

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	CANbus, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM
Number of I/O	37
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68908gz8vfae

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Chapters

Chapter 1 General Description
Chapter 2 Memory
Chapter 3 Analog-to-Digital Converter (ADC)47
Chapter 4 Clock Generator Module (CGM)
Chapter 5 Configuration Register (CONFIG)79
Chapter 6 Computer Operating Properly (COP) Module
Chapter 7 Central Processor Unit (CPU)87
Chapter 8 External Interrupt (IRQ)99
Chapter 9 Keyboard Interrupt Module (KBI)103
Chapter 10 Low-Power Modes
Chapter 11 Low-Voltage Inhibit (LVI)
Chapter 12 MSCAN08 Controller (MSCAN08)121
Chapter 13 Input/Output (I/O) Ports155
Chapter 14 Resets and Interrupts169
Chapter 15 Enhanced Serial Communications Interface (ESCI) Module
Chapter 16 System Integration Module (SIM)213
Chapter 17 Serial Peripheral Interface (SPI) Module
Chapter 18 Timebase Module (TBM)251
Chapter 19 Timer Interface Module (TIM)255
Chapter 20 Development Support
Chapter 21 Electrical Specifications
Chapter 22 Ordering Information and Mechanical Specifications
Appendix A MC68HC908GZ8

Memory

- 10. Clear the PGM bit.⁽¹⁾
- 11. Wait for a time, t_{NVH} (minimum 5 μ s).
- 12. Clear the HVEN bit.
- 13. After time, t_{RCV} (typical 1 μ s), the memory can be accessed in read mode again.

This program sequence is repeated throughout the memory until all data is programmed.

NOTE

Programming and erasing of FLASH locations can not be performed by code being executed from the same FLASH array.

NOTE

While these operations must be performed in the order shown, other unrelated operations may occur between the steps. Care must be taken within the FLASH array memory space such as the COP control register (COPCTL) at \$FFFF.

NOTE

It is highly recommended that interrupts be disabled during program/ erase operations.

NOTE

Do not exceed t_{PROG} maximum or t_{HV} maximum. t_{HV} is defined as the cumulative high voltage programming time to the same row before next erase. t_{HV} must satisfy this condition:

 $t_{NVS} + t_{NVH} + t_{PGS} + (t_{PROG} \times 32) \le t_{HV}$ maximum

Refer to 21.15 Memory Characteristics.

NOTE

The time between programming the FLASH address change (step 7 to step 7), or the time between the last FLASH programmed to clearing the PGM bit (step 7 to step 10) must not exceed the maximum programming time, t_{PROG} maximum.

CAUTION

Be cautious when programming the FLASH array to ensure that non-FLASH locations are not used as the address that is written to when selecting either the desired row address range in step 3 of the algorithm or the byte to be programmed in step 7 of the algorithm. This applies particularly to \$FFD4-\$FFDF.

Chapter 3 Analog-to-Digital Converter (ADC)

3.1 Introduction

This section describes the 10-bit analog-to-digital converter (ADC).

3.2 Features

Features of the ADC module include:

- Eight channels with multiplexed input
- · Linear successive approximation with monotonicity
- 10-bit resolution
- Single or continuous conversion
- Conversion complete flag or conversion complete interrupt
- Selectable ADC clock
- Left or right justified result
- Left justified sign data mode

3.3 Functional Description

The ADC provides eight pins for sampling external sources at pins PTB7/AD7–PTB0/AD0. An analog multiplexer allows the single ADC converter to select one of eight ADC channels as ADC voltage in (V_{ADIN}) . V_{ADIN} is converted by the successive approximation register-based analog-to-digital converter. When the conversion is completed, ADC places the result in the ADC data register and sets a flag or generates an interrupt. See Figure 3-2.

