Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Obsolete | | Core Processor | HC08 | | Core Size | 8-Bit | | Speed | 8MHz | | Connectivity | CANbus, LINbus, SCI, SPI | | Peripherals | LVD, POR, PWM | | Number of I/O | 21 | | Program Memory Size | 16KB (16K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 1K x 8 | | Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V | | Data Converters | A/D 8x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 125°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 32-LQFP | | Supplier Device Package | 32-LQFP (7x7) | | Purchase URL | https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68hc908gz16mfj | ## **List of Chapters** | Chapter 1 General Description | 19 | |---|-----| | Chapter 2 Memory | 27 | | Chapter 3 Analog-to-Digital Converter (ADC) | 47 | | Chapter 4 Clock Generator Module (CGM) | 59 | | Chapter 5 Configuration Register (CONFIG) | 79 | | Chapter 6 Computer Operating Properly (COP) Module | 83 | | Chapter 7 Central Processor Unit (CPU) | 87 | | Chapter 8 External Interrupt (IRQ) | 99 | | Chapter 9 Keyboard Interrupt Module (KBI) | 103 | | Chapter 10 Low-Power Modes | 109 | | Chapter 11 Low-Voltage Inhibit (LVI) | 117 | | Chapter 12 MSCAN08 Controller (MSCAN08) | 121 | | Chapter 13 Input/Output (I/O) Ports | 155 | | Chapter 14 Resets and Interrupts | 169 | | Chapter 15 Enhanced Serial Communications Interface (ESCI) Module | 181 | | Chapter 16 System Integration Module (SIM) | 213 | | Chapter 17 Serial Peripheral Interface (SPI) Module | 231 | | Chapter 18 Timebase Module (TBM) | 251 | | Chapter 19 Timer Interface Module (TIM) | 255 | | Chapter 20 Development Support | 271 | | Chapter 21 Electrical Specifications | 287 | | Chapter 22 Ordering Information and Mechanical Specifications | 303 | | Appendix A MC68HC908GZ8 | 311 | #### **Table of Contents** ## Chapter 11 Low-Voltage Inhibit (LVI) | 11.1 | Introduction | 117 | |--------------------|---|-----| | 11.2 | Features | 117 | | 11.3 | Functional Description | | | 11.3.1 | Polled LVI Operation | | | 11.3.2 | Forced Reset Operation. | | | 11.3.3 | Voltage Hysteresis Protection | | | 11.3.4 | LVI Trip Selection | | | 11.4 | LVI Status Register | | | 11.5 | LVI Interrupts | | | 11.6 | Low-Power Modes | | | 11.6.1 | Wait Mode | | | 11.6.2 | Stop Mode | | | 11.0.2 | Otop Wode | 120 | | | Chapter 12 | | | | MSCAN08 Controller (MSCAN08) | | | 12.1 | Introduction | 121 | | 12.2 | Features | 121 | | 12.3 | External Pins | 122 | | 12.4 | Message Storage | | | 12.4.1 | Background | | | 12.4.2 | Receive Structures | | | 12.4.3 | Transmit Structures | | | 12.5 | Identifier Acceptance Filter | | | 12.6 | Interrupts | | | 12.6.1 | Interrupt Acknowledge | | | 12.6.2 | Interrupt Vectors | | | 12.7 | Protocol Violation Protection | | | 12.8 | Low-Power Modes | | | 12.8.1 | MSCAN08 Sleep Mode | | | 12.8.2 | MSCAN08 Soft Reset Mode | | | 12.8.3 | MSCAN08 Power-Down Mode | | | 12.8.4 | CPU Wait Mode | | | 12.8.5 | Programmable Wakeup Function | | | | Timer Link | | | 12.10 | Clock System | | | 12.11 | Memory Map | | | | Programmer's Model of Message Storage | | | 12.12
12.12.1 | | | | 12.12.1
12.12.2 | | | | 12.12.2
12.12.3 | | | | 12.12.3
12.12.4 | | | | 12.12.2
12.12.5 | | | | | Programmer's Model of Control Registers | | | 12.13
12.13.1 | <u> </u> | | | 12.13.1
