Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Obsolete | | Core Processor | HC08 | | Core Size | 8-Bit | | Speed | 8MHz | | Connectivity | CANbus, LINbus, SCI, SPI | | Peripherals | LVD, POR, PWM | | Number of I/O | 37 | | Program Memory Size | 16KB (16K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 1K x 8 | | Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V | | Data Converters | A/D 8x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 85°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 48-LQFP | | Supplier Device Package | 48-LQFP (7x7) | | Purchase URL | https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68hc908gz16cfa | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## **Revision History** The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location. # **Revision History** | Date | Revision
Level | Description | Page
Number(s) | |-------------------|-------------------|---|-------------------| | February,
2003 | N/A | Initial release | N/A | | | | Reorganized to meet latest publication standards for M68HC08 Family documentation | N/A | | | | Added Table 1-1. Summary of Device Variations | 19 | | | | Figure 5-2. Configuration Register 1 (CONFIG1) — Changed bit 0 from SCIBDSRC to ESCIBDSRC. | 80 | | | | Chapter 15 Enhanced Serial Communications Interface (ESCI) Module — Updated with additional data | 181–212 | | October, | 1.0 | Chapter 17 Serial Peripheral Interface (SPI) Module — Removed all references to DMAS | N/A | | 2004 | 1.0 | Added DC injection current values to: 21.5 5-Vdc Electrical Characteristics 21.6 3.3-Vdc Electrical Characteristics | 289
291 | | | | 21.15 Memory Characteristics — Updated table entries | 302 | | | | Corrected ICG references to CGM throughout document. | N/A | | | | Chapter 22 Ordering Information and Mechanical Specifications — Corrected device ordering information | 303 | | | | Added the following: Appendix A MC68HC908GZ8 | 311–314 | | _ | | 205 — Corrected Functionality entries | 205 | | June,
2005 | 2.0 | 15.9.1 ESCI Arbiter Control Register — Corrected bit ACLK bit description | 209 | | 2000 | | 15.9.3 Bit Time Measurement — Corrected definition for ACLK bit | 210 | | March,
2006 | 3.0 | 10.5 Clock Generator Module (CGM) — Updated description to remove erroneous information. | 110 | | | | 1.6 Unused Pin Termination — Added new section. | 26 | | | | 12.2 Features — Corrected timer link connection from TIM2 channel 0 to TIM1 channel 0. | 121 | | October,
2006 | 4.0 | 12.9 Timer Link — Corrected timer link connection from TIM2 channel 0 to TIM1 channel 0. | 133 | | 2000 | | 13.1 Introduction — Replaced note with unused pin termination text. | 155 | | | | 21.5 5-Vdc Electrical Characteristics and 21.6 3.3-Vdc Electrical Characteristics — Updated DC injection current specification. | 289
291 | # 1.5.5 CGM Power Supply Pins (V_{DDA} and V_{SSA}) V_{DDA} and V_{SSA} are the power supply pins for the analog portion of the clock generator module (CGM). Decoupling of these pins should be as per the digital supply. See Chapter 4 Clock Generator Module (CGM). # 1.5.6 External Filter Capacitor Pin (V_{CGMXFC}) CGMXFC is an external filter capacitor connection for the CGM. See Chapter 4 Clock Generator Module (CGM). # 1.5.7 ADC Power Supply/Reference Pins (V_{DDAD}/V_{REFH} and V_{SSAD}/V_{REFL}) V_{DDAD} and V_{SSAD} are the power supply pins to the analog-to-digital converter (ADC). V_{REFH} and V_{REFH} are the reference voltage pins for the ADC. V_{REFH} is the high reference supply for the ADC, and by default the V_{DDAD}/V_{REFH} pin should be externally filtered and connected to the same voltage potential as V_{DD} . V_{REFL} is the low reference supply for the ADC, and by default the V_{SSAD}/V_{REFL} pin should be connected to the same voltage potential as V_{SS} . See Chapter 3 Analog-to-Digital Converter (ADC). # 1.5.8 Port A Input/Output (I/O) Pins (PTA7/KBD7-PTA0/KBD0) PTA7–PTA0 are general-purpose, bidirectional I/O port pins. Any or all of the port A pins can be programmed to serve as keyboard interrupt pins. PTA7–PTA4 are only available on the 48-pin LQFP package. See Chapter 13 Input/Output (I/O) Ports and Chapter 9 Keyboard Interrupt Module (KBI). These port pins also have selectable pullups when configured for input mode. The pullups are disengaged when configured for output mode. The pullups are selectable