3.3.1 ADC Port I/O Pins

PTB7/AD7–PTB0/AD0 are general-purpose I/O (input/output) pins that share with the ADC channels. The channel select bits define which ADC channel/port pin will be used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins are controlled by the port I/O logic and can be used as general-purpose I/O. Writes to the port register or data direction register (DDR) will not have any affect on the port pin that is selected by the ADC. Read of a port pin in use by the ADC will return a logic 0.

I/O Registers

3.7.4 ADC Voltage Reference Low Pin (V_{REFL})

The ADC analog portion uses V_{REFL} as its lower voltage reference pin. By default, connect the V_{REFH} pin to the same voltage potential as V_{SS} . External filtering is often necessary to ensure a clean V_{REFL} for good results. Any noise present on this pin will be reflected and possibly magnified in A/D conversion values.

NOTE

For maximum noise immunity, route V_{REFL} carefully and, if not connected to V_{SS} , place bypass capacitors as close as possible to the package. Routing V_{REFH} close and parallel to V_{REFL} may improve common mode noise rejection.

 V_{SSAD} and V_{REFL} are double-bonded on the MC68HC908GZ16.

3.7.5 ADC Voltage In (V_{ADIN})

V_{ADIN} is the input voltage signal from one of the eight ADC channels to the ADC module.

3.8 I/O Registers

These I/O registers control and monitor ADC operation:

- ADC status and control register (ADSCR)
- ADC data register (ADRH and ADRL)
- ADC clock register (ADCLK)

3.8.1 ADC Status and Control Register

Function of the ADC status and control register (ADSCR) is described here.

COCO — Conversions Complete Bit

In non-interrupt mode (AIEN = 0), COCO is a read-only bit that is set at the end of each conversion. COCO will stay set until cleared by a read of the ADC data register. Reset clears this bit.

In interrupt mode (AIEN = 1), COCO is a read-only bit that is not set at the end of a conversion. It always reads as a logic 0.

1 = Conversion completed (AIEN = 0)

0 = Conversion not completed (AIEN = 0) or CPU interrupt enabled (AIEN = 1)

AIEN — ADC Interrupt Enable Bit

When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is cleared when the data register is read or the status/control register is written. Reset clears the AIEN bit.

1 = ADC interrupt enabled

0 = ADC interrupt disabled

CGM Registers

VPR1 and VPR0 — VCO Power-of-Two Range Select Bits

These read/write bits control the VCO's hardware power-of-two range multiplier E that, in conjunction with L controls the hardware center-of-range frequency, f_{VRS}. VPR1:VPR0 cannot be written when the PLLON bit is set. Reset clears these bits. (See 4.3.3 PLL Circuits, 4.3.6 Programming the PLL, and 4.5.5 PLL VCO Range Select Register.)

VPR1 and VPR0	Е	VCO Power-of-Two Range Multiplier
00	0	1
01	1	2
10	2 ⁽¹⁾	4

Table 4-4. VPR1 and VPR0 Programming

1. Do not program E to a value of 3.

NOTE

Verify that the value of the VPR1 and VPR0 bits in the PCTL register are appropriate for the given reference and VCO clock frequencies before enabling the PLL. See 4.3.6 Programming the PLL for detailed instructions on selecting the proper value for these control bits.

4.5.2 PLL Bandwidth Control Register

The PLL bandwidth control register (PBWC):

- Selects automatic or manual (software-controlled) bandwidth control mode
- Indicates when the PLL is locked
- In automatic bandwidth control mode, indicates when the PLL is in acquisition or tracking mode
- In manual operation, forces the PLL into acquisition or tracking mode

AUTO — Automatic Bandwidth Control Bit

This read/write bit selects automatic or manual bandwidth control. When initializing the PLL for manual operation (AUTO = 0), clear the \overline{ACQ} bit before turning on the PLL. Reset clears the AUTO bit.

1 = Automatic bandwidth control

0 = Manual bandwidth control

Configuration Register (CONFIG)

Note: LVI5OR3 bit is only reset via POR (power-on reset).