12.13.2 | | | | 14.13.4 | iviocativos iviodule control negister i | 143 | MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 ## 4.4 I/O Signals The following paragraphs describe the CGM I/O signals. ## 4.4.1 Crystal Amplifier Input Pin (OSC1) The OSC1 pin is an input to the crystal oscillator amplifier. #### 4.4.2 Crystal Amplifier Output Pin (OSC2) The OSC2 pin is the output of the crystal oscillator inverting amplifier. ### 4.4.3 External Filter Capacitor Pin (CGMXFC) The CGMXFC pin is required by the loop filter to filter out phase corrections. An external filter network is connected to this pin. (See Figure 4-2.) #### NOTE To prevent noise problems, the filter network should be placed as close to the CGMXFC pin as possible, with minimum routing distances and no routing of other signals across the network. ## 4.4.4 PLL Analog Power Pin (V_{DDA}) V_{DDA} is a power pin used by the analog portions of the PLL. Connect the V_{DDA} pin to the same voltage potential as the V_{DD} pin. #### NOTE Route V_{DDA} carefully for maximum noise immunity and place bypass capacitors as close as possible to the package. ## 4.4.5 PLL Analog Ground Pin (V_{SSA}) V_{SSA} is a ground pin used by the analog portions of the PLL. Connect the V_{SSA} pin to the same voltage potential as the V_{SS} pin. #### NOTE Route V_{SSA} carefully for maximum noise immunity and place bypass capacitors as close as possible to the package. ## 4.4.6 Oscillator Enable Signal (SIMOSCEN) The SIMOSCEN signal comes from the system integration module (SIM) and enables the oscillator and PLL. #### 4.4.7 Oscillator Stop Mode Enable Bit (OSCSTOPENB) OSCSTOPENB is a bit in the CONFIG register that enables the oscillator to continue operating during stop mode. If this bit is set, the Oscillator continues running during stop mode. If this bit is not set (default), the oscillator is controlled by the SIMOSCEN signal which will disable the oscillator during stop mode. #### **Central Processor Unit (CPU)** Table 7-1. Instruction Set Summary (Sheet 3 of 6) | Source | Operation | Description | | | | ect | Ct C Address Mode | | | Opcode | Operand | les | |--|---|---|----|---|-----|----------|-------------------|----|---|--|---|--------------------------------------| | Form | оролино | | ٧ | Н | I | Ν | Z | С | Add | Opc | Ope | Cycles | | CLR opr
CLRA
CLRX
CLRH
CLR opr,X
CLR ,X
CLR opr,SP | Clear | $\begin{array}{l} M \leftarrow \$00 \\ A \leftarrow \$00 \\ X \leftarrow \$00 \\ X \leftarrow \$00 \\ H \leftarrow \$00 \\ M \leftarrow \$00 \\ M \leftarrow \$00 \\ M \leftarrow \$00 \\ M \leftarrow \$00 \end{array}$ | 0 | _ | ı | 0 | 1 | _ | DIR
INH
INH
INH
IX1
IX
SP1 | 3F
4F
5F
8C
6F
7F
9E6F | dd
ff
ff | 3
1
1
3
2
4 | | CMP #opr
CMP opr
CMP opr,
CMP opr,X
CMP opr,X
CMP,X
CMP opr,SP
CMP opr,SP | Compare A with M | (A) – (M) | ţ | _ | | ‡ | ‡ | 1 | IMM
DIR
EXT
IX2
IX1
IX
SP1
SP2 | A1
B1
C1
D1
E1
F1
9EE1
9ED1 | ii
dd
hh II
ee ff
ff
ee ff | 2
3
4
4
3
2
4
5 | | COM opr
COMA
COMX
COM opr,X
COM ,X
COM opr,SP | $ \begin{array}{c} M \leftarrow (\overline{\mathbb{M}}) = \$FF - (M) \\ A \leftarrow (\underline{A}) = \$FF - (M) \\ X \leftarrow (X) = \$FF - (M) \\ M \leftarrow (M) = \$FF - (M) \\ \end{array} $ | | | | - 1 | 1 | ‡ | 1 | DIR
INH
INH
IX1
IX
SP1 | 33
43
53
63
73
9E63 | dd
ff
ff | 4
1
1
4
3
5 | | CPHX #opr
CPHX opr | Compare H:X with M (H:X) - (M:M + 1) | | | | _ | ‡ | ‡ | ‡ | IMM
DIR | 65
75 | ii ii+1
dd | 3 | | CPX #opr
CPX opr
CPX opr
CPX ,X
CPX opr,X
CPX opr,X
CPX opr,SP
CPX opr,SP | Compare X with M | (X) – (M) | | | _ | ‡ | 1 | Į. | IMM
DIR
EXT
IX2
IX1
IX
SP1
SP2 | A3
B3
C3
D3
E3
F3
9EE3
9ED3 | | 2
3
4
4
3
2
4
5 | | DAA | Decimal Adjust A | (A) ₁₀ | U | - | - | 1 | 1 | 1 | INH | 72 | | 2 | | DBNZ opr,rel
DBNZA rel
DBNZX rel
DBNZ opr,X,rel
DBNZ X,rel
DBNZ opr,SP,rel | Decrement and Branch if Not Zero | $\begin{array}{l} A \leftarrow (A)-1 \text{ or } M \leftarrow (M)-1 \text{ or } X \leftarrow (X)-1 \\ PC \leftarrow (PC)+3+\mathit{rel}? \text{ (result)} \neq 0 \\ PC \leftarrow (PC)+2+\mathit{rel}? \text{ (result)} \neq 0 \\ PC \leftarrow (PC)+2+\mathit{rel}? \text{ (result)} \neq 0 \\ PC \leftarrow (PC)+3+\mathit{rel}? \text{ (result)} \neq 0 \\ PC \leftarrow (PC)+3+\mathit{rel}? \text{ (result)} \neq 0 \\ PC \leftarrow (PC)+2+\mathit{rel}? \text{ (result)} \neq 0 \\ PC \leftarrow (PC)+4+\mathit{rel}? \text{ (result)} \neq 0 \end{array}$ | _ | _ | ı | - | ı | _ | DIR
