

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	HC08
Core Size	8-Bit
Speed	8MHz
Connectivity	CANbus, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68hc908gz16cfj

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Chapter 1 General Description

	I I I I I I I I I I I I I I I I I I I	
1.1	Introduction	19
1.2	Features	19
1.2.1	Standard Features	19
1.2.2	Features of the CPU08	21
1.3	MCU Block Diagram	21
1.4	Pin Assignments	21
1.5	Pin Functions	24
1.5.1	Power Supply Pins (V _{DD} and V _{SS})	24
1.5.2	Oscillator Pins (OSC1 and OSC2)	24
1.5.3	External Reset Pin (RST)	24
1.5.4	External Interrupt Pin (IRQ)	24
1.5.5	CGM Power Supply Pins (V _{DDA} and V _{SSA})	25
1.5.6	External Filter Capacitor Pin (V _{CGMXFC})	25
1.5.7	ADC Power Supply/Reference Pins (V _{DDAD} /V _{REFH} and V _{SSAD} /V _{REFL})	25
1.5.8	Port A Input/Output (I/O) Pins (PTA7/KBD7–PTA0/KBD0)	25
1.5.9	Port B I/O Pins (PTB7/AD7–PTB0/AD0)	25
1.5.10	Port C I/O Pins (PTC6–PTC0/CANTX)	25
1.5.11	Port D I/O Pins (PTD7/T2CH1–PTD0/SS)	25
1.5.12	Port E I/O Pins (PTE5–PTE2, PTE1/RxD, and PTE0/TxD)	26
1.6	Unused Pin Termination	26

Chapter 2 Memory

2.1	Introduction	27
2.2	Unimplemented Memory Locations	27
2.3	Reserved Memory Locations	27
2.4	Input/Output (I/O) Section	27
2.5	Random-Access Memory (RAM)	38
2.6	FLASH Memory (FLASH)	38
2.6.1	Functional Description	38
2.6.2	FLASH Control Register.	39
2.6.3	FLASH Page Erase Operation	40
2.6.4	FLASH Mass Erase Operation	41
2.6.5	FLASH Program/Read Operation	41
2.6.6	FLASH Block Protection.	44
2.6.7	FLASH Block Protect Register	44
2.6.8	Wait Mode	45
2.6.9	Stop Mode	45

Memory

2.6.6 FLASH Block Protection

Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target application, provision is made for protecting a block of memory from unintentional erase or program operations due to system malfunction. This protection is done by using of a FLASH block protect register (FLBPR). The FLBPR determines the range of the FLASH memory which is to be protected. The range of the protected area starts from a location defined by FLBPR and ends at the bottom of the FLASH memory (\$FFFF). When the memory is protected, the HVEN bit cannot be set in either ERASE or PROGRAM operations.

NOTE

In performing a program or erase operation, the FLASH block protect register must be read after setting the PGM or ERASE bit and before asserting the HVEN bit

When the FLBPR is program with all 0's, the entire memory is protected from being programmed and erased. When all the bits are erased (all 1's), the entire memory is accessible for program and erase.

When bits within the FLBPR are programmed, they lock a block of memory, address ranges as shown in 2.6.7 FLASH Block Protect Register. Once the FLBPR is programmed with a value other than \$FF or \$FE, any erase or program of the FLBPR or the protected block of FLASH memory is prohibited. Mass erase is disabled whenever any block is protected (FLBPR does not equal \$FF). The presence of a V_{TST} on the IRQ pin will bypass the block protection so that all of the memory included in the block protect register is open for program and erase operations.

NOTE

The FLASH block protect register is not protected with special hardware or software. Therefore, if this page is not protected by FLBPR the register is erased by either a page or mass erase operation.

2.6.7 FLASH Block Protect Register

The FLASH block protect register (FLBPR) is implemented as a byte within the FLASH memory, and therefore can only be written during a programming sequence of the FLASH memory. The value in this register determines the starting location of the protected range within the FLASH memory.

U = Unaffected by reset. Initial value from factory is 1.

Write to this register is by a programming sequence to the FLASH memory.

Figure 2-5. FLASH Block Protect Register (FLBPR)

BPR[7:0] — FLASH Block Protect Bits

These eight bits represent bits [13:6] of a 16-bit memory address. Bit 15 and Bit 14 are 1s and bits [5:0] are 0s.