Figure 5-2. Configuration Register 1 (CONFIG1)

MSCANEN— MSCAN08 Enable Bit

Setting the MSCANEN enables the MSCAN08 module and allows the MSCAN08 to use the PTC0/PTC1 pins. See Chapter 12 MSCAN08 Controller (MSCAN08) for a more detailed description of the MSCAN08 operation.

1 = Enables MSCAN08 module

0 = Disables the MSCAN08 module

NOTE

The MSCANEN bit is cleared by a power-on reset (POR) only. Other resets will leave this bit unaffected.

TMCLKSEL— Timebase Clock Select Bit

TMCLKSEL enables an extra divide-by-128 prescaler in the timebase module. Setting this bit enables the extra prescaler and clearing this bit disables it. See Chapter 4 Clock Generator Module (CGM) for a more detailed description of the external clock operation.

1 = Enables extra divide-by-128 prescaler in timebase module

0 = Disables extra divide-by-128 prescaler in timebase module

OSCENINSTOP — Oscillator Enable In Stop Mode Bit

OSCENINSTOP, when set, will enable the oscillator to continue to generate clocks in stop mode. See Chapter 4 Clock Generator Module (CGM). This function is used to keep the timebase running while the reset of the MCU stops. See Chapter 18 Timebase Module (TBM). When clear, oscillator will cease to generate clocks while in stop mode. The default state for this option is clear, disabling the oscillator in stop mode.

1 = Oscillator enabled to operate during stop mode

0 = Oscillator disabled during stop mode (default)

ESCIBDSRC — SCI Baud Rate Clock Source Bit

ESCIBDSRC controls the clock source used for the serial communications interface (SCI). The setting of this bit affects the frequency at which the SCI operates. See Chapter 15 Enhanced Serial Communications Interface (ESCI) Module.

1 = Internal data bus clock used as clock source for SCI (default)

0 = External oscillator used as clock source for SCI

COPRS — COP Rate Select Bit

COPD selects the COP timeout period. Reset clears COPRS. See Chapter 6 Computer Operating Properly (COP) Module

1 = COP timeout period = $2^{13} - 2^4$ COPCLK cycles

0 = COP timeout period = $2^{18} - 2^4$ COPCLK cycles

Central Processor Unit (CPU)

Figure 7-1. CPU Registers

7.3.1 Accumulator

The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and the results of arithmetic/logic operations.

Figure 7-2. Accumulator (A)

7.3.2 Index Register

The 16-bit index register allows indexed addressing of a 64-Kbyte memory space. H is the upper byte of the index register, and X is the lower byte. H:X is the concatenated 16-bit index register.

In the indexed addressing modes, the CPU uses the contents of the index register to determine the conditional address of the operand.

The index register can serve also as a temporary data storage location.

Figure 7-3. Index Register (H:X)

The synchronization jump width (SJW) can be programmed in a range of 1 to 4 time quanta by setting the SJW parameter.

The above parameters can be set by programming the bus timing registers, CBTR0 and CBTR1. See 12.13.3 MSCAN08 Bus Timing Register 0 and 12.13.4 MSCAN08 Bus Timing Register 1.

NOTE It is the user's responsibility to make sure that the bit timing settings are in compliance with the CAN standard,

Table 12-8 gives an overview on the CAN conforming segment settings and the related parameter values.

Figure 12-9. Segments Within the Bit Time

 Table 12-3. Time Segment Syntax

SYNC_SEG	System expects transitions to occur on the bus during this period.
Transmit point	A node in transmit mode will transfer a new value to the CAN bus at this point.
Sample point	A node in receive mode will sample the bus at this point. If the three samples per bit option is selected then this point marks the position of the third sample.

Table 12-4. CAN Standard Compliant	Bit Time Segment Settings
------------------------------------	----------------------------------

Time Segment 1	TSEG1	Time Segment 2	TSEG2	Synchronized Jump Width	SJW
5 10	49	2	1	12	01
4 11	3 10	3	2	1 3	02
5 12	4 11	4	3	14	03
6 13	5 12	5	4	14	03
714	6 13	6	5	14	03
815	7 14	7	6	14	03
916	8 15	8	7	14	03

AC7–AC0 — Acceptance Code Bits

AC7–AC0 comprise a user-defined sequence of bits with which the corresponding bits of the related identifier register (IDRn) of the receive message buffer are compared. The result of this comparison is then masked with the corresponding identifier mask register.