INH
INH
IX1
IX
SP1 | 3B
4B
5B
6B
7B
9E6B | dd rr
rr
rr
ff rr
rr
ff rr | 533546 | | DEC opr
DECA
DECX
DEC opr,X
DEC ,X
DEC opr,SP | Decrement $ \begin{array}{c} M \leftarrow (M)-1 \\ A \leftarrow (A)-1 \\ X \leftarrow (X)-1 \\ M \leftarrow (M)-1 \\ M \leftarrow (M)-1 \\ M \leftarrow (M)-1 \end{array} $ | | Į. | _ | - | 1 | 1 | _ | DIR
INH
INH
IX1
IX
SP1 | 3A
4A
5A
6A
7A
9E6A | dd
ff
ff | 4
1
1
4
3
5 | | DIV | Divide | $A \leftarrow (H:A)/(X)$
$H \leftarrow Remainder$ | _ | - | - | - | ‡ | ‡ | INH | 52 | | 7 | | EOR #opr
EOR opr
EOR opr,
EOR opr,X
EOR opr,X
EOR,X
EOR opr,SP
EOR opr,SP | Exclusive OR M with A | $A \leftarrow (A \oplus M)$ | 0 | _ | ı | ‡ | ‡ | _ | IMM
DIR
EXT
IX2
IX1
IX
SP1
SP2 | A8
B8
C8
D8
E8
F8
9EE8
9ED8 | ii
dd
hh II
ee ff
ff
ee ff | 2
3
4
4
3
2
4
5 | | INC opr
INCA
INCX
INC opr,X
INC ,X
INC opr,SP | Increment | $M \leftarrow (M) + 1$
$A \leftarrow (A) + 1$
$X \leftarrow (X) + 1$
$M \leftarrow (M) + 1$
$M \leftarrow (M) + 1$
$M \leftarrow (M) + 1$ | Î | _ | - | 1 | ‡ | _ | DIR
INH
INH
IX1
IX
SP1 | 3C
4C
5C
6C
7C
9E6C | dd
ff
ff | 4
1
1
4
3
5 | ## 10.16 Exiting Stop Mode These events restart the system clocks and load the program counter with the reset vector or with an interrupt vector: - External reset A logic 0 on the RST pin resets the MCU and loads the program counter with the contents of locations \$FFFE and \$FFFF. - External interrupt A high-to-low transition on an external interrupt pin loads the program counter with the contents of locations: - \$FFFA and \$FFFB; IRQ pin - \$FFE0 and \$FFE1; keyboard interrupt pins - Low-voltage inhibit (LVI) reset A power supply voltage below the LVI_{TRIPF} voltage resets the MCU and loads the program counter with the contents of locations \$FFFE and \$FFFF. - Timebase module (TBM) interrupt A TBM interrupt loads the program counter with the contents of locations \$FFDC and \$FFDD when the timebase counter has rolled over. This allows the TBM to generate a periodic wakeup from stop mode. - MSCAN08 interrupt MSCAN08 bus activity can wake the MCU from CPU stop. However, until the oscillator starts up and synchronization is achieved the MSCAN08 will not respond to incoming data. Upon exit from stop mode, the system clocks begin running after an oscillator stabilization delay. A 12-bit stop recovery counter inhibits the system clocks for 4096 CGMXCLK cycles after the reset or external interrupt. The short stop recovery bit, SSREC, in the CONFIG1 register controls the oscillator stabilization delay during stop recovery. Setting SSREC reduces stop recovery time from 4096 CGMXCLK cycles to 32 CGMXCLK cycles. #### NOTE Use the full stop recovery time (SSREC = 0) in applications that use an external crystal. #### 11.3.3 Voltage Hysteresis Protection Once the LVI has triggered (by having V_{DD} fall below V_{TRIPF}), the LVI will maintain a reset condition until V_{DD} rises above the rising trip point voltage, V_{TRIPR} . This prevents a condition in which the MCU is continually entering and exiting reset if V_{DD} is approximately equal to V_{TRIPF} . V_{TRIPR} is greater than V_{TRIPF} by the hysteresis voltage, V_{HYS} . #### 11.3.4 LVI Trip Selection The LVI5OR3 bit in the configuration register selects whether the LVI is configured for 5-V or 3-V protection. #### NOTE The microcontroller is guaranteed to operate at a minimum supply voltage. The trip point (V_{TRIPF} [5 V] or V_{TRIPF} [3 V]) may be lower than this. See Chapter 21 Electrical Specifications for the actual trip point voltages. ## 11.4 LVI Status Register The LVI status register (LVISR) indicates if the V_{DD} voltage was detected below the V_{TRIPF} level. Figure 11-3. LVI Status Register (LVISR) #### LVIOUT — LVI Output Bit This read-only flag becomes set when the V_{DD} voltage falls below the V_{TRIPF} trip voltage (see Table 11-1). Reset clears the LVIOUT bit. Table 11-1. LVIOUT Bit Indication | V _{DD} | LVIOUT | |---|----------------| | V _{DD} > V _{TRIPR} | 0 | | $V_{DD} < V_{TRIPF}$ | 1 | | V _{TRIPF} < V _{DD} < V _{TRIPR} | Previous value | ## 11.5 LVI Interrupts The LVI module does not generate interrupt requests. # Chapter 13 Input/Output (I/O) Ports #### 13.1 Introduction Bidirectional input-output (I/O) pins form five parallel ports. All I/O pins are programmable as inputs or outputs. All individual bits within port A, port C, and port D are software configurable with pullup devices if configured as input port bits. The pullup devices are automatically and dynamically disabled when a port bit is switched to output mode. #### 13.2 Unused Pin Termination Input pins and I/O port pins that are not used in the application must be terminated. This prevents excess current caused by floating inputs, and enhances immunity during noise or transient events. Termination methods include: - 1. Configuring unused pins as outputs and driving high or low; - 1. Configuring unused pins as inputs and enabling internal pull-ups; - 1. Configuring unused pins as inputs and using external pull-up or pull-down resistors. Never connect unused pins directly to V_{DD} or V_{SS}. Since some general-purpose I/O pins are not available on all packages, these pins must be terminated as well. Either method 1 or 2 above are appropriate. Figure 13-1. I/O Port Register Summary MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 #### Input/Output (I/O) Ports Figure 13-15. Port D I/O Circuit When bit DDRDx is a logic 1, reading address \$0003 reads the PTDx data latch. When bit DDRDx is a logic 0, reading address \$0003 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 13-5 summarizes the operation of the port D pins. | PTDPUE | DDRD | PTD | I/O Pin | Accesses to DDRD | Access | ses to PTD | |--------|------|------------------|---------------------------------------|------------------|-----------|--------------------------| | Bit | Bit | Bit | Mode | Read/Write | Read | Write | | 1 | 0 | X ⁽¹⁾ | Input, V _{DD} ⁽²⁾ | DDRD7-DDRD0 | Pin | PTD7-PTD0 ⁽³⁾ | | 0 | 0 | Х | Input, Hi-Z ⁽⁴⁾ | DDRD7-DDRD0 | Pin | PTD7-PTD0 ⁽³⁾ | | Х | 1 | Х | Output | DDRD7-DDRD0 | PTD7-PTD0 | PTD7-PTD0 | **Table 13-5. Port D Pin Functions** - 1. X = Don't care - 2. I/O pin pulled up to $V_{\mbox{\scriptsize DD}}$ by internal pullup device. - 3. Writing affects data register, but does not affect input. - 4. Hi-Z = High impedance #### 13.6.3 Port D Input Pullup Enable Register The port D input pullup enable register (PTDPUE) contains a software configurable pullup device for each of the eight port D pins. Each bit is individually configurable and requires that the data direction register, DDRD, bit be configured as an input. Each pullup is automatically and dynamically disabled when a port bit's DDRD is configured for output mode. Figure 13-16. Port D Input Pullup Enable Register (PTDPUE) MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 After every instruction, the CPU checks all pending interrupts if the I bit is not set. If more than one interrupt is pending when an instruction is done, the highest priority interrupt is serviced first. In the example shown in Figure 14-4, if an interrupt is pending upon exit from the interrupt service routine, the pending interrupt is serviced before the LDA instruction is executed. Figure 14-4. Interrupt Recognition Example The LDA opcode is prefetched by both the INT1 and INT2 RTI instructions. However, in the case of the INT1 RTI prefetch, this is a redundant operation. #### NOTE To maintain compatibility with the M6805 