on an individual port bit basis. # 1.5.9 Port B I/O Pins (PTB7/AD7-PTB0/AD0) PTB7–PTB0 are general-purpose, bidirectional I/O port pins that can also be used for analog-to-digital converter (ADC) inputs. PTB7–PTB4 are only available on the 48-pin LQFP package. See Chapter 13 Input/Output (I/O) Ports and Chapter 3 Analog-to-Digital Converter (ADC). # 1.5.10 Port C I/O Pins (PTC6-PTC0/CAN_{TX}) PTC6 and PTC5 are general-purpose, bidirectional I/O port pins. PTC4—PTC0 are general-purpose, bidirectional I/O port pins that contain higher current sink/source capability. PTC6—PTC2 are only available on the 48-pin LQFP package. See Chapter 13 Input/Output (I/O) Ports and Chapter 12 MSCAN08 Controller (MSCAN08). PTC1 and PTC0 can be programmed to be MSCAN08 pins. These port pins also have selectable pullups when configured for input mode. The pullups are disengaged when configured for output mode. The pullups are selectable on an individual port bit basis. # 1.5.11 Port D I/O Pins (PTD7/T2CH1-PTD0/SS) PTD7–PTD0 are special-function, bidirectional I/O port pins. PTD3–PTD0 can be programmed to be serial peripheral interface (SPI) pins, while PTD7–PTD4 can be individually programmed to be timer interface module (TIM1 and TIM2) pins. PTD7 is only available on the 48-pin LQFP package. See Chapter 19 Timer Interface Module (TIM), Chapter 17 Serial Peripheral Interface (SPI) Module, and Chapter 13 Input/Output (I/O) Ports. ## Memory | Addr. | Register Name | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | |--------|--|-----------------|--------|------------------------------|--------|-------------|----------------|--------|------|--|--| | \$0024 | Timer 1 Counter Modulo
Register Low (T1MODL) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | | | See page 267. | Reset: | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | Timer 1 Channel 0 Status and | Read: | CH0F | CHOIE | MCOD | MCOA | EL COD | El COA | TOVO | CHOMAN | | | \$0025 | Control Register (T1SC0) | Write: | 0 | CH0IE | MS0B | MS0A | ELS0B | ELS0A | TOV0 | CH0MAX | | | | See page 267. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | \$0026 | Timer 1 Channel 0
Register High (T1CH0H) | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | | | See page 270. | Reset: | | | | Indetermina | te after reset | | | | | | \$0027 | Timer 1 Channel 0
Register Low (T1CH0L) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | | | See page 270. | Reset: | | | | Indetermina | te after reset | | | | | | | Timer 1 Channel 1 Status and | Read: | CH1F | CH1IE | 0 | MS1A | ELS1B | ELS1A | TOV1 | CH1MAX | | | \$0028 | Control Register (T1SC1) | Write: | 0 | OTTIL | | WOTA | LLOID | LLOTA | 1001 | OTTIWAX | | | | See page 267. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | \$0029 | Timer 1 Channel 1
Register High (T1CH1H) | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | | | See page 270. | Reset: | | • | • | Indetermina | te after reset | • | | <u>, </u> | | | \$002A | Timer 1 Channel 1
Register Low (T1CH1L) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | | | See page 270. | Reset: | | | | Indetermina | te after reset | | | | | | | Timer 2 Status and Control | Read: | TOF | TOIE | TSTOP | 0 | 0 | PS2 | PS1 | PS0 | | | \$002B | Register (T2SC) | Write: | 0 | TOIL | 10101 | TRST | | 1 02 | 101 | 1 00 | | | | See page 265. | Reset: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | | | Timer 2 Counter | Read: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | | \$002C | Register High (T2CNTH) See page 266. | Write: | | | | | | | | | | | | See page 200. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Timer 2 Counter | Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | | \$002D | Register Low (T2CNTL) See page 266. | Write: | | | | | | | | | | | | | Reset:
Read: | 0 | 0
T | 0
T | 0 | 0
T | 0 | 0 | 0 | | | \$002E | Timer 2 Counter Modulo
Register High (T2MODH) | Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | | | See page 267. | Reset: | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | \$002F | Timer 2 Counter Modulo
