Welcome to **E-XFL.COM** #### What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | Details | | |----------------------------|--| | Product Status | Obsolete | | Core Processor | HC08 | | Core Size | 8-Bit | | Speed | 8MHz | | Connectivity | CANbus, LINbus, SCI, SPI | | Peripherals | LVD, POR, PWM | | Number of I/O | 21 | | Program Memory Size | 16KB (16K x 8) | | Program Memory Type | FLASH | | EEPROM Size | - | | RAM Size | 1K x 8 | | Voltage - Supply (Vcc/Vdd) | 3V ~ 5.5V | | Data Converters | A/D 8x10b | | Oscillator Type | Internal | | Operating Temperature | -40°C ~ 105°C (TA) | | Mounting Type | Surface Mount | | Package / Case | 32-LQFP | | Supplier Device Package | 32-LQFP (7x7) | | Purchase URL | https://www.e-xfl.com/product-detail/nxp-semiconductors/mc68hc908gz16vfj | Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong ## **Revision History** The following revision history table summarizes changes contained in this document. For your convenience, the page number designators have been linked to the appropriate location. # **Revision History** | Date | Revision
Level | Description | Page
Number(s) | | | | |-------------------|-------------------|---|-------------------|---|---|------------| | February,
2003 | N/A | Initial release | N/A | | | | | | | Reorganized to meet latest publication standards for M68HC08 Family documentation | N/A | | | | | | | Added Table 1-1. Summary of Device Variations | 19 | | | | | | | Figure 5-2. Configuration Register 1 (CONFIG1) — Changed bit 0 from SCIBDSRC to ESCIBDSRC. | 80 | | | | | | | Chapter 15 Enhanced Serial Communications Interface (ESCI) Module — Updated with additional data | 181–212 | | | | | October, | 1.0 | Chapter 17 Serial Peripheral Interface (SPI) Module — Removed all references to DMAS | N/A | | | | | 2004 | 1.0 | 1.0 | 1.0 | 1.0 | Added DC injection current values to: 21.5 5-Vdc Electrical Characteristics 21.6 3.3-Vdc Electrical Characteristics | 289
291 | | | | 21.15 Memory Characteristics — Updated table entries | 302 | | | | | | | Corrected ICG references to CGM throughout document. | N/A | | | | | | | | | Chapter 22 Ordering Information and Mechanical Specifications — Corrected device ordering information | 303 | | | | | Added the following: Appendix A MC68HC908GZ8 | 311–314 | | | | | | | 205 — Corrected Functionality entries | 205 | | | | | June,
2005 | 2.0 | 15.9.1 ESCI Arbiter Control Register — Corrected bit ACLK bit description | 209 | | | | | 2000 | | 15.9.3 Bit Time Measurement — Corrected definition for ACLK bit | 210 | | | | | March,
2006 | 3.0 | 10.5 Clock Generator Module (CGM) — Updated description to remove erroneous information. | 110 | | | | | | | 1.6 Unused Pin Termination — Added new section. | 26 | | | | | | | 12.2 Features — Corrected timer link connection from TIM2 channel 0 to TIM1 channel 0. | 121 | | | | | October,
2006 | 4.0 | 12.9 Timer Link — Corrected timer link connection from TIM2 channel 0 to TIM1 channel 0. | 133 | | | | | 2000 | | 13.1 Introduction — Replaced note with unused pin termination text. | 155 | | | | | | | 21.5 5-Vdc Electrical Characteristics and 21.6 3.3-Vdc Electrical Characteristics — Updated DC injection current specification. | 289
291 | | | | ## **Table of Contents** # Chapter 11 Low-Voltage Inhibit (LVI) | 11.1 | Introduction | 117 | |----------------------------|---|------| | 11.2 | Features | 117 | | 11.3 | Functional Description | | | 11.3.1 | Polled LVI Operation | | | 11.3.2 | Forced Reset Operation. | | | 11.3.3 | Voltage Hysteresis Protection | | | 11.3.4 | LVI Trip Selection | | | 11.4 | LVI Status Register | | | 11.5 | LVI Interrupts | | | 11.6 | Low-Power Modes | | | 11.6.1 | Wait Mode | | | 11.6.2 | Stop Mode | | | 11.0.2 | Ctop Mode | 120 | | | Chapter 12 | | | | MSCAN08 Controller (MSCAN08) | | | 12.1 | Introduction | 121 | | 12.2 | Features | 121 | | 12.3 | External Pins | 122 | | 12.4 | Message Storage | | | 12.4.1 | Background | | | 12.4.2 | Receive Structures | | | 12.4.3 | Transmit Structures | | | 12.5 | Identifier Acceptance Filter | | | 12.6 | Interrupts | | | 12.6.1 | Interrupt Acknowledge | | | 12.6.2 | Interrupt Vectors | | | 12.7 | Protocol Violation Protection | | | 12.8 | Low-Power Modes | | | 12.8.1 | MSCAN08 Sleep Mode | | | 12.8.2 | MSCAN08 Soft Reset Mode | | | 12.8.3 | MSCAN08 Power-Down Mode | | | 12.8.4 | CPU Wait Mode | | | 12.8.5 | Programmable Wakeup Function | | | | Timer Link | | | 12.10 | Clock System | | | 12.11 | Memory Map | | | | Programmer's Model of Message Storage | | | 12.12
12.12.1 | | | | 12.12.
