
2 IX1 | 5
ROL
3 SP1 | 3
ROL
1 IX | 2
PSHX
1 INH | SEC
1 INH | | 3
ADC
2 DIR | 4
ADC
3 EXT | 4
ADC
3 IX2 | 5
ADC
4 SP2 | 3
ADC
2 IX1 | 4
ADC
3 SP1 | ADC
1 IX | | Α | 5
BRSET5
3 DIR | 4
BSET5
2 DIR | | 4
DEC
2 DIR | | | 4
DEC
2 IX1 | 5
DEC
3 SP1 | 3
DEC
1 IX | 2
PULH
1 INH | | 2
ORA
2 IMM | 3
ORA
2 DIR | 4
ORA
3 EXT | 4
ORA
3 IX2 | 5
ORA
4 SP2 | 3
ORA
2 IX1 | 4
ORA
3 SP1 | ORA
1 IX | | В | 5
BRCLR5
3 DIR | | 3
BMI
2 REL | 5
DBNZ
3 DIR | | 3
DBNZX
2 INH | 5
DBNZ
3 IX1 | 6
DBNZ
4 SP1 | 4
DBNZ
2 IX | 2
PSHH
1 INH | 2
SEI
1 INH | 2
ADD
2 IMM | | 4
ADD
3 EXT | | 5
ADD
4 SP2 | | 4
ADD
3 SP1 | 2
ADD
1 IX | | С | | | | 4
INC
2 DIR | 1
INCA
1 INH | INCX
1 INH | 4
INC
2 IX1 | 5
INC
3 SP1 | INC
1 IX | 1
CLRH
1 INH | 1
RSP
1 INH | | 2
JMP
2 DIR | 3
JMP
3 EXT | | | 3
JMP
2 IX1 | | JMP
1 IX | | D | 5
BRCLR6
3 DIR | | | 3
TST
2 DIR | | | 3
TST
2 IX1 | 4
TST
3 SP1 | 2
TST
1 IX | | 1
NOP
1 INH | | 4
JSR
2 DIR | | | | 5
JSR
2 IX1 | | JSR
1 IX | | E | 5
BRSET7
3 DIR | 4
BSET7
2 DIR | | | 5
MOV
3 DD | 4
MOV
2 DIX+ | 4
MOV
3 IMD | | 4
MOV
2 IX+D | 1
STOP
1 INH | * | 2
LDX
2 IMM | | 4
LDX
3 EXT | 4
LDX
3 IX2 | 5
LDX
4 SP2 | | 4
LDX
3 SP1 | 2
LDX
1 IX | | F | 5
BRCLR7
3 DIR | 4
BCLR7
2 DIR | 3
BIH
2 REL | 3
CLR
2 DIR | 1
CLRA
1 INH | 1
CLRX
1 INH | 3
CLR
2 IX1 | 4
CLR
3 SP1 | 2
CLR
1 IX | 1
WAIT
1 INH | 1
TXA
1 INH | AIX
2 IMM | 3
STX
2 DIR | STX
3 EXT | STX
3 IX2 | 5
STX
4 SP2 | 3
STX
2 IX1 | 4
STX
3 SP1 | STX
1 IX | Table 7-2. Opcode Map INH Inherent IMM Immediate REL Relative IX Indexed, No Offset DIR Direct EXT Extended IX1 Indexed, 8-Bit Offset IX2 Indexed, 16-Bit Offset DD Direct-Direct IMD Immediate-Direct IX+D Indexed-Direct DIX+ Direct-Indexed *Pre-byte for stack pointer indexed instructions SP1 Stack Pointer, 8-Bit Offset SP2 Stack Pointer, 16-Bit Offset IX+ Indexed, No Offset with Post Increment IX1+ Indexed, 1-Byte Offset with Post Increment Low Byte of Opcode in Hexadecimal | MSB
LSB | 0 | High Byte of Opcode in Hexadecima | |------------|----------------------|--| | 0 | 5
BRSET0
3 DIR | Cycles
Opcode Mnemonic
Number of Bytes / Addressing Mode | Register/Memory # 10.12 Timer Interface Module (TIM1 and TIM2) #### 10.12.1 Wait Mode The timer interface modules (TIM) remain active in wait mode. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait mode. If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction. #### 10.12.2 Stop Mode The TIM is inactive in stop mode. The STOP instruction does not affect register states or the state of the TIM counter. TIM operation resumes when the MCU exits stop mode after an external interrupt. ## 10.13 Timebase Module (TBM) #### 10.13.1 Wait Mode The timebase module (TBM) remains active after execution of the WAIT instruction. In wait mode, the timebase register is not accessible by the CPU. If the timebase functions are not required during wait mode, reduce the power consumption by stopping the timebase before enabling the WAIT instruction. #### 10.13.2 Stop Mode The timebase module may remain active after execution of the STOP instruction if the oscillator has been enabled to operate during stop mode through the OSCENINSTOP bit in the CONFIG2 register. The timebase module can be used in this mode to generate a periodic wakeup from stop mode. If the oscillator has not been enabled to operate in stop mode, the timebase module will not be active during stop mode. In stop mode, the timebase register is not accessible by the CPU. If the timebase functions are not required during stop mode, reduce the power consumption by stopping the timebase before enabling the STOP instruction. #### **10.14 MSCAN** #### 10.14.1 Wait Mode The MSCAN module remains active after execution of the WAIT instruction. In wait mode, the MSCAN08 registers are not accessible by the CPU. If the MSCAN08 functions are not required during wait mode, reduce the power consumption by disabling the MSCAN08 module before enabling the WAIT instruction. #### 10.14.2 Stop Mode The MSCAN08 