Register Low (T2MODL) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | | | See page 267. | Reset: | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | | = Unimplemented R = Reserved | | ed | U = Unaffect | ed | | | | Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 8) MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 # **Chapter 4 Clock Generator Module (CGM)** ## 4.1 Introduction This section describes the clock generator module. The CGM generates the crystal clock signal, CGMXCLK, which operates at the frequency of the crystal. The CGM also generates the base clock signal, CGMOUT, which is based on either the crystal clock divided by two or the phase-locked loop (PLL) clock, CGMVCLK, divided by two. In user mode, CGMOUT is the clock from which the SIM derives the system clocks, including the bus clock, which is at a frequency of CGMOUT/2. The PLL is a fully functional frequency generator designed for use with crystals or ceramic resonators. The PLL can generate a maximum bus frequency of 8 MHz using a 1-8MHz crystal or external clock source. ## 4.2 Features Features of the CGM include: - Phase-locked loop with output frequency in integer multiples of an integer dividend of the crystal reference - High-frequency crystal operation with low-power operation and high-output frequency resolution - Programmable hardware voltage-controlled oscillator (VCO) for low-jitter operation - Automatic bandwidth control mode for low-jitter operation - Automatic frequency lock detector - CPU interrupt on entry or exit from locked condition - Configuration register bit to allow oscillator operation during stop mode # 4.3 Functional Description The CGM consists of three major submodules: - Crystal oscillator circuit The crystal oscillator circuit generates the constant crystal frequency clock, CGMXCLK. - Phase-locked loop (PLL) The PLL generates the programmable VCO frequency clock, CGMVCLK. - Base clock selector circuit This software-controlled circuit selects either CGMXCLK divided by two or the VCO clock, CGMVCLK, divided by two as the base clock, CGMOUT. The SIM derives the system clocks from either CGMOUT or CGMXCLK. Figure 4-1 shows the structure of the CGM. **Clock Generator Module (CGM)** ## 4.3.9 CGM External Connections In its typical configuration, the CGM requires external components. Five of these are for the crystal oscillator and two or four are for the PLL. The crystal oscillator is normally connected in a Pierce oscillator configuration, as shown in Figure 4-2. Figure 4-2 shows only the logical representation of the internal components and may not represent actual circuitry. The oscillator configuration uses five components: - Crystal, X₁ - Fixed capacitor, C₁ - Tuning capacitor, C₂ (can also be a fixed capacitor) - Feedback resistor, R_B - Series resistor, R_S The series resistor (R_S) is included in the diagram to follow strict Pierce oscillator guidelines. Refer to the crystal manufacturer's data for more information regarding values for C1 and C2. Figure 4-2 also shows the external components for the PLL: - Bypass capacitor, C_{BYP} - Filter network Routing should be done with great care to minimize signal cross talk and noise. Note: Filter network in box can be replaced with a single capacitor, but will degrade stability. Figure 4-2. CGM External Connections # **Central Processor Unit (CPU)** # Table 7-1. Instruction Set Summary (Sheet 5 of 6) | Source | Operation | Description | | Effect on CCF | | | | | Address
Mode | Opcode | Operand | es | |--|--|---|---|---------------|---|---|----|---|---|--|---|--------------------------------------| | Form | Operation | Description | ٧ | Н | I | N | Z | С | Add | Opc | Ope | Cycles | | PULA | Pull A from Stack | $SP \leftarrow (SP + 1); Pull (A)$ | - | - | - | - | - | - | INH | 86 | | 2 | | PULH | Pull H from Stack | $SP \leftarrow (SP + 1); Pull (H)$ | - | - | - | - | - | - | INH | 8A | | 2 | | PULX | Pull X from Stack | $SP \leftarrow (SP + 1); Pull (X)$ | - | - | _ | - | - | - | INH | 88 | | 2 | | ROL opr
ROLA
ROLX
ROL opr,X
ROL ,X
ROL opr,SP | Rotate Left through Carry | b7 b0 | ‡ | _ | _ | ţ | ţ | ţ | DIR
INH
INH
IX1
IX
SP1 | 39
49
59
69
79
9E69 | dd
ff
ff | 4
1
1
4
3
5 | | ROR opr
RORA
RORX
ROR opr,X
ROR ,X
ROR opr,SP | Rotate Right through Carry | b7 b0 | ‡ | _ | _ | ‡ | ‡ | 1 | DIR
INH
INH
IX1
IX
SP1 | 36
46
56
66
76
9E66 | dd
ff
ff | 4
1
1
4
3
5 | | RSP | Reset Stack Pointer | SP ← \$FF | - | - | _ | - | - | - | INH | 9C | | 1 | | RTI | Return from Interrupt | $\begin{array}{l} SP \leftarrow (SP) + 1; Pull (CCR) \\ SP \leftarrow (SP) + 1; Pull (A) \\ SP \leftarrow (SP) + 1; Pull (X) \\ SP \leftarrow (SP) + 1; Pull (PCH) \\ SP \leftarrow (SP) + 1; Pull (PCL) \end{array}$ | 1 | î | ţ | ţ | Î | ţ | INH | 80 | | 7 | | RTS | Return from Subroutine | $SP \leftarrow SP + 1$; Pull (PCH)