- 11. Program the PLL registers accordingly:
 - a. In the VPR bits of the PLL control register (PCTL), program the binary equivalent of E.
 - b. In the PLL multiplier select register low (PMSL) and the PLL multiplier select register high (PMSH), program the binary equivalent of N. If using a 1–8 MHz reference, the PMSL register must be reprogrammed from the reset value before enabling the pll.
 - c. In the PLL VCO range select register (PMRS), program the binary coded equivalent of L.

Table 4-3 provides numeric examples (register values are in hexadecimal notation):

f _{BUS}	f _{RCLK}	Ν	Е	L
500 kHz	1 MHz	002	0	1B
1.25 MHz	1 MHz	005	0	45
2.0 MHz	1 MHz	008	0	70
2.5 MHz	1 MHz	00A	1	45
3.0 MHz	1 MHz	00C	1	53
4.0 MHz	1 MHz	010	1	70
5.0 MHz	1 MHz	014	2	46
7.0 MHz	1 MHz	01C	2	62
8.0 MHz	1 MHz	020	2	70

Table 4-3. Numeric Example

4.3.7 Special Programming Exceptions

The programming method described in 4.3.6 Programming the PLL does not account for two possible exceptions. A value of 0 for N or L is meaningless when used in the equations given. To account for these exceptions:

- A 0 value for N is interpreted exactly the same as a value of 1.
- A 0 value for L disables the PLL and prevents its selection as the source for the base clock.

See 4.3.8 Base Clock Selector Circuit.

4.3.8 Base Clock Selector Circuit

This circuit is used to select either the crystal clock, CGMXCLK, or the VCO clock, CGMVCLK, as the source of the base clock, CGMOUT. The two input clocks go through a transition control circuit that waits up to three CGMXCLK cycles and three CGMVCLK cycles to change from one clock source to the other. During this time, CGMOUT is held in stasis. The output of the transition control circuit is then divided by two to correct the duty cycle. Therefore, the bus clock frequency, which is one-half of the base clock frequency, is one-fourth the frequency of the selected clock (CGMXCLK or CGMVCLK).

The BCS bit in the PLL control register (PCTL) selects which clock drives CGMOUT. The VCO clock cannot be selected as the base clock source if the PLL is not turned on. The PLL cannot be turned off if the VCO clock is selected. The PLL cannot be turned on or off simultaneously with the selection or deselection of the VCO clock. The VCO clock also cannot be selected as the base clock source if the factor L is programmed to a 0. This value would set up a condition inconsistent with the operation of the PLL, so that the PLL would be disabled and the crystal clock would be forced as the source of the base clock.

Addr.	Register Name		Bit 7	6	5	4	3	2	1	Bit 0
\$0036	PLL Control Register (PCTL)	Read: Write:	PLLIE	PLLF	PLLON	BCS	R	R	VPR1	VPR0
	See page 69.	Reset:	0	0	1	0	0	0	0	0
PL \$0037	PLL Bandwidth Control	Read:		LOCK	ACO	0	0	0	0	Р
	Register (PBWC)	Write:	AUTO		ACQ					n
	See page 71.	Reset:	0	0	0	0	0	0	0	0
PLL \$0038	PLL Multiplier Select High	Read:	0	0	0	0	MUL 11	MUI 10	MUL9	MUIQ
	Register (PMSH)	Write:					MOLTI	NIOLIU		WIOLO
	See page 72.	Reset:	0	0	0	0	0	0	0	0
PLL Multip \$0039 R	PLL Multiplier Select Low Register (PMSL)	Read: Write:	MUL7	MUL6	MUL5	MUL4	MUL3	MUL2	MUL1	MUL0
	See page 73.	Reset:	0	1	0	0	0	0	0	0
\$003A	PLL VCO Select Range Register (PMRS)	Read: Write:	VRS7	VRS6	VRS5	VRS4	VRS3	VRS2	VRS1	VRS0
	See page 73.	Reset:	0	1	0	0	0	0	0	0
		Read:	0	0	0	0	P	В	B	В
\$003B	Reserved Register	Write:						11	11	11
		Reset:	0	0	0	0	0	0	0	1
				= Unimplemented		R	= Reserved			

NOTES:

- 1. When AUTO = 0, PLLIE is forced clear and is read-only.
- 2. When AUTO = 0, PLLF and LOCK read as clear.
- 3. When AUTO = 1, \overline{ACQ} is read-only.
- 4. When PLLON = 0 or VRS7:VRS0 = \$0, BCS is forced clear and is read-only.
- 5. When PLLON = 1, the PLL programming register is read-only.
- 6. When BCS = 1, PLLON is forced set and is read-only.