Family, the H register is not pushed on the stack during interrupt entry. If the interrupt service routine modifies the H register or uses the indexed addressing mode, save the H register and then restore it prior to exiting the routine. See Figure 14-5 for a flowchart depicting interrupt processing. #### **14.3.2 Sources** The sources in Table 14-1 can generate CPU interrupt requests. #### 14.3.2.1 Software Interrupt (SWI) Instruction The software interrupt (SWI) instruction causes a non-maskable interrupt. #### NOTE A software interrupt pushes PC onto the stack. An SWI does **not** push PC – 1, as a hardware interrupt does. #### 14.3.2.2 Break Interrupt The break module causes the CPU to execute an SWI instruction at a software-programmable break point. MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 #### **Resets and Interrupts** Figure 14-5. Interrupt Processing **Table 14-1. Interrupt Sources** | Source | Flag | Mask ⁽¹⁾ | INT Register
Flag | Priority ⁽²⁾ | Vector
Address | |---------------------------|--|---|----------------------|-------------------------|--------------------| | Reset | None | None | None | 0 | \$FFFE—\$FFFF | | SWI instruction | None | None | None | 0 | \$FFFC—\$FFFD | | ĪRQ pin | IRQF | IMASK1 | IF1 | 1 | \$FFFA—\$FFFB | | CGM change in lock | PLLF | PLLIE | IF2 | 2 | \$FFF8-\$FFF9 | | TIM1 channel 0 | CH0F | CH0IE | IF3 | 3 | \$FFF6-\$FFF7 | | TIM1 channel 1 | CH1F | CH1IE | IF4 | 4 | \$FFF4-\$FFF5 | | TIM1 overflow | TOF | TOIE | IF5 | 5 | \$FFF2-\$FFF3 | | TIM2 channel 0 | CH0F | CH0IE | IF6 | 6 | \$FFF0-\$FFF1 | | TIM2 channel 1 | CH1F | CH1IE | IF7 | 7 | \$FFEE-\$FFEF | | TIM2 overflow | TOF | TOIE | IF8 | 8 | \$FFEC-\$FFED | | SPI receiver full | SPRF | SPRIE | | | | | SPI overflow | OVRF | ERRIE | IF9 | 9 | \$FFEA-\$FFEB | | SPI mode fault | MODF | ERRIE | | | | | SPI transmitter empty | SPTE | SPTIE | IF10 | 10 | \$FFE8-\$FFE9 | | SCI receiver overrun | OR | ORIE | | | | | SCI noise flag | NF | NEIE | lea a | | 45550 45557 | | SCI framing error | FE | FEIE | IF11 | 11 | \$FFE6-\$FFE7 | | SCI parity error | PE | PEIE | | | | | SCI receiver full | SCRF | SCRIE | 1540 | 40 | 45554 45555 | | SCI input idle | IDLE | ILIE | IF12 | 12 | \$FFE4-\$FFE5 | | SCI transmitter empty | SCTE | SCTIE | 1540 | 40 | ΦΕΕΕΟ ΦΕΕΕΟ | | SCI transmission complete | TC | TCIE | IF13 | 13 | \$FFE2-\$FFE3 | | Keyboard pin | KEYF | IMASKK | IF14 | 14 | \$FFE0-\$FFE1 | | ADC conversion complete | COCO | AIEN | IF15 | 15 | \$FFDE-\$FFDF | | Timebase | TBIF | TBIE | IF16 | 16 | \$FFDC-\$FFDD | | MSCAN08 receiver wakeup | WUPIF | WUPIE | IF17 | 17 | \$FFDA-\$FFDB | | MSCAN08 error | RWRNIF
TWRNIF
RERIF
TERRIF
BOFFIF
OVRIF | RWRNIE
TWRNIE
RERRIE
TERRIE
BOFFIE
OVRIE | IF18 | 18 | \$FFD8-\$FFD9 | | MSCAN08 receiver | RXF | RXFIE | IF19 | 19 | \$FFD6-\$FFD7 | | MSCAN08 transmitter | TXE2
TXE1
TXE0 | TXEIE2
TXEIE1
TXEIE0 | IF20 | 20 | \$FFD4-\$FFD5 | ^{1.} The I bit in the condition code register is a global mask for all interrupt sources except the SWI instruction. 2. 0 = highest priority # Chapter 15 Enhanced Serial Communications Interface (ESCI) Module #### 15.1 Introduction The enhanced serial communications interface (ESCI) module allows asynchronous communications with peripheral devices and other microcontroller units (MCU). #### 15.2 Features #### Features include: - Full-duplex operation - Standard mark/space non-return-to-zero (NRZ) format - Programmable baud rates - Programmable 8-bit or 9-bit character length - Separately enabled transmitter and receiver - Separate receiver and transmitter central processor unit (CPU) interrupt requests - Programmable transmitter output polarity - Two receiver wakeup methods: - Idle line wakeup - Address mark wakeup - Interrupt-driven operation with eight interrupt flags: - Transmitter