12.12.2 | | | | 12.12.2
12.12.3 | | | | 12.12.4
12.12.4 | | | | 12.12. <u>.</u>
12.12.5 | | | | | Programmer's Model of Control Registers | | | 12.13
12.13.1 | | | | 12.13.
12.13.2 | | | | 0.2 | - MOO/MIOO MOODIC COMMON REGISTER T | 1 70 | MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 ## **Table of Contents** | | errupts | | |-----------|--|-----| | 14.3.1 | Effects | | | 14.3.2 | Sources | | | 14.3.2.1 | Software Interrupt (SWI) Instruction | 173 | | 14.3.2.2 | Break Interrupt | 173 | | 14.3.2.3 | IRQ Pin | 176 | | 14.3.2.4 | Clock Generator (CGM) | 176 | | 14.3.2.5 | Timer Interface Module 1 (TIM1) | 176 | | 14.3.2.6 | Timer Interface Module 2 (TIM2) | | | 14.3.2.7 | Serial Peripheral Interface (SPI) | | | 14.3.2.8 | Serial Communications Interface (SCI) | | | 14.3.2.9 | KBD0–KBD7 Pins. | | | 14.3.2.10 | Analog-to-Digital Converter (ADC) | | | 14.3.2.11 | Timebase Module (TBM) | | | 14.3.2.12 | MSCAN | | | 14.3.3 | Interrupt Status Registers | | | 14.3.3.1 | Interrupt Status Register 1 | | | 14.3.3.1 | · | | | 14.3.3.3 | Interrupt Status Register 2 | | | 14.3.3.3 | Interrupt Status Register 3 | 100 | | | Chapter 15 | | | | | | | | Enhanced Serial Communications Interface (ESCI) Module | | | | roduction | | | | atures | | | 15.3 Pin | Name Conventions | 183 | | 15.4 Fu | nctional Description | 183 | | 15.4.1 | Data Format | 186 | | 15.4.2 | Transmitter | 186 | | 15.4.2.1 | Character Length | 187 | | 15.4.2.2 | Character Transmission | | | 15.4.2.3 | Break Characters | | | 15.4.2.4 | Idle Characters | 188 | | 15.4.2.5 | Inversion of Transmitted Output | | | 15.4.2.6 | Transmitter Interrupts | | | 15.4.3 | Receiver | | | 15.4.3.1 | Character Length | | | 15.4.3.2 | Character Reception. | | | 15.4.3.3 | Data Sampling | | | 15.4.3.4 | Framing Errors | | | 15.4.3.5 | Baud Rate Tolerance | | | 15.4.3.6 | | 193 | | 15.4.3.7 | Receiver Interrupts | | | 15.4.3.7 | Error Interrupts | | | | · | | | | w-Power Modes | | | 15.5.1 | | 195 | | 15.5.2 | Stop Mode | | | 15.6 ES | CI During Break Module Interrupts | 195 | MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 | Addr. | Register Name | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | |--------|---|-----------------|-------|---------|---------|-----------|---------------------|----------|----------|---------| | | ESCI Data Register | Read: | R7 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | | \$0018 | | | T7 | T6 | T5 | T4 | T3 | T2 | T1 | T0 | | | See page 204. | Reset: | | | | Unaffecte | d by reset | | | | | \$0019 | ESCI Baud Rate Register
(SCBR) | Read:
Write: | LINT | LINR | SCP1 | SCP0 | R | SCR2 | SCR1 | SCR0 | | | See page 204. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Keyboard Status | Read: | 0 | 0 | 0 | 0 | KEYF | 0 | IMASKK | MODEK | | \$001A | and Control Register
(INTKBSCR) | Write: | | | | | | ACKK | IIVIASKK | IVIODEK | | | See page 107. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$001B | Keyboard Interrupt Enable
Register (INTKBIER) | Read:
Write: | KBIE7 | KBIE6 | KBIE5 | KBIE4 | KBIE3 | KBIE2 | KBIE1 | KBIE0 | | | See page 108. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Timebase Module Control | Read: | TBIF | TDDo | TBR1 | TBR0 | 0 | TDIE | TBON | D | | \$001C | Register (TBCR) | Write: | | TBR2 | IDNI | IDNU | TACK TBIE | | IBON | R | | | See page 254. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | IRQ Status and Control | Read: | 0 | 0 | 0 | 0 | IRQF | 0 | IMASK | MODE | | \$001D | Register (INTSCR) | Write: | | | | | | ACK | IIVIASK | MODE | | | See page 102. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Configuration Register 2 | Read: | 0 | 0 | 0 | 0 | MSCANEN | TMCLKSEL | OSCENIN- | ESCIBD- | | \$001E | (CONFIG2) ⁽¹⁾