NOTE

The CIDAR0–CIDAR3 registers can be written only if the SFTRES bit in CMCR0 is set

12.13.13 MSCAN08 Identifier Mask Registers (CIDMR0–CIDMR3)

The identifier mask registers specify which of the corresponding bits in the identifier acceptance register are relevant for acceptance filtering. For standard identifiers it is required to program the last three bits (AM2–AM0) in the mask register CIDMR1 to 'don't care'.

CIDMRO	Address: \$0	514						
	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
Reset:				Unaffecte	d by reset			
CIDMR1	Address: \$0	515						
	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
Reset:				Unaffecte	d by reset			
CIDMR2	Address: \$0	516						
	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
Reset:				Unaffecte	d by reset			
CIDMR3	Address: \$0	517						
	Bit 7	6	5	4	3	2	1	Bit 0
Read: Write:	AM7	AM6	AM5	AM4	AM3	AM2	AM1	AM0
Reset:				Unaffecte	d by reset			

Figure 12-28. Identifier Mask Registers (CIDMR0–CIDMR3)

AM7–AM0 — Acceptance Mask Bits

If a particular bit in this register is cleared, this indicates that the corresponding bit in the identifier acceptance register must be the same as its identifier bit before a match will be detected. The message will be accepted if all such bits match. If a bit is set, it indicates that the state of the corresponding bit in the identifier acceptance register will not affect whether or not the message is accepted.

1 = Ignore corresponding acceptance code register bit.

0 = Match corresponding acceptance code register and identifier bits.

NOTE

The CIDMR0–CIDMR3 registers can be written only if the SFTRES bit in the CMCR0 is set

Table 14-1. Interrupt Sources

Source	Flag	Mask ⁽¹⁾	INT Register Flag	Priority ⁽²⁾	Vector Address	
Reset	None	None	None	0	\$FFFE-\$FFFF	
SWI instruction	None	None	None	0	\$FFFC\$FFFD	
IRQ pin	IRQF	IMASK1	IF1	1	\$FFFA—\$FFFB	
CGM change in lock	PLLF	PLLIE	IF2	2	\$FFF8-\$FFF9	
TIM1 channel 0	CH0F	CH0IE	IF3	3	\$FFF6-\$FFF7	
TIM1 channel 1	CH1F	CH1IE	IF4	4	\$FFF4-\$FFF5	
TIM1 overflow	TOF	TOIE	IF5	5	\$FFF2-\$FFF3	
TIM2 channel 0	CH0F	CH0IE	IF6	6	\$FFF0-\$FFF1	
TIM2 channel 1	CH1F	CH1IE	IF7	7	\$FFEE-\$FFEF	
TIM2 overflow	TOF	TOIE	IF8	8	\$FFEC\$FFED	
SPI receiver full	SPRF	SPRIE				
SPI overflow	OVRF	ERRIE	IF9	9	\$FFEA\$FFEB	
SPI mode fault	MODF	ERRIE				
SPI transmitter empty	SPTE	SPTIE	IF10	10	\$FFE8-\$FFE9	
SCI receiver overrun	OR	ORIE				
SCI noise flag	NF	NEIE				
SCI framing error	FE	FEIE		11	\$FFE0-\$FFE7	
SCI parity error	PE	PEIE				
SCI receiver full	SCRF	SCRIE	1510	10		
SCI input idle	IDLE	ILIE	IF12	12	ЪГГЕ4−ЪГГЕ Э	
SCI transmitter empty	SCTE	SCTIE	1510	10		
SCI transmission complete	тс	TCIE	1613	13	 קгг⊑2−קгг⊑3	
Keyboard pin	KEYF	IMASKK	IF14	14	\$FFE0-\$FFE1	
ADC conversion complete	COCO	AIEN	IF15	15	\$FFDE-\$FFDF	
Timebase	TBIF	TBIE	IF16	16	\$FFDC\$FFDD	
MSCAN08 receiver wakeup	WUPIF	WUPIE	IF17	17	\$FFDA\$FFDB	
MSCAN08 error	RWRNIF TWRNIF RERIF TERRIF BOFFIF OVRIF	RWRNIE TWRNIE RERRIE TERRIE BOFFIE OVRIE	IF18	18	\$FFD8–\$FFD9	
MSCAN08 receiver	RXF	RXFIE	IF19	19	\$FFD6\$FFD7	
MSCAN08 transmitter	TXE2 TXE1 TXE0	TXEIE2 TXEIE1 TXEIE0	IF20	20	\$FFD4–\$FFD5	