Figure 4-3. CGM I/O Register Summary

4.5.1 PLL Control Register

The PLL control register (PCTL) contains the interrupt enable and flag bits, the on/off switch, the base clock selector bit, and the VCO power-of-two range selector bits.

MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4

Clock Generator Module (CGM)

LOCK — Lock Indicator Bit

When the AUTO bit is set, LOCK is a read-only bit that becomes set when the VCO clock, CGMVCLK, is locked (running at the programmed frequency). When the AUTO bit is clear, LOCK reads as logic 0 and has no meaning. The write one function of this bit is reserved for test, so this bit must **always** be written a 0. Reset clears the LOCK bit.

1 = VCO frequency correct or locked

0 = VCO frequency incorrect or unlocked

ACQ — Acquisition Mode Bit

When the AUTO bit is set, \overline{ACQ} is a read-only bit that indicates whether the PLL is in acquisition mode or tracking mode. When the AUTO bit is clear, \overline{ACQ} is a read/write bit that controls whether the PLL is in acquisition or tracking mode.

In automatic bandwidth control mode (AUTO = 1), the last-written value from manual operation is stored in a temporary location and is recovered when manual operation resumes. Reset clears this bit, enabling acquisition mode.

1 = Tracking mode

0 = Acquisition mode

4.5.3 PLL Multiplier Select Register High

The PLL multiplier select register high (PMSH) contains the programming information for the high byte of the modulo feedback divider.

Figure 4-6. PLL Multiplier Select Register High (PMSH)

MUL11–MUL8 — Multiplier Select Bits

These read/write bits control the high byte of the modulo feedback divider that selects the VCO frequency multiplier N. (See 4.3.3 PLL Circuits and 4.3.6 Programming the PLL.) A value of \$0000 in the multiplier select registers configures the modulo feedback divider the same as a value of \$0001. Reset initializes the registers to \$0040 for a default multiply value of 64.

NOTE

The multiplier select bits have built-in protection such that they cannot be written when the PLL is on (PLLON = 1).

PMSH[7:4] — Unimplemented Bits

These bits have no function and always read as logic 0s.

Central Processor Unit (CPU)

Source	Operation	Description		o	Effect on CCR				ress e	ode	rand	es
Form	Operation	Description	v	н	I	Ν	z	С	Add	Opci	Opei	Cycl
PULA	Pull A from Stack	$SP \leftarrow (SP + 1); Pull (A)$	-	-	-	-	-	-	INH	86		2
PULH	Pull H from Stack	$SP \leftarrow (SP + 1); Pull (H)$	-	-	-	-	-	-	INH	8A		2
PULX	Pull X from Stack	$SP \leftarrow (SP + 1); Pull (X)$	-	-	-	-	-	-	INH	88		2
ROL <i>opr</i> ROLA ROLX ROL <i>opr</i> ,X ROL ,X ROL <i>opr</i> ,SP	Rotate Left through Carry		t	_	_	ţ	ţ	ţ	DIR INH INH IX1 IX SP1	39 49 59 69 79 9E69	dd ff ff	4 1 4 3 5
ROR <i>opr</i> RORA RORX ROR <i>opr</i> ,X ROR ,X ROR <i>opr</i> ,SP	Rotate Right through Carry	b7 b0	ţ	_	_	ţ	ţ	ţ	DIR INH INH IX1 IX SP1	36 46 56 66 76 9E66	dd ff ff	411435
RSP	Reset Stack Pointer	$SP \leftarrow \$FF$	-	-	-	-	-	-	INH	9C		1
RTI	Return from Interrupt	$\begin{array}{l} SP \leftarrow (SP) + 1; \ Pull \ (CCR) \\ SP \leftarrow (SP) + 1; \ Pull \ (A) \\ SP \leftarrow (SP) + 1; \ Pull \ (X) \\ SP \leftarrow (SP) + 1; \ Pull \ (PCH) \\ SP \leftarrow (SP) + 1; \ Pull \ (PCL) \end{array}$	ţ	t	ţ	ţ	ţ	ţ	INH	80		7
RTS	Return from Subroutine	$SP \leftarrow SP + 1$; Pull (PCH) $SP \leftarrow SP + 1$; Pull (PCL)	-	-	-	-	-	-	INH	81		4
SBC #opr SBC opr SBC opr SBC opr,X SBC opr,X SBC ,X SBC opr,SP SBC opr,SP	Subtract with Carry	$A \leftarrow (A) - (M) - (C)$	ţ	_	_	ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A2 B2 C2 D2 E2 F2 9EE2 9ED2	ii dd hh II ee ff ff ff ee ff	2 3 4 4 3 2 4 5
SEC	Set Carry Bit	C ← 1	-	-	-	-	-	1	INH	99		1
SEI	Set Interrupt Mask	l ← 1	-	-	1	-	-	-	INH	9B		2
STA opr STA opr STA opr,X STA opr,X STA ,X STA opr,SP STA opr,SP	Store A in M	M ← (A)	0	_	_	ţ	ţ	_	DIR EXT IX2 IX1 IX SP1 SP2	B7 C7 D7 E7 F7 9EE7 9ED7	dd hh II ee ff ff ee ff	3443245
STHX opr	Store H:X in M	(M:M + 1) ← (H:X)	0	-	-	\$	\$	Ι	DIR	35	dd	4
STOP	Enable Interrupts, Stop Processing, Refer to MCU Documentation	$I \leftarrow 0$; Stop Processing	-	-	0	—	-	-	INH	8E		1
STX opr STX opr STX opr;X STX opr;X STX,X STX,X STX opr;SP STX opr;SP	Store X in M	$M \gets (X)$	0	_	_	ţ	ţ	_	DIR EXT IX2 IX1 IX SP1 SP2	BF CF DF FF 9EEF 9EDF	dd hh II ee ff ff ee ff	3443245
SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB ,X SUB opr,SP SUB opr,SP	Subtract	A ← (A) – (M)	ţ	_	_	ţ	ţ	ţ	IMM DIR EXT IX2 IX1 IX SP1 SP2	A0 B0 C0 D0 E0 F0 9EE0 9ED0	ii dd hh II ee ff ff ff ee ff	23443245