module is inactive in stop mode. The STOP instruction does not affect MSCAN08 register states. Because the internal clock is inactive during stop mode, entering stop mode during an MSCAN08 transmission or reception results in invalid data. MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 #### **MSCAN08 Controller (MSCAN08)** - 1. Ports are software configurable with pullup device if input port. - 2. Higher current drive port pins - 3. Pin contains integrated pullup device Figure 12-1. Block Diagram Highlighting MSCAN08 Block and Pins #### 12.3 External Pins The MSCAN08 uses two external pins, one input (CAN_{RX}) and one output (CAN_{TX}). The CAN_{TX} output pin represents the logic level on the CAN: 0 is for a dominant state, and 1 is for a recessive state. A typical CAN system with MSCAN08 is shown in Figure 12-2. MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 # Chapter 13 Input/Output (I/O) Ports #### 13.1 Introduction Bidirectional input-output (I/O) pins form five parallel ports. All I/O pins are programmable as inputs or outputs. All individual bits within port A, port C, and port D are software configurable with pullup devices if configured as input port bits. The pullup devices are automatically and dynamically disabled when a port bit is switched to output mode. #### 13.2 Unused Pin Termination Input pins and I/O port pins that are not used in the application must be terminated. This prevents excess current caused by floating inputs, and enhances immunity during noise or transient events. Termination methods include: - 1. Configuring unused pins as outputs and driving high or low; - 1. Configuring unused pins as inputs and enabling internal pull-ups; - 1. Configuring unused pins as inputs and using external pull-up or pull-down resistors. Never connect unused pins directly to V_{DD} or V_{SS}. Since some general-purpose I/O pins are not available on all packages, these pins must be terminated as well. Either method 1 or 2 above are appropriate. Figure 13-1. I/O Port Register Summary MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 #### Input/Output (I/O) Ports Figure 13-18. Data Direction Register E (DDRE) #### DDRE5-DDRE0 — Data Direction Register E Bits These read/write bits control port E data direction. Reset clears DDRE5–DDRE0, configuring all port E pins as inputs. - 1 = Corresponding port E pin configured as output - 0 = Corresponding port E pin configured as input #### NOTE Avoid glitches on port E pins by writing to the port E data register before changing data direction register E bits from 0 to 1. Figure 13-19 shows the port E I/O logic. Figure 13-19. Port E I/O Circuit When bit DDREx is a logic 1, reading address \$0008 reads the PTEx data latch. When bit DDREx is a logic 0, reading address \$0008 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 13-6 summarizes the operation of the port E pins. **Table 13-6. Port E Pin Functions** | DDRE | PTE | I/O Pin | Accesses to DDRE | Accesses to PTE | | | | |------|------------------|----------------------------|------------------|-----------------|--------------------------|--|--| | Bit | Bit | Mode | Read/Write | Read | Write | | | | 0 | X ⁽¹⁾ | Input, Hi-Z ⁽²⁾ | DDRE5-DDRE0 | Pin | PTE5-PTE0 ⁽³⁾ | | | | 1 | Х | Output | DDRE5-DDRE0 | PTE5-PTE0 | PTE5-PTE0 | | | - 1. X = Don't care - 2. Hi-Z = High impedance - 3. Writing affects data register, but does not affect input. MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 #### **Resets and Interrupts** #### 14.3.2.11 Timebase Module (TBM) The timebase module can interrupt the CPU on a regular basis with a rate defined by TBR2–TBR0. When the timebase counter chain rolls over, the TBIF flag is set. If the TBIE bit is set, enabling the timebase interrupt, the counter chain overflow will generate a CPU interrupt request. Interrupts must be acknowledged by writing a logic 1 to the TACK bit. #### 14.3.2.12 MSCAN #### MSCAN08 interrupt sources: - MSCAN08 transmitter empty bits (TXE0-TXE2) The TXEx bit is set when the corresponding MSCAN08 data buffer is empty. The MSCAN08 transmit interrupt enable bits, TXEIE0-TXEIE2, enables transmitter CPU interrupt requests. TXEx is in MSCAN08 transmitter flag register. TXEIEx is in MSCAN08 transmitter control register. - MSCAN08 receiver full bit (RXF) The RXF bit is set when the a MSCAN08 message has been successfully received and loaded into the foreground receive buffer. The MSCAN08 receive interrupt enable bit, RXFIE, enables receiver CPU interrupt requests. RXF is in MSCAN08 receiver flag register. RXFIE is in MSCAN08 receiver interrupt enable register. - MSCAN08 wakeup bit (WUPIF) WUPIF is set when activity on the CAN bus occurred during the MSCAN08 internal sleep mode. The wakeup interrupt enable bit, WUPIE, enables MSCAN08 wakeup CPU interrupt requests. WUPIF is in MSCAN08 receiver flag register. WUPIE is in MSCAN08 receiver interrupt enable register. - Overrun bit (OVRIF) OVRIF is set when both the foreground and the background receive message buffers are filled with correctly received messages and a further message is being received from the bus. The overrun interrupt enable bit, OVRIE, enables OVRIF to generate MSCAN08 error CPU interrupt requests. OVRIF is in MSCAN08 receiver flag register. OVRIE is in MSCAN08 receiver interrupt enable register. - Receiver Warning bit (RWRNIF) RWRNIF is set when the receive error counter has reached the CPU warning limit of 96. The receiver warning interrupt enable bit, RWRNIE, enables RWRNIF to generate MSCAN08 error CPU interrupt requests. RWRNIF is in MSCAN08 receiver flag register. RWRNIE is in MSCAN08 receiver interrupt enable register. - Transmitter Warning bit (TWRNIF) TWRNIF is set when the transmit error counter has reached the CPU warning limit of 96. The transmitter warning interrupt enable bit, TWRNIF, enables TWRNIF to generate MSCAN08 error CPU interrupt requests. TWRNIF is in MSCAN08 receiver flag register. TWRNIE is in MSCAN08 receiver interrupt enable register. - Receiver Error Passive bit (RERRIF) RERRIF is set when the receive error counter has exceeded the error passive limit of 127 and the MSCAN08 has gone to error passive state. The receiver error passive interrupt enable bit, RERRIE, enables RERRIF to generate MSCAN08 error CPU interrupt requests. RERRIF is in MSCAN08 receiver flag register. RERRIE is in MSCAN08 receiver interrupt enable register. - Transmitter Error Passive bit (TERRIF) TERRIF is set when the transmit error counter has exceeded the error passive limit of 127 and the MSCAN08 has gone to error passive state. The transmit error passive interrupt enable bit, TERRIE, enables TERRIF to generate MSCAN08 error CPU interrupt requests. TERRIF is in MSCAN08 receiver flag register. TERRIE is in MSCAN08 receiver interrupt enable register. #### TXINV — Transmit Inversion Bit This read/write bit reverses the polarity of transmitted data. Reset clears the TXINV bit. - 1 = Transmitter output inverted - 0 = Transmitter output not inverted #### NOTE Setting the TXINV bit inverts all transmitted values including idle, break, start, and stop bits. #### M — Mode (Character Length) Bit This read/write bit determines whether ESCI characters are eight or nine bits long (See Table 15-5). The ninth bit can serve as a receiver wakeup signal or as a parity bit. Reset clears the M bit. - 1 = 9-bit ESCI characters - 0 = 8-bit ESCI characters Table 15-5. Character Format Selection | Co | ontrol Bits | Character Format | | | | | | | | |----|-------------|------------------|-----------|--------|-----------|------------------|--|--|--| | М | PEN:PTY | Start Bits | Data Bits | Parity | Stop Bits | Character Length | | | | | 0 | 0 X | 1 | 8 | None | 1 | 10 bits | | | | | 1 | 0 X | 1 | 9 | None | 1 | 11 bits | | | | | 0 | 1 0 | 1 | 7 | Even | 1 | 10 bits | | | | | 0 | 1 1 | 1 | 7 | Odd | 1 | 10 bits | | | | | 1 | 1 0 | 1 | 8 | Even | 1 | 11 bits | | | | | 1 | 1 1 | 1 | 8 | Odd | 1 | 11 bits | | | | #### **WAKE** — Wakeup Condition Bit This read/write bit determines which condition wakes up the ESCI: a logic 1 (address mark) in the MSB position of a received character or an idle condition on the RxD pin. Reset clears the WAKE bit. - 1 = Address mark wakeup - 0 = Idle line wakeup #### ILTY — Idle Line Type Bit This read/write bit determines when the ESCI starts counting logic 1s as idle character bits. The counting begins either after the start bit or after the stop bit. If the count begins after the start bit, then a string of logic 1s preceding the stop bit may cause false recognition of an idle character. Beginning the count after the stop bit avoids false idle character recognition, but requires properly synchronized transmissions. Reset clears the ILTY bit. - 1 = Idle character bit count begins after stop bit - 0 = Idle character bit count begins after start bit #### PEN — Parity Enable Bit This read/write bit enables the ESCI parity function (see Table 15-5). When enabled, the parity function inserts a parity bit in the MSB position (see Table 15-3). Reset clears the PEN bit. - 1 = Parity function enabled - 0 = Parity function disabled #### ILIE — Idle Line Interrupt Enable Bit This read/write bit enables the IDLE bit to generate ESCI receiver CPU interrupt requests. Reset clears the ILIE bit. - 1 = IDLE enabled to generate CPU interrupt requests - 0 = IDLE not enabled to generate CPU interrupt requests #### TE — Transmitter Enable Bit Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 logic 1s from the transmit shift register to the TxD pin. If software clears the TE bit, the transmitter completes any transmission in progress before the TxD returns to the idle condition (logic 1). Clearing and then setting TE during a transmission queues an idle character to be sent after the character currently being transmitted. Reset clears the TE bit. - 1 = Transmitter enabled - 0 = Transmitter disabled #### NOTE Writing to the TE bit is not allowed when the enable ESCI bit (ENSCI) is clear. ENSCI is in ESCI control register 1. #### RE — Receiver Enable Bit Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not affect receiver interrupt flag bits. Reset clears the RE bit. - 1 = Receiver enabled - 0 = Receiver disabled #### **NOTE** Writing to the RE bit is not allowed when the enable ESCI bit (ENSCI) is clear. ENSCI is in ESCI control register 1. #### **RWU** — Receiver Wakeup Bit This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled. The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out of the standby state and clears the RWU bit. Reset clears the RWU bit. - 1 = Standby state - 0 = Normal operation #### SBK — Send Break Bit Setting and then clearing this read/write bit transmits a break character followed by a logic 1. The logic 1 after the break character guarantees recognition of a valid start bit. If SBK remains set, the transmitter continuously transmits break characters with no logic 1s between them. Reset clears the SBK bit. - 1 = Transmit break characters - 0 = No break characters being transmitted #### NOTE Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling SBK before the preamble begins causes the ESCI to send a break character instead of a preamble. #### 16.5.2 Reset All reset sources always have equal and highest priority and cannot be arbitrated. #### 16.5.3 Break Interrupts The break module can stop normal program flow at a software-programmable break point by asserting its break interrupt output (see Chapter 19 Timer Interface Module (TIM)). The SIM puts the CPU into the break state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to see how each module is affected by the break state. #### 16.5.4 Status Flag Protection in Break Mode The SIM controls whether status flags contained in other modules can be cleared during break mode. The user can select whether flags are protected from being cleared by properly initializing the break clear flag enable bit (BCFE) in the SIM break flag control register (SBFCR). Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This protection allows registers to be freely read and written during break mode without losing status flag information. Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains cleared even when break mode is exited. Status flags with a 2-step clearing mechanism — for example, a read of one register followed by the read or write of another — are protected, even when the first step is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step will clear the flag as normal. #### 16.6 Low-Power Modes Executing the WAIT or STOP instruction puts the MCU in a low power- consumption mode for standby situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is described in the following subsections. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing interrupts to occur. #### 16.6.1 Wait Mode In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 16-15 shows the timing for wait mode entry. A module that is active during wait mode can wakeup the CPU with an interrupt if the interrupt is enabled. Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred. In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode. Wait mode also can be exited by a reset (or break in emulation mode). A break interrupt during wait mode sets the SIM break stop/wait bit, SBSW, in the SIM break status register (SBSR). If the COP disable bit, COPD, in the mask option register is logic 0, then the computer operating properly module (COP) is enabled and remains active in wait mode. MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 Freescale Semiconductor 225 #### ILAD — Illegal Address Reset Bit (opcode fetches only) - 1 = Last reset caused by an opcode fetch from an illegal address - 0 = POR or read of SRSR #### **MODRST** — Monitor Mode Entry Module Reset Bit - 1 = Last reset caused by monitor mode entry when vector locations \$FFFE and \$FFFF are \$FF after POR while $\overline{IRQ} = V_{DD}$ - 0 = POR or read of SRSR #### LVI — Low-Voltage Inhibit Reset Bit - 1 = Last reset caused by the LVI circuit - 0 = POR or read of SRSR #### 16.7.3 Break Flag Control Register The break flag control register (BFCR) contains a bit that enables software to clear status bits while the MCU is in a break state. Figure 16-22. Break Flag Control Register (BFCR) #### **BCFE** — Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. - 1 = Status bits clearable during break - 0 = Status bits not clearable during break System Integration Module (SIM) #### 19.2 Features Features of the TIM include: - Two input capture/output compare channels: - Rising-edge, falling-edge, or any-edge input capture trigger - Set, clear, or toggle output compare action - Buffered and unbuffered pulse-width-modulation (PWM) signal generation - Programmable TIM clock input with 7-frequency internal bus clock prescaler selection - Free-running or modulo up-count operation - Toggle any channel pin on overflow - TIM counter stop and reset bits #### 19.3 Pin Name Conventions The text that follows describes both timers, TIM1 and TIM2. The TIM input/output (I/O) pin names are T[1,2]CH0 (timer channel 0) and T[1,2]CH1 (timer channel 1), where "1" is used to indicate TIM1 and "2" is used to indicate TIM2. The two TIMs share four I/O pins with four port D I/O port pins. The full names of the TIM I/O pins are listed in Table 19-1. The generic pin names appear in the text that follows. **Table 19-1. Pin Name Conventions** | TIM Generic Pin Nan | nes: | T[1,2]CH0 | T[1,2]CH1 | | |---------------------|-----------------|------------|------------|--| | Full TIM Din Names: | TIM1 PTD4/T1CH0 | | PTD5/T1CH1 | | | Full TIM Pin Names: | TIM2 | PTD6/T2CH0 | PTD7/T2CH1 | | #### NOTE References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TCH0 may refer generically to T1CH0 