See page 79. | Write: | | | | | MOCANEN | TWOLKSEL | STOP | SRC | | | See page 19. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | \$001F | Configuration Register 1 (CONFIG1) ⁽¹⁾ | Read:
Write: | COPRS | LVISTOP | LVIRSTD | LVIPWRD | LVI5OR3
(Note 1) | SSREC | STOP | COPD | | | See page 80. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ^{1.} One-time writable register after each reset, except LVI5OR3 bit. LVI5OR3 bit is only reset via POR (power-on reset). | | Timer 1 Status and Control | | TOF | TOIE | TSTOP | 0 | 0 | PS2 | PS1 | PS0 | |---------------|--|-----------------|--------|------------|-------|-------------|----|--------------|-----|-------| | \$0020 | Register (T1SC) | Write: | 0 | 0 | | TRST | | 1 02 | 101 | 1 30 | | | See page 265. | Reset: | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | | | Timer 1 Counter | Read: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | \$0021 | Register High (T1CNTH) | Write: | | | | | | | | | | | See page 266. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | Timer 1 Counter | Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$0022 | Register Low (T1CNTL) | Write: | | | | | | | | | | | See page 266. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0023 | Timer 1 Counter Modulo
Register High (T1MODH) | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | See page 267. | | Reset: | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | | | | = Unimplem | ented | R = Reserve | d | U = Unaffect | ed | | Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 8) MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 #### Memory ## 2.6.3 FLASH Page Erase Operation Use this step-by-step procedure to erase a page (64 bytes) of FLASH memory to read as logic 1. A page consists of 64 consecutive bytes starting from addresses \$XX00, \$XX40, \$XX80, or \$XXC0. The 44-byte user interrupt vectors area also forms a page. Any FLASH memory page can be erased alone. - 1. Set the ERASE bit, and clear the MASS bit in the FLASH control register. - 2. Read the FLASH block protect register. - 3. Write any data to any FLASH location within the page address range of the block to be desired. - 4. Wait for a time, t_{NVS} (minimum 10 μ s) - Set the HVEN bit. - 6. Wait for a time, t_{Erase} (minimum 1 ms or 4 ms) - 7. Clear the ERASE bit. - 8. Wait for a time, t_{NVH} (minimum 5 μ s) - 9. Clear the HVEN bit. - 10. After a time, t_{RCV} (typical 1 μs), the memory can be accessed in read mode again. #### NOTE Programming and erasing of FLASH locations cannot be performed by code being executed from FLASH memory. While these operations must be performed in the order shown, other unrelated operations may occur between the steps. In applications that need more than 1000 program/erase cycles, use the 4-ms page erase specification to get improved long-term reliability. Any application can use this 4-ms page erase specification. However, in applications where a FLASH location will be erased and reprogrammed less than 1000 times, and speed is important, use the 1-ms page erase specification to get a shorter cycle time. # Chapter 3 Analog-to-Digital Converter (ADC) ## 3.1 Introduction This section describes the 10-bit analog-to-digital converter (ADC). ## 3.2 Features Features of the ADC module include: - Eight channels with multiplexed input - Linear successive approximation with monotonicity - 10-bit resolution - Single or continuous conversion - Conversion complete flag or conversion complete interrupt - Selectable ADC clock - Left or right justified result - Left justified sign data mode ## 3.3 Functional Description The ADC provides eight pins for sampling external sources at pins PTB7/AD7–PTB0/AD0. An analog multiplexer allows the single ADC converter to select one of eight ADC channels as ADC voltage in (V_{ADIN}). V_{ADIN} is converted by the successive approximation register-based analog-to-digital converter. When the conversion is completed, ADC places the result in the ADC data register and sets a flag or generates an interrupt. See Figure 3-2. #### 3.3.1 ADC Port I/O Pins PTB7/AD7–PTB0/AD0 are general-purpose I/O (input/output) pins that share with the ADC channels. The channel select bits define which ADC channel/port pin will be used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins are controlled by the port I/O logic and can be used as general-purpose I/O. Writes to the port register or data direction register (DDR) will not have any affect on the port pin that is selected by the ADC. Read of a port pin in use by the ADC will return a logic 0. #### **Analog-to-Digital Converter (ADC)** #### 3.3.3 Conversion Time Conversion starts after a write to the ADC status and control register (ADSCR). One conversion will take between 16 and 17 ADC clock cycles. The ADIVx and ADICLK bits should be set to provide a 1-MHz ADC clock frequency. Conversion time = $$\frac{16 \text{ to } 17 \text{ ADC cycles}}{\text{ADC frequency}}$$ Number of bus cycles = conversion time \times bus frequency #### 3.3.4 Conversion In continuous conversion mode, the ADC data register will be filled with new data after each conversion. Data from the previous conversion will be overwritten whether that data has been read or not. Conversions will continue until the ADCO bit is cleared. The COCO bit is set after each conversion and will stay set until the next read of the ADC data register. In single conversion mode, conversion begins with a write to the ADSCR. Only one conversion occurs between writes to the ADSCR. When a conversion is in process and the ADCSCR is written, the current conversion data should be discarded to prevent an incorrect reading. ## 3.3.5 Accuracy and Precision The conversion process is monotonic and has no missing codes. #### 3.3.6 Result Justification The conversion result may be formatted in four different ways: - 1. Left justified - 2. Right justified - 3. Left Justified sign data mode - 4. 8-bit truncation mode All four of these modes are controlled using MODE0 and MODE1 bits located in the ADC clock register (ADCLK). Left justification will place the eight most significant bits (MSB) in the corresponding ADC data register high, ADRH. This may be useful if the result is to be treated as an 8-bit result where the two least significant bits (LSB), located in the ADC data register low, ADRL, can be ignored. However, ADRL must be read after ADRH or else the interlocking will prevent all new conversions from being stored. Right justification will place only the two MSBs in the corresponding ADC data register high, ADRH, and the eight LSBs in ADC data register low, ADRL. This mode of operation typically is used when a 10-bit unsigned result is desired. Left justified sign data mode is similar to left justified mode with one exception. The MSB of the 10-bit result, AD9 located in ADRH, is complemented. This mode of operation is useful when a result, represented as a signed magnitude from mid-scale, is needed. Finally, 8-bit truncation mode will place the eight MSBs in the ADC data register low, ADRL. The two LSBs are dropped. This mode of