Table 7-1. Instruction Set Summary (Sheet 5 of 6)

MSCAN08 Controller (MSCAN08)

12.12.3 Data Length Register (DLR)

This register keeps the data length field of the CAN frame.

DLC3–DLC0 — Data Length Code Bits

The data length code contains the number of bytes (data byte count) of the respective message. At transmission of a remote frame, the data length code is transmitted as programmed while the number of transmitted bytes is always 0. The data byte count ranges from 0 to 8 for a data frame. Table 12-5 shows the effect of setting the DLC bits.

	Data Length Code											
DLC3	DLC2	DLC1	DLC0	Count								
0	0	0	0	0								
0	0	0	1	1								
0	0	1	0	2								
0	0	1	1	3								
0	1	0	0	4								
0	1	0	1	5								
0	1	1	0	6								
0	1	1	1	7								
1	0	0	0	8								

Table 12-5. Data Length Codes

12.12.4 Data Segment Registers (DSRn)

The eight data segment registers contain the data to be transmitted or received. The number of bytes to be transmitted or being received is determined by the data length code in the corresponding DLR.

12.12.5 Transmit Buffer Priority Registers

Figure 12-14	. Transmit	Buffer	Priority	Register	(TBPR)
--------------	------------	--------	-----------------	----------	--------

PRIO7–PRIO0 — Local Priority

This field defines the local priority of the associated message buffer. The local priority is used for the internal prioritization process of the MSCAN08 and is defined to be highest for the smallest binary number. The MSCAN08 implements the following internal prioritization mechanism:

- All transmission buffers with a cleared TXE flag participate in the prioritization right before the SOF is sent.
- The transmission buffer with the lowest local priority field wins the prioritization.
- In case more than one buffer has the same lowest priority, the message buffer with the lower index number wins.

MSCAN08 Controller (MSCAN08)

Resets and Interrupts

14.3.3.1 Interrupt Status Register 1

Address:	\$FE04							
	Bit 7	6	5	4	3	2	1	Bit 0
Read:	IF6	IF5	IF4	IF3	IF2	IF1	0	0
Write:	R	R	R	R	R	R	R	R
Reset:	0	0	0	0	0	0	0	0
	R	= Reserved						

Figure 14-6. Interrupt Status Register 1 (INT1)

IF6-IF1 — Interrupt Flags 6-1

These flags indicate the presence of interrupt requests from the sources shown in Table 14-2.