The I bit in the condition code register is a global mask for all interrupt sources except the SWI instruction.
 0 = highest priority

ILIE — Idle Line Interrupt Enable Bit

This read/write bit enables the IDLE bit to generate ESCI receiver CPU interrupt requests. Reset clears the ILIE bit.

1 = IDLE enabled to generate CPU interrupt requests

0 = IDLE not enabled to generate CPU interrupt requests

TE — Transmitter Enable Bit

Setting this read/write bit begins the transmission by sending a preamble of 10 or 11 logic 1s from the transmit shift register to the TxD pin. If software clears the TE bit, the transmitter completes any transmission in progress before the TxD returns to the idle condition (logic 1). Clearing and then setting TE during a transmission queues an idle character to be sent after the character currently being transmitted. Reset clears the TE bit.

1 = Transmitter enabled

0 = Transmitter disabled

NOTE

Writing to the TE bit is not allowed when the enable ESCI bit (ENSCI) is clear. ENSCI is in ESCI control register 1.

RE — Receiver Enable Bit

Setting this read/write bit enables the receiver. Clearing the RE bit disables the receiver but does not affect receiver interrupt flag bits. Reset clears the RE bit.

1 = Receiver enabled

0 = Receiver disabled

NOTE

Writing to the RE bit is not allowed when the enable ESCI bit (ENSCI) is clear. ENSCI is in ESCI control register 1.

RWU — Receiver Wakeup Bit

This read/write bit puts the receiver in a standby state during which receiver interrupts are disabled. The WAKE bit in SCC1 determines whether an idle input or an address mark brings the receiver out of the standby state and clears the RWU bit. Reset clears the RWU bit.

1 = Standby state

0 = Normal operation

SBK — Send Break Bit

Setting and then clearing this read/write bit transmits a break character followed by a logic 1. The logic 1 after the break character guarantees recognition of a valid start bit. If SBK remains set, the transmitter continuously transmits break characters with no logic 1s between them. Reset clears the SBK bit.

1 = Transmit break characters

0 = No break characters being transmitted

NOTE

Do not toggle the SBK bit immediately after setting the SCTE bit. Toggling SBK before the preamble begins causes the ESCI to send a break character instead of a preamble.