empty - Transmission complete - Receiver full - Idle receiver input - Receiver overrun - Noise error - Framing error - Parity error - Receiver framing error detection - Hardware parity checking - 1/16 bit-time noise detection #### **Enhanced Serial Communications Interface (ESCI) Module** #### 15.9.4 Arbitration Mode If AM[1:0] is set to 10, the arbiter module operates in arbitration mode. On every rising edge of SCI_TxD (output of the ESCI module, internal chip signal), the counter is started. When the counter reaches \$38 (ACLK = 0) or \$08 (ACLK = 1), RxD is statically sensed. If in this case, RxD is sensed low (for example, another bus is driving the bus dominant) ALOST is set. As long as ALOST is set, the TxD pin is forced to 1, resulting in a seized transmission. If SCI_TxD is sensed logic 0 without having sensed a logic 0 before on RxD, the counter will be reset, arbitration operation will be restarted after the next rising edge of SCI_TxD. The CPU can always read the state of the \overline{SS} pin by configuring the appropriate pin as an input and reading the port data register. See Table 17-3. | SPE | SPMSTR | MODFEN | SPI Configuration | State of SS Logic | |-----|-------------------|--------|---------------------|---| | 0 | X ⁽¹⁾⁾ | х | Not enabled | General-purpose I/O; SS ignored by SPI | | 1 | 0 | Х | Slave | Input-only to SPI | | 1 | 1 | 0 | Master without MODF | General-purpose I/O;
SS ignored by SPI | | 1 | 1 | 1 | Master with MODF | Input-only to SPI | **Table 17-3. SPI Configuration** ## 17.12.5 CGND (Clock Ground) CGND is the ground return for the serial clock pin, SPSCK, and the ground for the port output buffers. It is internally connected to V_{SS} as shown in Table 17-1. ## 17.13 I/O Registers Three registers control and monitor SPI operation: - SPI control register (SPCR) - · SPI status and control register (SPSCR) - SPI data register (SPDR) #### 17.13.1 SPI Control Register The SPI control register: - Enables SPI module interrupt requests - Configures the SPI module as master or slave - · Selects serial clock polarity and phase - Configures the SPSCK, MOSI, and MISO pins as open-drain outputs - Enables the SPI module Figure 17-14. SPI Control Register (SPCR) #### SPRIE — SPI Receiver Interrupt Enable Bit This read/write bit enables CPU interrupt requests generated by the SPRF bit. The SPRF bit is set when a byte transfers from the shift register to the receive data register. Reset clears the SPRIE bit. - 1 = SPRF CPU interrupt requests enabled - 0 = SPRF CPU interrupt requests disabled MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 ^{1.} X = Don't care # **Chapter 19 Timer Interface Module (TIM)** #### 19.1 Introduction This section describes the timer interface (TIM) module. The TIM is a two-channel timer that provides a timing reference with input capture, output compare, and pulse-width-modulation functions. Figure 19-1 is a block diagram of the TIM. This particular MCU has two timer interface modules which are denoted as TIM1 and TIM2. Figure 19-1. TIM Block Diagram #### **Timer Interface Module (TIM)** | Addr. | Register Name | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | |---------------|---|-----------------|---------------------------|---------------------------|--------|-------------|----------------|-------|------|----------|--| | | Timer 1 Status and Control | Read: | TOF | TOIL | TOTOD | 0 | 0 | PS2 | DC1 | PS0 | | | \$0020 | Register (T1SC) | Write: | 0 | TOIE | TSTOP | TRST | | P32 | PS1 | P30 | | | | See page 265. | Reset: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | | | Timer 1 Counter | Read: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | | \$0021 | , | Write: | | | | | | | | | | | | See page 266. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | Timer 1 Counter | Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | | \$0022 | Register Low (T1CNTL) | Write: | | | | | | | | | | | | See page 266. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | \$0023 | Timer 1 Counter Modulo