1 = Interrupt request present

0 = No interrupt request present

Bit 1 and Bit 0 — Always read 0

14.3.3.2 Interrupt Status Register 2

Figure 14-7. Interrupt Status Register 2 (INT2)

IF14–IF7 — Interrupt Flags 14–7

These flags indicate the presence of interrupt requests from the sources shown in Table 14-2.

- 1 = Interrupt request present
- 0 = No interrupt request present

14.3.3.3 Interrupt Status Register 3

Figure 14-8. Interrupt Status Register 3 (INT3)

IF20–IF15 — Interrupt Flags 20–15

This flag indicates the presence of an interrupt request from the source shown in Table 14-2. 1 = Interrupt request present

0 = No interrupt request present

Bits 7-6 — Always read 0

15.8.4 ESCI Status Register 1

ESCI status register 1 (SCS1) contains flags to signal these conditions:

- Transfer of SCDR data to transmit shift register complete
- Transmission complete
- Transfer of receive shift register data to SCDR complete
- Receiver input idle
- Receiver overrun
- Noisy data
- Framing error
- Parity error

Figure 15-13. ESCI Status Register 1 (SCS1)

SCTE — ESCI Transmitter Empty Bit

This clearable, read-only bit is set when the SCDR transfers a character to the transmit shift register. SCTE can generate an ESCI transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set, SCTE generates an ESCI transmitter CPU interrupt request. In normal operation, clear the SCTE bit by reading SCS1 with SCTE set and then writing to SCDR. Reset sets the SCTE bit.

- 1 = SCDR data transferred to transmit shift register
- 0 = SCDR data not transferred to transmit shift register

TC — Transmission Complete Bit

This read-only bit is set when the SCTE bit is set, and no data, preamble, or break character is being transmitted. TC generates an ESCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also set. TC is cleared automatically when data, preamble, or break is queued and ready to be sent. There may be up to 1.5 transmitter clocks of latency between queueing data, preamble, and break and the transmission actually starting. Reset sets the TC bit.

1 = No transmission in progress

0 = Transmission in progress

SCRF — ESCI Receiver Full Bit

This clearable, read-only bit is set when the data in the receive shift register transfers to the ESCI data register. SCRF can generate an ESCI receiver CPU interrupt request. When the SCRIE bit in SCC2 is set the SCRF generates a CPU interrupt request. In normal operation, clear the SCRF bit by reading SCS1 with SCRF set and then reading the SCDR. Reset clears SCRF.

- 1 = Received data available in SCDR
- 0 = Data not available in SCDR

IDLE — Receiver Idle Bit

This clearable, read-only bit is set when 10 or 11 consecutive logic 1s appear on the receiver input. IDLE generates an ESCI receiver CPU interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit by reading SCS1 with IDLE set and then reading the SCDR. After the receiver is enabled, it

Figure 17-15. SPI Status and Control Register (SPSCR)

SPRF — SPI Receiver Full Bit

This clearable, read-only flag is set each time a byte transfers from the shift register to the receive data register. SPRF generates a CPU interrupt request if the SPRIE bit in the SPI control register is set also.

During an SPRF CPU interrupt, the CPU clears SPRF by reading the SPI status and control register with SPRF set and then reading the SPI data register.

Reset clears the SPRF bit.

- 1 = Receive data register full
- 0 = Receive data register not full

ERRIE — Error Interrupt Enable Bit

This read/write bit enables the MODF and OVRF bits to generate CPU interrupt requests. Reset clears the ERRIE bit.

1 = MODF and OVRF can generate CPU interrupt requests

0 = MODF and OVRF cannot generate CPU interrupt requests

OVRF — Overflow Bit

This clearable, read-only flag is set if software does not read the byte in the receive data register before the next full byte enters the shift register. In an overflow condition, the byte already in the receive data register is unaffected, and the byte that shifted in last is lost. Clear the OVRF bit by reading the SPI status and control register with OVRF set and then reading the receive data register. Reset clears the OVRF bit.

1 = Overflow

0 = No overflow

MODF — Mode Fault Bit

This clearable, read-only flag is set in a slave SPI if the \overline{SS} pin goes high during a transmission with the MODFEN bit set. In a master SPI, the MODF flag is set if the \overline{SS} pin goes low at any time with the MODFEN bit set. Clear the MODF bit by reading the SPI status and control register (SPSCR) with MODF set and then writing to the SPI control register (SPCR). Reset clears the MODF bit.