PS[2:1:0]	PSSB[4:3:2:1:0]	SCP[1:0]	Prescaler Divisor (BPD)	SCR[2:1:0]	Baud Rate Divisor (BD)	Baud Rate (f _{Bus} = 4.9152 MHz)
000	X X X X X	0 0	1	000	1	76,800
111	0 0 0 0 0	0 0	1	000	1	9600
111	00001	0 0	1	000	1	9562.65
111	00010	0 0	1	000	1	9525.58
111	11111	0 0	1	000	1	8563.07
0 0 0	X X X X X	0 0	1	001	2	38,400
0 0 0	X X X X X	0 0	1	010	4	19,200
0 0 0	X X X X X	0 0	1	011	8	9600
0 0 0	ххххх	0 0	1	100	16	4800
0 0 0	X X X X X	0 0	1	101	32	2400
0 0 0	X X X X X	0 0	1	110	64	1200
0 0 0	X X X X X	0 0	1	111	128	600
0 0 0	X X X X X	0 1	3	000	1	25,600
0 0 0	X X X X X	0 1	3	001	2	12,800
0 0 0	ххххх	0 1	3	010	4	6400
0 0 0	X X X X X	0 1	3	011	8	3200
000	X X X X X	0 1	3	100	16	1600
000	X X X X X	01	3	101	32	800
0 0 0	ххххх	0 1	3	110	64	400
000	X X X X X	01	3	111	128	200
000	X X X X X	10	4	000	1	19,200
000	X	10	4	001	2	9600
000	X X X X X	10	4	010	4	4800
000	X X X X X	10	4	011	8	2400
000	ХХХХХ	10	4	100	16	1200
000	X X X X X	10	4	101	32	600
000	X X X X X	10	4	110	64	300
000	X	10	4	111	128	150
000	ххххх	11	13	000	1	5908
000	ххххх	11	13	001	2	2954
0 0 0	X X X X X	11	13	010	4	1477
000	X X X X X	11	13	011	8	739
000	X X X X X	11	13	100	16	369
000	X X X X X	1 1	13	101	32	185
000	X X X X X	1 1	13	1 1 0	64	92
000	X X X X X	1 1	13	111	128	46

Table 15-11.	. ESCI Baud	Rate Selection	Examples
--------------	-------------	----------------	----------

Chapter 16 System Integration Module (SIM)

16.1 Introduction

This section describes the system integration module (SIM). Together with the central processor unit (CPU), the SIM controls all microcontroller unit (MCU) activities. A block diagram of the SIM is shown in Figure 16-1. Table 16-1 is a summary of the SIM input/output (I/O) registers. The SIM is a system state controller that coordinates CPU and exception timing.

Figure 16-1. SIM Block Diagram

System Integration Module (SIM)

16.3 Reset and System Initialization

The MCU has these reset sources:

- Power-on reset module (POR)
- External reset pin (RST)
- Computer operating properly module (COP)
- Low-voltage inhibit module (LVI)
- Illegal opcode
- Illegal address
- Forced monitor mode entry reset (MODRST)

All of these resets produce the vector \$FFFE:\$FFFF (\$FEFE:\$FEFF in monitor mode) and assert the internal reset signal (IRST). IRST causes all registers to be returned to their default values and all modules to be returned to their reset states.

An internal reset clears the SIM counter (see 16.4 SIM Counter), but an external reset does not. Each of the resets sets a corresponding bit in the SIM reset status register (SRSR). See 16.7 SIM Registers.

16.3.1 External Pin Reset

The $\overline{\text{RST}}$ pin circuit includes an internal pullup device. Pulling the asynchronous $\overline{\text{RST}}$ pin low halts all processing. The PIN bit of the SIM reset status register (SRSR) is set as long as $\overline{\text{RST}}$ is held low for a minimum of 67 CGMXCLK cycles, assuming that neither the POR nor the LVI was the source of the reset. See Table 16-2 for details. Figure 16-4 shows the relative timing.

Table 16-2. PIN Bit Set Timing

Reset Type	Number of Cycles Required to Set PIN
POR/LVI	4163 (4096 + 64 + 3)
All others	67 (64 + 3)