operation ## 3.8.3 ADC Clock Register The ADC clock register (ADCLK) selects the clock frequency for the ADC. Figure 3-9. ADC Clock Register (ADCLK) #### ADIV2-ADIV0 — ADC Clock Prescaler Bits ADIV2—ADIV0 form a 3-bit field which selects the divide ratio used by the ADC to generate the internal ADC clock. Table 3-2 shows the available clock configurations. The ADC clock should be set to approximately 1 MHz. | ADIV2 | ADIV1 | ADIV0 | ADC Clock Rate | | | |-------|------------------|------------------|----------------------|--|--| | 0 | 0 | 0 | ADC input clock ÷ 1 | | | | 0 | 0 | 1 | ADC input clock ÷ 2 | | | | 0 | 1 | 0 | ADC input clock ÷ 4 | | | | 0 | 1 | 1 | ADC input clock ÷ 8 | | | | 1 | X ⁽¹⁾ | X ⁽¹⁾ | ADC input clock ÷ 16 | | | **Table 3-2. ADC Clock Divide Ratio** #### ADICLK — ADC Input Clock Select Bit ADICLK selects either the bus clock or the oscillator output clock (CGMXCLK) as the input clock source to generate the internal ADC clock. Reset selects CGMXCLK as the ADC clock source. - 1 = Internal bus clock - 0 = Oscillator output clock (CGMXCLK) The ADC requires a clock rate of approximately 1 MHz for correct operation. If the selected clock source is not fast enough, the ADC will generate incorrect conversions. See 21.10 5.0-Volt ADC Characteristics. $$f_{ADIC} = \frac{f_{CGMXCLK} \text{ or bus frequency}}{ADIV[2:0]} \cong 1 \text{ MHz}$$ ## MODE1 and MODE0 — Modes of Result Justification Bits MODE1 and MODE0 select among four modes of operation. The manner in which the ADC conversion results will be placed in the ADC data registers is controlled by these modes of operation. Reset returns right-justified mode. 00 = 8-bit truncation mode 01 = Right justified mode 10 = Left justified mode 11 = Left justified signed data mode ^{1.} X = Don't care **Central Processor Unit (CPU)** ## 7.3.5 Condition Code Register The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the instruction just executed. Bits 6 and 5 are set permanently to 1. The following paragraphs describe the functions of the condition code register. Figure 7-6. Condition Code Register (CCR) ## V — Overflow Flag The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag. - 1 = Overflow - 0 = No overflow ## H — Half-Carry Flag The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an add-without-carry (ADD) or add-with-carry (ADC) operation. The half-carry flag is required for binary-coded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C flags to determine the appropriate correction factor. - 1 = Carry between bits 3 and 4 - 0 = No carry between bits 3 and 4 ## I — Interrupt Mask When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched. - 1 = Interrupts disabled - 0 = Interrupts enabled #### **NOTE** To maintain M6805 Family compatibility, the upper byte of the index register (H) is not stacked automatically. If the interrupt service routine modifies H, then the user must stack and unstack H using the PSHH and PULH instructions. After the I bit is cleared, the highest-priority interrupt request is serviced first. A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the clear interrupt mask software instruction (CLI). #### N — Negative Flag The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result. - 1 = Negative result - 0 = Non-negative result ## **Central Processor Unit (CPU)** Table 7-1. Instruction Set Summary (Sheet 3 of 6) | Source | Operation | Description | Effect on CCR | | | | | Address
Mode | Opcode | Operand | les | | |--|----------------------------------|---|---------------|---|-----|----------|---|-----------------|---|--|---|--------------------------------------| | Form | оролишен | | ٧ | Н | I | Ν | Z | С | Add | Opc | Ope | Cycles | | CLR opr