 $1 = \overline{SS}$ pin at inappropriate logic level

 $0 = \overline{SS}$ pin at appropriate logic level

SPTE — SPI Transmitter Empty Bit

This clearable, read-only flag is set each time the transmit data register transfers a byte into the shift register. SPTE generates an SPTE CPU interrupt request or an SPTE DMA service request if the SPTIE bit in the SPI control register is set also.

NOTE

Do not write to the SPI data register unless the SPTE bit is high.

During an SPTE CPU interrupt, the CPU clears the SPTE bit by writing to the transmit data register. Reset sets the SPTE bit.

1 = Transmit data register empty

0 = Transmit data register not empty

Chapter 18 Timebase Module (TBM)

18.1 Introduction

This section describes the timebase module (TBM). The TBM will generate periodic interrupts at user selectable rates using a counter clocked by the external clock source. This TBM version uses 15 divider stages, eight of which are user selectable. A configuration option bit to select an additional 128 divide of the external clock source can be selected. See Chapter 5 Configuration Register (CONFIG)

18.2 Features

Features of the TBM module include:

- External clock or an additional divide-by-128 selected by configuration option bit as clock source
- Software configurable periodic interrupts with divide-by: 8, 16, 32, 64, 128, 2048, 8192, and 32768 taps of the selected clock source
- Configurable for operation during stop mode to allow periodic wakeup from stop

18.3 Functional Description

This module can generate a periodic interrupt by dividing the clock source supplied from the clock generator module, CGMXCLK.

The counter is initialized to all 0s when TBON bit is cleared. The counter, shown in Figure 18-1, starts counting when the TBON bit is set. When the counter overflows at the tap selected by TBR2–TBR0, the TBIF bit gets set. If the TBIE bit is set, an interrupt request is sent to the CPU. The TBIF flag is cleared by writing a 1 to the TACK bit. The first time the TBIF flag is set after enabling the timebase module, the interrupt is generated at approximately half of the overflow period. Subsequent events occur at the exact period.

The timebase module may remain active after execution of the STOP instruction if the crystal oscillator has been enabled to operate during stop mode through the OSCENINSTOP bit in the configuration register. The timebase module can be used in this mode to generate a periodic wakeup from stop mode.

18.4 Interrupts

The timebase module can periodically interrupt the CPU with a rate defined by the selected TBMCLK and the select bits TBR2–TBR0. When the timebase counter chain rolls over, the TBIF flag is set. If the TBIE bit is set, enabling the timebase interrupt, the counter chain overflow will generate a CPU interrupt request.

NOTE

Interrupts must be acknowledged by writing a logic 1 to the TACK bit.

MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4

			Divider Tap					
TBR2	TBR1	TBR0	TMBCLKSEL					
			0	1				
0	0	0	32,768	4,194,304				
0	0	1	8192	1,048,576				
0	1	0	2048	262144				
0	1	1	128	16,384				
1	0	0	64	8192				
1	0	1	32	4096				
1	1	0	16	2048				
1	1	1	8	1024				

Table 18-1. Timebase Divider Selection

As an example, a clock source of 4.9152 MHz, with the TMCLKSEL set for divide-by-128 and the TBR2–TBR0 set to {011}, the divider tap is1 and the interrupt rate calculates to:

 $1/(4.9152 \times 10^{6}/128) = 26 \,\mu s$

NOTE

Do not change TBR2–TBR0 bits while the timebase is enabled (TBON = 1).

18.6 Low-Power Modes

The WAIT and STOP instructions put the MCU in low power- consumption standby modes.

18.6.1 Wait Mode

The timebase module remains active after execution of the WAIT instruction. In wait mode the timebase register is not accessible by the CPU.

If the timebase functions are not required during wait mode, reduce the power consumption by stopping the timebase before executing the WAIT instruction.

18.6.2 Stop Mode

The timebase module may remain active after execution of the STOP instruction if the internal clock generator has been enabled to operate during stop mode through the OSCENINSTOP bit in the configuration register. The timebase module can be used in this mode to generate a periodic wakeup from stop mode.

If the internal clock generator has not been enabled to operate in stop mode, the timebase module will not be active during stop mode. In stop mode, the timebase register is not accessible by the CPU.

If the timebase functions are not required during stop mode, reduce power consumption by disabling the timebase module before executing the STOP instruction.