$SP \leftarrow SP + 1$; Pull (PCL) | - | - | _ | - | - | - | INH | 81 | | 4 | | SBC #opr
SBC opr
SBC opr,
SBC opr,X
SBC opr,X
SBC,X
SBC opr,SP
SBC opr,SP | Subtract with Carry | $A \leftarrow (A) - (M) - (C)$ | 1 | _ | _ | 1 | 1 | 1 | IMM
DIR
EXT
IX2
IX1
IX
SP1
SP2 | A2
B2
C2
D2
E2
F2
9EE2
9ED2 | ii
dd
hh II
ee ff
ff
ff
ee ff | 2
3
4
4
3
2
4
5 | | SEC | Set Carry Bit | C ← 1 | - | - | - | - | - | 1 | INH | 99 | | 1 | | SEI | Set Interrupt Mask | I ← 1 | - | - | 1 | - | - | - | INH | 9B | | 2 | | STA opr
STA opr,
STA opr,X
STA opr,X
STA ,X
STA opr,SP
STA opr,SP | Store A in M | $M \leftarrow (A)$ | 0 | _ | _ | 1 | 1 | _ | DIR
EXT
IX2
IX1
IX
SP1
SP2 | B7
C7
D7
E7
F7
9EE7
9ED7 | dd
hh II
ee ff
ff
ff
ee ff | 3
4
4
3
2
4
5 | | STHX opr | Store H:X in M | $(M:M+1) \leftarrow (H:X)$ | 0 | - | - | ‡ | \$ | - | DIR | 35 | dd | 4 | | STOP | Enable Interrupts, Stop Processing, Refer to MCU Documentation | $I \leftarrow 0$; Stop Processing | - | - | 0 | - | - | - | INH | 8E | | 1 | | STX opr
STX opr
STX opr,X
STX opr,X
STX,X
STX opr,SP
STX opr,SP | Store X in M | $M \leftarrow (X)$ | 0 | _ | _ | 1 | 1 | _ | DIR
EXT
IX2
IX1
IX
SP1
SP2 | BF
CF
DF
EF
FF
9EEF
9EDF | | 3
4
4
3
2
4
5 | | SUB #opr
SUB opr
SUB opr
SUB opr,X
SUB opr,X
SUB ,X
SUB opr,SP
SUB opr,SP | Subtract | $A \leftarrow (A) - (M)$ | 1 | _ | _ | 1 | Į. | 1 | IMM
DIR
EXT
IX2
IX1
IX
SP1
SP2 | A0
B0
C0
D0
E0
F0
9EE0
9ED0 | | 2
3
4
4
3
2
4
5 | | MSCAN08 Mode | CPU Mode | | | | | | |----------------|--|-------------------------|--|--|--|--| | WISCANDO WIDGE | STOP | WAIT or RUN | | | | | | Power Down | SLPAK = X ⁽¹⁾
SFTRES = X | | | | | | | Sleep | | SLPAK = 1
SFTRES = 0 | | | | | | Soft Reset | | SLPAK = 0
SFTRES = 1 | | | | | | Normal | | SLPAK = 0
SFTRES = 0 | | | | | Table 12-2. MSCAN08 versus CPU Operating Modes ## 12.8.1 MSCAN08 Sleep Mode The CPU can request the MSCAN08 to enter the low-power mode by asserting the SLPRQ bit in the module configuration register (see Figure 12-7). The time when the MSCAN08 enters sleep mode depends on its activity: - If it is transmitting, it continues to transmit until there is no more message to be transmitted, and then goes into sleep mode - If it is receiving, it waits for the end of this message and then goes into sleep mode - If it is neither transmitting or receiving, it will immediately go into sleep mode #### NOTE The application software must avoid setting up a transmission (by clearing or more TXE flags) and immediately request sleep mode (by setting SLPRQ). It then depends on the exact sequence of operations whether MSCAN08 starts transmitting or goes into sleep mode directly. During sleep mode, the SLPAK flag is set. The application software should use SLPAK as a handshake indication for the request (SLPRQ) to go into sleep mode. When in sleep mode, the MSCAN08 stops its internal clocks. However, clocks to allow register accesses still run. If the MSCAN08 is in bus-off state, it stops counting the 128*11 consecutive recessive bits due to the stopped clocks. The CAN_{TX} pin stays in recessive state. If RXF = 1, the message can be read and RXF can be cleared. Copying of RxGB into RxFG doesn't take place while in sleep mode. It is possible to access the transmit buffers and to clear the TXE flags. No message abort takes place while in sleep mode. The MSCAN08 leaves sleep mode (wakes-up) when: - Bus activity occurs, or - The MCU clears the SLPRQ bit, or - The MCU sets the SFTRES bit #### NOTE The MCU cannot clear the SLPRQ bit before the MSCAN08 is in sleep mode (SLPAK=1). ^{1. &#}x27;X' means don't care. #### **MSCAN08 Controller (MSCAN08)** Figure 12-7. Sleep Request/Acknowledge Cycle After wakeup, the MSCAN08 waits for 11 consecutive recessive bits to synchronize to the bus. As a consequence, if the MSCAN08 is woken-up by a CAN frame, this frame is not received. The receive message buffers (RxFG and RxBG) contain messages if they were received before sleep mode was entered. All pending actions are executed upon wakeup: copying of RxBG into RxFG, message aborts and message transmissions. If the MSCAN08 is still in bus-off state after sleep mode was left, it continues counting the 128*11 consecutive recessive bits. #### 12.8.2 