CLRA
CLRX
CLRH
CLR opr,X
CLR ,X
CLR opr,SP | Clear | $\begin{array}{l} M \leftarrow \$00 \\ A \leftarrow \$00 \\ X \leftarrow \$00 \\ X \leftarrow \$00 \\ H \leftarrow \$00 \\ M \leftarrow \$00 \\ M \leftarrow \$00 \\ M \leftarrow \$00 \\ M \leftarrow \$00 \end{array}$ | 0 | _ | ı | 0 | 1 | _ | DIR
INH
INH
INH
IX1
IX
SP1 | 3F
4F
5F
8C
6F
7F
9E6F | dd
ff
ff | 3
1
1
3
2
4 | | CMP #opr
CMP opr
CMP opr,
CMP opr,X
CMP opr,X
CMP,X
CMP opr,SP
CMP opr,SP | Compare A with M | (A) – (M) | ţ | _ | | ‡ | ‡ | 1 | IMM
DIR
EXT
IX2
IX1
IX
SP1
SP2 | A1
B1
C1
D1
E1
F1
9EE1
9ED1 | ii
dd
hh II
ee ff
ff
ee ff | 2
3
4
4
3
2
4
5 | | COM opr
COMA
COMX
COM opr,X
COM ,X
COM opr,SP | Complement (One's Complement) | $\begin{array}{l} M \leftarrow (\overline{M}) = SFF - (M) \\ A \leftarrow (\overline{A}) = SFF - (M) \\ X \leftarrow (\overline{X}) = SFF - (M) \\ M \leftarrow (\overline{M}) = SFF - (M) \end{array}$ | 0 | _ | - 1 | 1 | ‡ | 1 | DIR
INH
INH
IX1
IX
SP1 | 33
43
53
63
73
9E63 | dd
ff
ff | 4
1
1
4
3
5 | | CPHX #opr
CPHX opr | Compare H:X with M | (H:X) - (M:M + 1) | ţ | - | _ | ‡ | ‡ | ‡ | IMM
DIR | 65
75 | ii ii+1
dd | 3 | | CPX #opr
CPX opr
CPX opr
CPX ,X
CPX opr,X
CPX opr,X
CPX opr,SP
CPX opr,SP | Compare X with M | (X) – (M) | 1 | _ | _ | ‡ | 1 | Į. | IMM
DIR
EXT
IX2
IX1
IX
SP1
SP2 | A3
B3
C3
D3
E3
F3
9EE3
9ED3 | | 2
3
4
4
3
2
4
5 | | DAA | Decimal Adjust A | (A) ₁₀ | U | - | _ | 1 | 1 | 1 | INH | 72 | | 2 | | DBNZ opr,rel
DBNZA rel
DBNZX rel
DBNZ opr,X,rel
DBNZ X,rel
DBNZ opr,SP,rel | Decrement and Branch if Not Zero | $\begin{array}{l} A \leftarrow (A)-1 \text{ or } M \leftarrow (M)-1 \text{ or } X \leftarrow (X)-1 \\ PC \leftarrow (PC)+3+\mathit{rel}? \text{ (result)} \neq 0 \\ PC \leftarrow (PC)+2+\mathit{rel}? \text{ (result)} \neq 0 \\ PC \leftarrow (PC)+2+\mathit{rel}? \text{ (result)} \neq 0 \\ PC \leftarrow (PC)+3+\mathit{rel}? \text{ (result)} \neq 0 \\ PC \leftarrow (PC)+3+\mathit{rel}? \text{ (result)} \neq 0 \\ PC \leftarrow (PC)+2+\mathit{rel}? \text{ (result)} \neq 0 \\ PC \leftarrow (PC)+4+\mathit{rel}? \text{ (result)} \neq 0 \end{array}$ | _ | _ | ı | - | ı | _ | DIR
INH
INH
IX1
IX
SP1 | 3B
4B
5B
6B
7B
9E6B | dd rr
rr
rr
ff rr
rr
ff rr | 533546 | | DEC opr
DECA
DECX
DEC opr,X
DEC ,X
DEC opr,SP | Decrement | $\begin{array}{l} M \leftarrow (M) - 1 \\ A \leftarrow (A) - 1 \\ X \leftarrow (X) - 1 \\ M \leftarrow (M) - 1 \\ M \leftarrow (M) - 1 \\ M \leftarrow (M) - 1 \end{array}$ | Į. | _ | - | 1 | 1 | _ | DIR
INH
INH
IX1
IX
SP1 | 3A
4A
5A
6A
7A
9E6A | dd
ff
ff | 4
1
1
4
3
5 | | DIV | Divide | $A \leftarrow (H:A)/(X)$
$H \leftarrow Remainder$ | _ | - | - | - | ‡ | ‡ | INH | 52 | | 7 | | EOR #opr
EOR opr
EOR opr,
EOR opr,X
EOR opr,X
EOR,X
EOR opr,SP
EOR opr,SP | Exclusive OR M with A | $A \leftarrow (A \oplus M)$ | 0 | _ | ı | ‡ | ‡ | _ | IMM
DIR
EXT
IX2
IX1
IX
SP1
SP2 | A8
B8
C8
D8
E8
F8
9EE8
9ED8 | ii
dd
hh II
ee ff
ff
ee ff | 2
3
4
4
3
2
4
5 | | INC opr
INCA
INCX
INC opr,X
INC ,X
INC opr,SP | Increment | $M \leftarrow (M) + 1$
$A \leftarrow (A) + 1$
$X \leftarrow (X) + 1$
$M \leftarrow (M) + 1$
$M \leftarrow (M) + 1$
$M \leftarrow (M) + 1$ | Î | _ | - | 1 | ‡ | _ | DIR
INH
INH
IX1
IX
SP1 | 3C
4C
5C
6C
7C
9E6C | dd
ff
ff | 4
1
1
4
3