19.9.1 TIM Status and Control Register

The TIM status and control register (TSC):

- Enables TIM overflow interrupts
- Flags TIM overflows
- Stops the TIM counter
- Resets the TIM counter
- Prescales the TIM counter clock

Address: T1SC, \$0020 and T2SC, \$002B

Figure 19-5. TIM Status and Control Register (TSC)

TOF — TIM Overflow Flag Bit

This read/write flag is set when the TIM counter reaches the modulo value programmed in the TIM counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set and then writing a logic 0 to TOF. If another TIM overflow occurs before the clearing sequence is complete, then writing logic 0 to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic 1 to TOF has no effect.

1 = TIM counter has reached modulo value

0 = TIM counter has not reached modulo value

TOIE — **TIM** Overflow Interrupt Enable Bit

This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the TOIE bit.

1 = TIM overflow interrupts enabled

0 = TIM overflow interrupts disabled

TSTOP — TIM Stop Bit

This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM counter until software clears the TSTOP bit.

1 = TIM counter stopped

0 = TIM counter active

NOTE

Do not set the TSTOP bit before entering wait mode if the TIM is required to exit wait mode.

TRST — TIM Reset Bit

Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on any other registers. Counting resumes from \$0000. TRST is cleared automatically after the TIM counter is reset and always reads as logic 0. Reset clears the TRST bit.

1 = Prescaler and TIM counter cleared

0 = No effect

NOTE

Setting the TSTOP and TRST bits simultaneously stops the TIM counter at a value of \$0000.

MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4

Timer Interface Module (TIM)

CHxF — Channel x Flag Bit

When channel x is an input capture channel, this read/write bit is set when an active edge occurs on the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the TIM counter registers matches the value in the TIM channel x registers.

When TIM CPU interrupt requests are enabled (CHxIE = 1), clear CHxF by reading TIM channel x status and control register with CHxF set and then writing a logic 0 to CHxF. If another interrupt request occurs before the clearing sequence is complete, then writing logic 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF.

Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.

1 = Input capture or output compare on channel x

0 = No input capture or output compare on channel x

CHxIE — Channel x Interrupt Enable Bit

This read/write bit enables TIM CPU interrupt service requests on channel x. Reset clears the CHxIE bit.

1 = Channel x CPU interrupt requests enabled

0 = Channel x CPU interrupt requests disabled

MSxB — Mode Select Bit B

This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIM1 channel 0 and TIM2 channel 0 status and control registers.

Setting MS0B disables the channel 1 status and control register and reverts TCH1 to general-purpose I/O.

Reset clears the MSxB bit.

1 = Buffered output compare/PWM operation enabled

0 = Buffered output compare/PWM operation disabled

MSxA — Mode Select Bit A

When ELSxB:A \neq 00, this read/write bit selects either input capture operation or unbuffered output compare/PWM operation. See Table 19-3.

1 = Unbuffered output compare/PWM operation

0 = Input capture operation

When ELSxB:A = 00, this read/write bit selects the initial output level of the TCHx pin. See Table 19-3. Reset clears the MSxA bit.

1 = Initial output level low

0 = Initial output level high

NOTE

Before changing a channel function by writing to the MSxB or MSxA bit, set the TSTOP and TRST bits in the TIM status and control register (TSC).

ELSxB and ELSxA — Edge/Level Select Bits

When channel x is an input capture channel, these read/write bits control the active edge-sensing logic on channel x.

When channel x is an output compare channel, ELSxB and ELSxA control the channel x output behavior when an output compare occurs.

When ELSxB and ELSxA are both clear, channel x is not connected to port D, and pin PTDx/TCHx is available as a general-purpose I/O pin. Table 19-3 shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits.

Development Support

computer. Monitor mode entry can be achieved without use of the higher test voltage, V_{TST} , as long as vector addresses \$FFFE and \$FFFF are blank, thus reducing the hardware requirements for in-circuit programming.

Features of the monitor ROM include:

- Normal user-mode pin functionality
- One pin dedicated to serial communication between monitor read-only memory (ROM) and host computer
- Standard mark/space non-return-to-zero (NRZ) communication with host computer
- Standard communication baud rate (7200 @ 8-MHz crystal frequency)
- Execution of code in random-access memory (RAM) or FLASH
- FLASH memory security feature⁽¹⁾
- FLASH memory programming interface
- 350 bytes monitor ROM code size (\$FE20 to \$FF7D)
- Monitor mode entry without high voltage, V_{TST}, if reset vector is blank (\$FFFE and \$FFFF contain \$FF)
- Normal monitor mode entry if high voltage is applied to IRQ

20.3.1 Functional Description

Figure 20-8 shows a simplified diagram of the monitor mode.