Register High (T1MODH) | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | | See page 267. | Reset: | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | \$0024 | Timer 1 Counter Modulo
Register Low (T1MODL) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | | See page 267. | Reset: | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | Timer 1 Channel 0 Status and
\$0025 Control Register (T1SC0) | Read: | CH0F | CH0IE | MS0B | MS0A | ELS0B | ELS0A | TOV0 | CH0MAX | | | | | Write: | 0 | CHUIE | IVIOUD | IVIOUA | LLOUD | ELSUA | 1000 | CHUIVIAX | | | | See page 267. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | \$0026 | Timer 1 Channel 0
Register High (T1CH0H) | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | | | See page 270. | Reset: | Indeterminate after reset | | | | | | | | | | \$0027 | Timer 1 Channel 0
Register Low (T1CH0L) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | | | See page 270. | Reset: | Indeterminate after reset | | | | | | | | | | | Timer 1 Channel 1 Status and | Read: | CH1F | | 0 | | | | | | | | \$0028 | Control Register (T1SC1) | Write: | 0 | CH1IE | | MS1A | ELS1B | ELS1A | TOV1 | CH1MAX | | | | See page 267. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | \$0029 | Timer 1 Channel 1
Register High (T1CH1H) | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | | | See page 270. | Reset: | | Indeterminate after reset | | | | | | | | | \$002A | Timer 1 Channel 1
Register Low (T1CH1L) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | | | See page 270. | Reset: | | <u> </u> | | Indetermina | te after reset | | | | | | | Timer 2 Status and Control | Read: | TOF | | | 0 | 0 | | | | | | \$002B | Register (T2SC) | Write: | 0 | TOIE | TSTOP | TRST | | PS2 | PS1 | PS0 | | | | See page 265. | Reset: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | | | Timer 2 Counter | Read: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | | \$002C | Register High (T2CNTH) | Write: | | | | | | | | | | | | See page 266. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | | = Unimplem | nented | | | | | | | Figure 19-3. TIM I/O Register Summary (Sheet 1 of 2) MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 **Timer Interface Module (TIM)** #### 19.4.3 Output Compare With the output compare function, the TIM can generate a periodic pulse with a programmable polarity, duration, and frequency. When the counter reaches the value in the registers of an output compare channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU interrupt requests. ## 19.4.3.1 Unbuffered Output Compare Any output compare channel can generate unbuffered output compare pulses as described in 19.4.3 Output Compare. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output compare value may cause the compare to be missed. The TIM may pass the new value before it is written. Use the following methods to synchronize unbuffered changes in the output compare value on channel x: - When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value. - When changing to a larger output compare value, enable TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current counter overflow period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same counter overflow period. #### 19.4.3.2 Buffered Output Compare Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors the buffered output compare function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin. #### NOTE In buffered output compare operation, do not write new output compare values to the currently active channel registers. User