MSCAN08 Soft Reset Mode In soft reset mode, the MSCAN08 is stopped. Registers can still be accessed. This mode is used to initialize the module configuration, bit timing and the CAN message filter. See 12.13.1 MSCAN08 Module Control Register 0 for a complete description of the soft reset mode. When setting the SFTRES bit, the MSCAN08 immediately stops all ongoing transmissions and receptions, potentially causing CAN protocol violations. #### NOTE The user is responsible to take care that the MSCAN08 is not active when soft reset mode is entered. The recommended procedure is to bring the MSCAN08 into sleep mode before the SFTRES bit is set. #### 12.8.3 MSCAN08 Power-Down Mode The MSCAN08 is in power-down mode when the CPU is in stop mode. When entering the power-down mode, the MSCAN08 immediately stops all ongoing transmissions and receptions, potentially causing CAN protocol violations. #### NOTE The user is responsible to take care that the MSCAN08 is not active when power-down mode is entered. The recommended procedure is to bring the MSCAN08 into sleep mode before the STOP instruction is executed. MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 #### MSCAN08 Controller (MSCAN08) Figure 12-8. Clocking Scheme #### **NOTE** If the system clock is generated from a PLL, it is recommended to select the crystal clock source rather than the system clock source due to jitter considerations, especially at faster CAN bus rates. A programmable prescaler is used to generate out of the MSCAN08 clock the time quanta (Tq) clock. A time quantum is the atomic unit of time handled by the MSCAN08. $$f_{Tq} = \frac{f_{MSCANCLK}}{Presc value}$$ A bit time is subdivided into three segments⁽¹⁾ (see Figure 12-9): - SYNC_SEG: This segment has a fixed length of one time quantum. Signal edges are expected to happen within this section. - Time segment 1: This segment includes the PROP_SEG and the PHASE_SEG1 of the CAN standard. It can be programmed by setting the parameter TSEG1 to consist of 4 to 16 time quanta. - Time segment 2: This segment represents PHASE_SEG2 of the CAN standard. It can be programmed by setting the TSEG2 parameter to be 2 to 8 time quanta long. Bit rate = $$\frac{f_{Tq}}{\text{No. of time quanta}}$$ MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 ^{1.} For further explanation of the underlying concepts please refer to ISO/DIS 11 519-1, Section 10.3. # Chapter 13 Input/Output (I/O) Ports ## 13.1 Introduction Bidirectional input-output (I/O) pins form five parallel ports. All I/O pins are programmable as inputs or outputs. All individual bits within port A, port C, and port D are software configurable with pullup devices if configured as input port bits. The pullup devices are automatically and dynamically disabled when a port bit is switched to output mode. ## 13.2 Unused Pin Termination Input pins and I/O port pins that are not used in the application must be terminated. This prevents excess current caused by floating inputs, and enhances immunity during noise or transient events. Termination methods include: - 1. Configuring unused pins as outputs and driving high or low; - 1. Configuring unused pins as inputs and enabling internal pull-ups; - 1. Configuring unused pins as inputs and using external pull-up or pull-down resistors. Never connect unused pins directly to V_{DD} or V_{SS}. Since some general-purpose I/O pins are not available on all packages, these pins must be terminated as well. Either method 1 or 2 above are appropriate. Figure 13-1. I/O Port Register Summary MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 Input/Output (I/O) Ports ## 13.5.3 Port C Input Pullup Enable Register The port C input pullup enable register (PTCPUE) contains a software configurable pullup device for each of the seven port C pins. Each bit is individually configurable and requires that the data direction register, DDRC, bit be configured as an input. Each pullup is automatically and dynamically disabled when a port bit's DDRC is configured for output mode. Figure 13-12. Port C Input Pullup Enable Register (PTCPUE) ## PTCPUE6-PTCPUE0 — Port C Input Pullup Enable Bits These writable bits are software programmable to enable pullup devices on an input port bit. - 1 = Corresponding port C pin configured to have internal pullup - 0 = Corresponding port C pin internal pullup disconnected #### 13.6 Port D Port D is an 8-bit special-function port that shares four of its pins with the serial peripheral interface (SPI) module and four of its pins with the two timer interface (TIM1 and TIM2) modules. Port D also has software configurable pullup devices if configured as an input port. ## 13.6.1 Port D Data Register The port D data register (PTD) contains a data latch for each of the eight port D pins. Figure 13-13. Port D Data Register (PTD) #### PTD7-PTD0 — Port D Data Bits These read/write bits are software-programmable. Data direction of each port D pin is under the control of the corresponding bit in data direction register D. Reset has no effect on port D data. ## T2CH1 and T2CH0 — Timer 2 Channel I/O Bits The PTD7/T2CH1-PTD6/T2CH0 pins are the TIM2 input capture/output compare pins. The edge/level select bits, ELSxB:ELSxA, determine whether the PTD7/T2CH1-PTD6/T2CH0 pins are timer channel I/O pins or general-purpose I/O pins. See Chapter 19 Timer Interface Module (TIM). MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 #### **Enhanced Serial Communications Interface (ESCI) Module** - 1. Ports are software configurable with pullup device if input port. - 2. Higher current drive port pins - 3. Pin contains integrated pullup device Figure 15-1. Block Diagram Highlighting ESCI Block and Pins ## 15.4.2.1 Character Length The transmitter can accommodate either 8-bit or 9-bit data. The state of the M bit in ESCI control register 1 (SCC1) determines character length. When transmitting 9-bit data, bit T8 in ESCI control register 3 (SCC3) is the ninth bit (bit 8). #### 15.4.2.2 Character Transmission During an ESCI transmission, the transmit shift register shifts a character out to the TxD pin. The ESCI data register (SCDR) is the write-only buffer between the internal data bus and the transmit shift register. To initiate an ESCI transmission: - Enable the ESCI by writing a logic 1 to the enable ESCI bit (ENSCI) in ESCI control register 1 (SCC1). - 2. Enable the transmitter by writing a logic 1 to the transmitter enable bit (TE) in ESCI control register 2 (SCC2). - 3. Clear the ESCI transmitter empty bit (SCTE) by first reading ESCI status register 1 (SCS1) and then writing to the SCDR. For 9-bit data, also write the T8 bit in SCC3. - 4. Repeat step 3 for each subsequent transmission. At the start of a transmission, transmitter control logic automatically loads the transmit shift register with a preamble of logic 1s. After the preamble shifts out, control logic transfers the SCDR data into the transmit shift register. A logic 0 start bit automatically goes into the least significant bit (LSB) position of the transmit shift register. A logic 1 stop bit goes into the most significant bit (MSB) position. The ESCI transmitter empty bit, SCTE, in SCS1 becomes set when the SCDR transfers a byte to the transmit shift register. The SCTE bit indicates that the SCDR can accept new data from the internal data bus. If the ESCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the SCTE bit generates a transmitter CPU interrupt request. When the transmit shift register is not transmitting a character, the TxD pin goes to the idle condition, logic 1. If at any time software clears the ENSCI bit in ESCI control register 1 (SCC1), the transmitter and receiver relinquish control of the port E pins. #### 15.4.2.3 Break Characters Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit shift register with a break character. For TXINV = 0 (output not inverted), a transmitted break character contains all logic 0s and has no start, stop, or parity bit. Break character length depends on the M bit in SCC1 and the LINR bits in SCBR. As long as SBK is at logic 1, transmitter logic continuously loads break characters into the transmit shift register. After software clears the SBK bit, the shift register finishes transmitting the last break character and then transmits at least one logic 1. The automatic logic 1 at the end of a break character guarantees the recognition of the start bit of the next character. When LINR is cleared in SCBR, the ESCI recognizes a break character when a start bit is followed by eight or nine logic 0 data bits and a logic 0 where the stop bit should be, resulting in a total of 10 or 11 consecutive logic 0 data bits. When LINR is set in SCBR, the ESCI recognizes a break character