The monitor ROM receives and executes commands from a host computer.

Figure 20-9 and Figure 20-10 show example circuits used to enter monitor mode and communicate with a host computer via a standard RS-232 interface.

Simple monitor commands can access any memory address. In monitor mode, the MCU can execute code downloaded into RAM by a host computer while most MCU pins retain normal operating mode functions. All communication between the host computer and the MCU is through the PTA0 pin. A level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used in a wired-OR configuration and requires a pullup resistor.

Table 20-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode may be entered after a power-on reset (POR) and will allow communication at 7200 baud provided one of the following sets of conditions is met:

- If \$FFFE and \$FFFF does not contain \$FF (programmed state):
 - The external clock is 4 MHz (7200 baud)
 - <u>PTB</u>4 = low
 - IRQ = V_{TST}
- If \$FFFE and \$FFFF do not contain \$FF (programmed state):
 - The external clock is 8 MHz (7200 baud)
 - PTB4 = high
 - IRQ = V_{TST}
- If \$FFFE and \$FFFF contain \$FF (erased state):
 - The external clock is 8 MHz (7200 baud)
 - $\overline{IRQ} = V_{DD}$ (this can be implemented through the internal \overline{IRQ} pullup) or V_{SS}

^{1.} No security feature is absolutely secure. However, Freescale's strategy is to make reading or copying the FLASH difficult for unauthorized users.

MC68HC908GZ16
•
MC68HC908GZ8
Da
đ
ົດ
iheet,
J
ev.
4

Table 20-1. Monitor Mode Signal Requirements and Options

Modo		Det	Reset	Se Commu	rial nication	Mo Sele	ode ction	Divider	ы	COR	Co	ommunicatior Speed	ו	Commonte
Mode	inte	nor	Vector	ΡΤΑ0	PTA1	PTB0	PTB1	PTB4		COP	External Clock	Bus Frequency	Baud Rate	Comments
_	х	GND	Х	Х	х	Х	Х	х	х	Х	Х	Х	Х	Reset condition
Normal	V _{TST}	V _{DD} or V _{TST}	х	1	0	1	0	0	OFF	Disabled	4 MHz	2 MHz	7200	
Monitor	V _{TST}	V _{DD} or V _{TST}	х	1	0	1	0	1	OFF	Disabled	8 MHz	2 MHz	7200	
Forced Monitor	V _{DD} or GND	V _{DD}	\$FF (blank)	1	0	x	x	х	OFF	Disabled	8 MHz	2 MHz	7200	
User	V _{DD} or GND	V _{DD} or V _{TST}	Not \$FF	х	х	x	x	x	x	Enabled	x	х	x	
MON08 Function [Pin No.]	V _{TST} [6]	RST [4]	_	COM [8]	SSEL [10]	MOD0 [12]	MOD1 [14]	DIV4 [16]	_	_	OSC1 [13]		_	

PTA0 must have a pullup resistor to V_{DD} in monitor mode.
Communication speed in the table is an example to obtain a baud rate of 7200. Baud rate using external oscillator is bus frequency / 278.
External clock is an 4.0 MHz or 8.0 MHz crystal on OSC1 and OSC2 or a canned oscillator on OSC1.

4. X = don't care

5. MON08 pin refers to P&E Microcomputer Systems' MON08-Cyclone 2 by 8-pin connector.

NC	1	2	GND
NC	3	4	RST
NC	5	6	IRQ
NC	7	8	PTA0
NC	9	10	PTA1
NC	11	12	PTB0
OSC1	13	14	PTB1
V_{DD}	15	16	PTB4
			1

NOTES:

- 1. DIMENSIONS AND TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- 3. DATUM PLANE AB IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
- 4. DATUMS T, U, AND Z TO BE DETERMINED AT DATUM PLANE AB.

 \mathbf{X} dimensions to be determined at seating plane ac.

6. DIMENSIONS DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 PER SIDE. DIMENSIONS DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE AB.

THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.350.

8. MINIMUM SOLDER PLATE THICKNESS SHALL BE 0.0076.

9. EXACT SHAPE OF EACH CORNER IS OPTIONAL.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE:		DOCUMENT NO	: 98ASH00962A	REV: G
LQFP, 48 LEAD, 0.50 PI (7.0 X 7.0 X 1.4)	50 PIICH	CASE NUMBER	2: 932–03	14 APR 2005
	1.4)	STANDARD: JE	DEC MS-026-BBC	