Figure 16-4. External Reset Timing

17.5.3 Transmission Format When CPHA = 1

Figure 17-7 shows an SPI transmission in which CPHA is logic 1. The figure should not be used as a replacement for data sheet parametric information. Two waveforms are shown for SPSCK: one for CPOL = 0 and another for CPOL = 1. The diagram may be interpreted as a master or slave timing diagram since the serial clock (SPSCK), master in/slave out (MISO), and master out/slave in (MOSI) pins are directly connected between the master and the slave. The MISO signal is the output from the slave, and the MOSI signal is the output from the master. The \overline{SS} line is the slave select input to the slave. The slave SPI drives its MISO output only when its slave select input (\overline{SS}) is at logic 0, so that only the selected slave drives to the master. The \overline{SS} pin of the master is not shown but is assumed to be inactive. The \overline{SS} pin of the master must be high or must be reconfigured as general-purpose I/O not affecting the SPI. (See 17.7.2 Mode Fault Error.) When CPHA = 1, the master begins driving its MOSI pin on the first SPSCK edge. Therefore, the slave uses the first SPSCK edge as a start transmission signal. The \overline{SS} pin can remain low between transmissions. This format may be preferable in systems having only one master and only one slave driving the MISO data line.

When CPHA = 1 for a slave, the first edge of the SPSCK indicates the beginning of the transmission. This causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. Once the transmission begins, no new data is allowed into the shift register from the transmit data register. Therefore, the SPI data register of the slave must be loaded with transmit data before the first edge of SPSCK. Any data written after the first edge is stored in the transmit data register and transferred to the shift register after the current transmission.

17.5.4 Transmission Initiation Latency

When the SPI is configured as a master (SPMSTR = 1), writing to the SPDR starts a transmission. CPHA has no effect on the delay to the start of the transmission, but it does affect the initial state of the SPSCK signal. When CPHA = 0, the SPSCK signal remains inactive for the first half of the first SPSCK cycle. When CPHA = 1, the first SPSCK cycle begins with an edge on the SPSCK line from its inactive to its active level. The SPI clock rate (selected by SPR1:SPR0) affects the delay from the write to SPDR and the start of the SPI transmission. (See Figure 17-8.)

17.6 Queuing Transmission Data

The double-buffered transmit data register allows a data byte to be queued and transmitted. For an SPI configured as a master, a queued data byte is transmitted immediately after the previous transmission has completed. The SPI transmitter empty flag (SPTE) indicates when the transmit data buffer is ready to accept new data. Write to the transmit data register only when the SPTE bit is high. Figure 17-9 shows the timing associated with doing back-to-back transmissions with the SPI (SPSCK has CPHA: CPOL = 1:0).

(6) CPU READS SPSCR WITH SPRF BIT SET.

Figure 17-9. SPRF/SPTE CPU Interrupt Timing

The transmit data buffer allows back-to-back transmissions without the slave precisely timing its writes between transmissions as in a system with a single data buffer. Also, if no new data is written to the data buffer, the last value contained in the shift register is the next data word to be transmitted.

For an idle master or idle slave that has no data loaded into its transmit buffer, the SPTE is set again no more than two bus cycles after the transmit buffer empties into the shift register. This allows the user to queue up a 16-bit value to send. For an already active slave, the load of the shift register cannot occur until the transmission is completed. This implies that a back-to-back write to the transmit data register is not possible. The SPTE indicates when the next write can occur.

Timebase Module (TBM)

18.7 Timebase Control Register

The timebase has one register, the timebase control register (TBCR), which is used to enable the timebase interrupts and set the rate.

Figure 18-2. Timebase Control Register (TBCR)

TBIF — Timebase Interrupt Flag

This read-only flag bit is set when the timebase counter has rolled over.

- 1 = Timebase interrupt pending
- 0 = Timebase interrupt not pending

TBR2–TBR0 — Timebase Divider Selection Bits

These read/write bits select the tap in the counter to be used for timebase interrupts as shown in Table 18-1.

NOTE

Do not change TBR2–TBR0 bits while the timebase is enabled (TBON = 1).

TACK— Timebase Acknowledge Bit

The TACK bit is a write-only bit and always reads as 0. Writing a logic 1 to this bit clears TBIF, the timebase interrupt flag bit. Writing a logic 0 to this bit has no effect.

1 = Clear timebase interrupt flag

0 = No effect

TBIE — Timebase Interrupt Enabled Bit

This read/write bit enables the timebase interrupt when the TBIF bit becomes set. Reset clears the TBIE bit.

1 = Timebase interrupt is enabled.