and T2CH0, and TCH1 may refer to T1CH1 and T2CH1. # 19.4 Functional Description Figure 19-1 shows the structure of the TIM. The central component of the TIM is the 16-bit TIM counter that can operate as a free-running counter or a modulo up-counter. The TIM counter provides the timing reference for the input capture and output compare functions. The TIM counter modulo registers, TMODH:TMODL, control the modulo value of the TIM counter. Software can read the TIM counter value at any time without affecting the counting sequence. The two TIM channels (per timer) are programmable independently as input capture or output compare channels. If a channel is configured as input capture, then an internal pullup device may be enabled for that channel. See 13.6.3 Port D Input Pullup Enable Register. Figure 19-3 summarizes the timer registers. #### NOTE References to either timer 1 or timer 2 may be made in the following text by omitting the timer number. For example, TSC may generically refer to both T1SC and T2SC. MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 **Timer Interface Module (TIM)** #### 19.4.3 Output Compare With the output compare function, the TIM can generate a periodic pulse with a programmable polarity, duration, and frequency. When the counter reaches the value in the registers of an output compare channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU interrupt requests. #### 19.4.3.1 Unbuffered Output Compare Any output compare channel can generate unbuffered output compare pulses as described in 19.4.3 Output Compare. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output compare value may cause the compare to be missed. The TIM may pass the new value before it is written. Use the following methods to synchronize unbuffered changes in the output compare value on channel x: - When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value. - When changing to a larger output compare value, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current counter overflow period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same counter overflow period. #### 19.4.3.2 Buffered Output Compare Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors the buffered output compare function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin. #### NOTE In buffered output compare operation, do not write new output compare values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered output compares. #### Table 20-4. WRITE (Write Memory) Command #### Table 20-5. IREAD (Indexed Read) Command Table 20-6. IWRITE (Indexed Write) Command A sequence of IREAD or IWRITE commands can access a block of memory sequentially over the full 64-Kbyte memory map. MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 #### **Electrical Specifications** # 21.9 Clock Generation Module Characteristics # 21.9.1 CGM Component Specifications | Characteristic | Symbol | Min | Тур | Max | Unit | |-----------------------------------------|-------------------|-----|--------------------------|-----|------| | Crystal frequency | f _{XCLK} | 1 | 4 | 8 | MHz | | Crystal load capacitance ⁽¹⁾ | C _L | _ | _ | _ | pF | | Crystal fixed capacitance | C ₁ | _ | (2 x C _L) -5 | _ | pF | | Crystal tuning capacitance | C ₂ | _ | (2 x C _L) -5 | _ | pF | | Feedback bias resistor | R _B | 1 | 10 | 20 | MΩ | ^{1.} Consult crystal manufacturer's data. # 21.9.2 CGM Electrical Specifications | Characteristic | Symbol | Min | Тур | Max | Unit | |---------------------------------------------------------|-------------------|-----|-------------------------------------|-----|------| | Reference frequency (for PLL operation) | f _{RCLK} | 1 | 4 | 8 | MHz | | Range nominal multiplier | f _{NOM} | _ | 71.42 | _ | KHz | | Programmed VCO center-of-range frequency ⁽¹⁾ | f _{VRS} | _ | (Lx2 ^E)f _{NOM} | _ | MHz | ^{1.} See 4.3.6 Programming the PLL for detailed instruction on selecting appropriate values for L and E.