software should track the currently active channel to prevent writing a new value to the active channel. Writing to the active channel registers is the same as generating unbuffered output compares. #### 19.4.4 Pulse Width Modulation (PWM) By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time between overflows is the period of the PWM signal. As Figure 19-4 shows, the output compare value in the TIM channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM to clear the channel pin on output compare if the state of the PWM pulse is logic 1. Program the TIM to set the pin if the state of the PWM pulse is logic 0. The value in the TIM counter modulo registers and the selected prescaler output determines the frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing \$00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus clock period if the prescaler select value is \$000. See 19.9.1 TIM Status and Control Register. Figure 19-4. PWM Period and Pulse Width The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of an 8-bit PWM signal is variable in 256 increments. Writing \$0080 (128) to the TIM channel registers produces a duty cycle of 128/256 or 50%. #### 19.4.4.1 Unbuffered PWM Signal Generation Any output compare channel can generate unbuffered PWM pulses as described in 19.4.4 Pulse Width Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new pulse width value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect operation for up to two PWM periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that PWM period. Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the compare to be missed. The TIM may pass the new value before it is written. MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 Freescale Semiconductor 261 | Ta | hla | 20-2 | Mode | Differer | 202 | |----|-----|-------|----------|----------|-------| | 17 | DIE | /U-/- | IVIC)CIE | imierei | 10:65 | | | Functions | | | | | | | | | | |---------|----------------------|---------------------|----------------------|---------------------|--------------------|-------------------|--|--|--|--| | Modes | Reset
Vector High | Reset
Vector Low | Break
Vector High | Break
Vector Low | SWI
Vector High | SWI
Vector Low | | | | | | User | \$FFFE | \$FFFF | \$FFFC | \$FFFD | \$FFFC | \$FFFD | | | | | | Monitor | \$FEFE | \$FEFF | \$FEFC | \$FEFD | \$FEFC | \$FEFD | | | | | #### 20.3.1.4 Data Format Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format. Transmit and receive baud rates must be identical. Figure 20-11. Monitor Data Format #### 20.3.1.5 Break Signal A start bit (logic 0) followed by nine logic 0 bits is a break signal. When the monitor receives a break signal, it drives the PTA0 pin high for the duration of two bits and then echoes back the break signal. Figure 20-12. Break Transaction #### 20.3.1.6 Baud Rate The communication baud rate is controlled by the crystal frequency or external clock and the state of the PTB4 pin (when \overline{IRQ} is set to V_{TST}) upon entry into monitor mode. If monitor mode was entered with V_{DD} on \overline{IRQ} and the reset vector blank, then the baud rate is independent of PTB4. Table 20-1 also lists external frequencies required to achieve a standard baud rate of 7200 bps. The effective baud rate is the bus frequency divided by 278. If using a crystal as the clock source, be aware of the upper frequency limit that the internal clock module can handle. See 21.7 5.0-Volt Control Timing or 21.6 3.3-Vdc Electrical Characteristics for this limit. #### 20.3.1.7 Commands The monitor ROM firmware uses these commands: - READ (read memory) - WRITE (write memory) - IREAD (indexed read) - IWRITE (indexed write) - READSP (read stack pointer) - RUN (run user program) MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4