0 = Timebase interrupt is disabled.

TBON — Timebase Enabled Bit

This read/write bit enables the timebase. Timebase may be turned off to reduce power consumption when its function is not necessary. The counter can be initialized by clearing and then setting this bit. Reset clears the TBON bit.

1 = Timebase is enabled.

0 = Timebase is disabled and the counter initialized to 0s.

19.9.3 TIM Counter Modulo Registers

The read/write TIM modulo registers contain the modulo value for the TIM counter. When the TIM counter reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM counter resumes counting from \$0000 at the next timer clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is written. Reset sets the TIM counter modulo registers.

Reset the TIM counter before writing to the TIM counter modulo registers.

19.9.4 TIM Channel Status and Control Registers

Each of the TIM channel status and control registers:

- · Flags input captures and output compares
- Enables input capture and output compare interrupts
- Selects input capture, output compare, or PWM operation
- Selects high, low, or toggling output on output compare
- Selects rising edge, falling edge, or any edge as the active input capture trigger
- · Selects output toggling on TIM overflow
- Selects 0% and 100% PWM duty cycle
- Selects buffered or unbuffered output compare/PWM operation

Address: T1SC0, \$0025 and T2SC0, \$0030 Bit 7 6 5 4 3 2 1 Bit 0 CH0F Read: CH0IE MS0B MS0A ELS0B ELS0A TOV0 CHOMAX Write: 0 Reset: 0 0 0 0 0 0 0 0

Figure 19-10. TIM Channel 0 Status and Control Register (TSC0)

	Bit 7	6	5	4	3	2	1	Bit 0
Read:	CH1F	CHILE	0	MS1A	FI S1B	EL S1A	TOV1	СН1МАХ
Write:	0	OTTIL		NOTA	LLOID	LLUIA	1001	
Reset:	0	0	0	0	0	0	0	0
= Unimplemented								

Monitor ROM (MON)

Modes	Functions						
	Reset Vector High	Reset Vector Low	Break Vector High	Break Vector Low	SWI Vector High	SWI Vector Low	
User	\$FFFE	\$FFFF	\$FFFC	\$FFFD	\$FFFC	\$FFFD	
Monitor	\$FEFE	\$FEFF	\$FEFC	\$FEFD	\$FEFC	\$FEFD	

Table 20-2. Mode Differences

20.3.1.4 Data Format

Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format. Transmit and receive baud rates must be identical.

Figure 20-11. Monitor Data Format

20.3.1.5 Break Signal

A start bit (logic 0) followed by nine logic 0 bits is a break signal. When the monitor receives a break signal, it drives the PTA0 pin high for the duration of two bits and then echoes back the break signal.

Figure 20-12. Break Transaction

20.3.1.6 Baud Rate

The communication baud rate is controlled by the crystal frequency or external clock and the state of the PTB4 pin (when \overline{IRQ} is set to V_{TST}) upon entry into monitor mode. If monitor mode was entered with V_{DD} on \overline{IRQ} and the reset vector blank, then the baud rate is independent of PTB4.

Table 20-1 also lists external frequencies required to achieve a standard baud rate of 7200 bps. The effective baud rate is the bus frequency divided by 278. If using a crystal as the clock source, be aware of the upper frequency limit that the internal clock module can handle. See 21.7 5.0-Volt Control Timing or 21.6 3.3-Vdc Electrical Characteristics for this limit.

20.3.1.7 Commands

The monitor ROM firmware uses these commands:

- READ (read memory)
- WRITE (write memory)
- IREAD (indexed read)
- IWRITE (indexed write)
- READSP (read stack pointer)
- RUN (run user program)

© FREESCALE SEMICONDUCTOR, INC. All RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE:	DOCUMENT NO: 98ASH00962A		REV: G	
LQFP, 48 LEAD, 0.	50 PITCH	CASE NUMBER: 932-03		14 APR 2005
(7.0 x 7.0 x	1.4)	STANDARD: JE	DEC MS-026-BBC	