when a start bit is followed by 9 or 10 logic 0 data bits and a logic 0 where the stop bit should be, resulting in a total of 11 or 12 consecutive logic 0 data bits. #### **Enhanced Serial Communications Interface (ESCI) Module** # 15.8 I/O Registers These I/O registers control and monitor ESCI operation: - ESCI control register 1, SCC1 - ESCI control register 2, SCC2 - ESCI control register 3, SCC3 - ESCI status register 1, SCS1 - ESCI status register 2, SCS2 - ESCI data register, SCDR - ESCI baud rate register, SCBR - ESCI prescaler register, SCPSC - ESCI arbiter control register, SCIACTL - ESCI arbiter data register, SCIADAT ## 15.8.1 ESCI Control Register 1 ESCI control register 1 (SCC1): - Enables loop mode operation - Enables the ESCI - Controls output polarity - Controls character length - Controls ESCI wakeup method - Controls idle character detection - Enables parity function - Controls parity type Figure 15-10. ESCI Control Register 1 (SCC1) #### LOOPS — Loop Mode Select Bit This read/write bit enables loop mode operation. In loop mode the RxD pin is disconnected from the ESCI, and the transmitter output goes into the receiver input. Both the transmitter and the receiver must be enabled to use loop mode. Reset clears the LOOPS bit. - 1 = Loop mode enabled - 0 = Normal operation enabled #### **ENSCI** — Enable ESCI Bit This read/write bit enables the ESCI and the ESCI baud rate generator. Clearing ENSCI sets the SCTE and TC bits in ESCI status register 1 and disables transmitter interrupts. Reset clears the ENSCI bit. - 1 = ESCI enabled - 0 = ESCI disabled Figure 15-21. Bit Time Measurement with ACLK = 0 Figure 15-22. Bit Time Measurement with ACLK = 1, Scenario A Figure 15-23. Bit Time Measurement with ACLK = 1, Scenario B #### **System Integration Module (SIM)** ## Interrupt Status Register 1 | Address: | \$FE04 | | | | | | | | |----------|--------|------------|----|----|----|----|---|-------| | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | Read: | 16 | 15 | 14 | 13 | 12 | l1 | 0 | 0 | | Write: | R | R | R | R | R | R | R | R | | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | R | = Reserved | | | | | | | Figure 16-12. Interrupt Status Register 1 (INT1) ## 16-I1 — Interrupt Flags 1-6 These flags indicate the presence of interrupt requests from the sources shown in Table 16-3. - 1 = Interrupt request present - 0 = No interrupt request present ## Bit 0 and Bit 1 — Always read 0 ## Interrupt Status Register 2 Figure 16-13. Interrupt Status Register 2 (INT2) #### I14-I7 — Interrupt Flags 14-7 These flags indicate the presence of interrupt requests from the sources shown in Table 16-3. - 1 = Interrupt request present - 0 = No interrupt request present ## Interrupt Status Register 3 Figure 16-14. Interrupt Status Register 3 (INT3) #### Bits 7-6 — Always read 0 #### 120-115 — Interrupt Flags 20-15 These flags indicate the presence of an interrupt request from the source shown in Table 16-3. - 1 = Interrupt request present - 0 = No interrupt request present **Timer Interface Module (TIM)** ## 19.4.3 Output Compare With the output compare function, the TIM can generate a periodic pulse with a programmable polarity, duration, and frequency. When the counter reaches the value in the registers of an output compare channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU interrupt requests. ## 19.4.3.1 Unbuffered Output Compare Any output compare channel can generate unbuffered output compare pulses as described in 19.4.3 Output Compare. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output compare value may cause the compare to be missed. The TIM may pass the new value before it is written. Use the following methods to synchronize unbuffered changes in the output compare value on channel x: - When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value. - When changing to a larger output compare value, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current counter overflow period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same counter overflow period. ### 19.4.3.2 Buffered Output Compare Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors the buffered output compare function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin. #### NOTE In buffered output compare operation, do not write new output compare values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered output compares. ## 19.9.1 TIM Status and Control Register The TIM status and control register (TSC): - Enables TIM overflow interrupts - Flags TIM overflows - Stops the TIM counter - Resets the TIM counter - Prescales the TIM counter clock Figure 19-5. TIM Status and Control Register (TSC) ## **TOF** — TIM Overflow Flag Bit This read/write flag is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set and then writing a logic 0 to TOF. If another TIM overflow occurs before the clearing sequence is complete, then writing logic 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic 1 to TOF has no effect. - 1 = TIM counter has reached modulo value - 0 = TIM counter has not reached modulo value ## **TOIE** — TIM Overflow Interrupt Enable Bit This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the TOIE bit. - 1 = TIM overflow interrupts enabled - 0 = TIM overflow interrupts disabled ## TSTOP — TIM Stop Bit This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM counter until software clears the TSTOP bit. - 1 = TIM counter stopped - 0 = TIM counter active #### NOTE Do not set the TSTOP bit before entering wait mode if the TIM is required to exit wait mode. #### TRST — TIM Reset Bit Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on any other registers. Counting resumes from \$0000. TRST is cleared automatically after the TIM counter is reset and always reads as logic 0. Reset clears the TRST bit. - 1 = Prescaler and TIM counter cleared - 0 = No effect #### NOTE Setting the TSTOP and TRST bits simultaneously stops the TIM counter at a value of \$0000. MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 | MSxB:MSxA | ELSxB:ELSxA | Mode | Configuration | |-----------|-------------|--------------------------|---| | X0 | 00 | Output | Pin under port control; initial output level high | | X1 | 00 | preset | Pin under port control; initial output level low | | 00 | 01 | | Capture on rising edge only | | 00 | 10 | Input
capture | Capture on falling edge only | | 00 | 11 | captaro | Capture on rising or falling edge | | 01 | 01 | 0.1.1 | Toggle output on compare | | 01 | 10 | Output compare
or PWM | Clear output on compare | | 01 | 11 | 0 | Set output on compare | | 1X | 01 | Buffered output | Toggle output on compare | | 1X | 10 | compare
or buffered | Clear output on compare | | 1X | 11 | PWM | Set output on compare | Table 19-3. Mode, Edge, and Level Selection #### **NOTE** Before enabling a TIM channel register for input capture operation, make sure that the PTD/TCHx pin is stable for at least two bus clocks. ## TOVx — Toggle On Overflow Bit When channel x is an output compare channel, this read/write bit controls the behavior of the channel x output when the TIM counter overflows. When channel x is an input capture channel, TOVx has no effect. Reset clears the TOVx bit. - 1 = Channel x pin toggles on TIM counter overflow. - 0 =Channel x pin does not toggle on TIM counter overflow. #### NOTE When TOVx is set, a TIM counter overflow takes precedence over a channel x output compare if both occur at the same time. #### CHxMAX — Channel x Maximum Duty Cycle Bit When the TOVx bit is at logic 1, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered PWM signals to 100%. As Figure 19-12 shows, the CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is cleared. Figure 19-12. CHxMAX Latency MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 #### NOTES: - 1. DIMENSIONS AND TOLERANCING PER ASME Y14.5M-1994. - 2. CONTROLLING DIMENSION: MILLIMETER. - 3. DATUM PLANE AB IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. - 4. DATUMS T, U, AND Z TO BE DETERMINED AT DATUM PLANE AB. DIMENSIONS TO BE DETERMINED AT SEATING PLANE AC. DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 PER SIDE. DIMENSIONS DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE AB. THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.350. 8. MINIMUM SOLDER PLATE THICKNESS SHALL BE 0.0076. EXACT SHAPE OF EACH CORNER IS OPTIONAL. | © FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. | MECHANICA | L OUTLINE | PRINT VERSION NO | OT TO SCALE | |--|-------------|--------------|------------------|-------------| | TITLE: | | |): 98ASH00962A | REV: G | | LQFP, 48 LEAD, 0.5 | CASE NUMBER | 2: 932–03 | 14 APR 2005 | | | (7.0 X 7.0 X 1 | 1.4) | STANDARD: JE | DEC MS-026-BBC | |