5 | ## 11.3.3 Voltage Hysteresis Protection Once the LVI has triggered (by having V_{DD} fall below V_{TRIPF}), the LVI will maintain a reset condition until V_{DD} rises above the rising trip point voltage, V_{TRIPR} . This prevents a condition in which the MCU is continually entering and exiting reset if V_{DD} is approximately equal to V_{TRIPF} . V_{TRIPR} is greater than V_{TRIPF} by the hysteresis voltage, V_{HYS} . ## 11.3.4 LVI Trip Selection The LVI5OR3 bit in the configuration register selects whether the LVI is configured for 5-V or 3-V protection. #### NOTE The microcontroller is guaranteed to operate at a minimum supply voltage. The trip point (V_{TRIPF} [5 V] or V_{TRIPF} [3 V]) may be lower than this. See Chapter 21 Electrical Specifications for the actual trip point voltages. ## 11.4 LVI Status Register The LVI status register (LVISR) indicates if the V_{DD} voltage was detected below the V_{TRIPF} level. Figure 11-3. LVI Status Register (LVISR) #### LVIOUT — LVI Output Bit This read-only flag becomes set when the V_{DD} voltage falls below the V_{TRIPF} trip voltage (see Table 11-1). Reset clears the LVIOUT bit. Table 11-1. LVIOUT Bit Indication | V _{DD} | LVIOUT | |---|----------------| | V _{DD} > V _{TRIPR} | 0 | | $V_{DD} < V_{TRIPF}$ | 1 | | V _{TRIPF} < V _{DD} < V _{TRIPR} | Previous value | # 11.5 LVI Interrupts The LVI module does not generate interrupt requests. #### **MSCAN08 Controller (MSCAN08)** | Addr. | Register | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | |--------|----------|-----------------|-------|-------------|-------|-----|-----|------------|-----|-------| | \$0512 | CIDAR2 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$0513 | CIDAR3 | Read:
Write: | AC7 | AC6 | AC5 | AC4 | AC3 | AC2 | AC1 | AC0 | | \$0514 | CIDMR0 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | \$0515 | CIDMR1 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | \$0516 | CIDMR2 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | \$0517 | CIDMR3 | Read:
Write: | AM7 | AM6 | AM5 | AM4 | AM3 | AM2 | AM1 | AM0 | | | | | | = Unimpleme | ented | | R | = Reserved | | | Figure 12-15. MSCAN08 Control Register Structure (Continued) ## 12.13.1 MSCAN08 Module Control Register 0 Figure 12-16. Module Control Register 0 (CMCR0) ## SYNCH — Synchronized Status This bit indicates whether the MSCAN08 is synchronized to the CAN bus and as such can participate in the communication process. - 1 = MSCAN08 synchronized to the CAN bus - 0 = MSCAN08 not synchronized to the CAN bus #### **TLNKEN** — Timer Enable This flag is used to establish a link between the MSCAN08 and the on-chip timer (see 12.9 Timer Link). - 1 = The MSCAN08 timer signal output is connected to the timer input. - 0 = The port is connected to the timer input. MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 #### Input/Output (I/O) Ports Figure 13-18. Data Direction Register E (DDRE) ## DDRE5-DDRE0 — Data Direction Register E Bits These read/write bits control port E data direction. Reset clears DDRE5–DDRE0, configuring all port E pins as inputs. - 1 = Corresponding port E pin configured as output - 0 = Corresponding port E pin configured as input #### NOTE Avoid glitches on port E pins by writing to the port E data register before changing data direction register E bits from 0 to 1. Figure 13-19 shows the port E I/O logic. Figure 13-19. Port E I/O Circuit When bit DDREx is a logic 1, reading address \$0008 reads the PTEx data latch. When bit DDREx is a logic 0, reading address \$0008 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 13-6 summarizes the operation of the port E pins. **Table 13-6. Port E Pin Functions** | DDRE | PTE | I/O Pin | Accesses to DDRE | Access | ses to PTE | |------|------------------|----------------------------|------------------|-----------|--------------------------| | Bit | Bit | Mode | Read/Write | Read | Write | | 0 | X ⁽¹⁾ | Input, Hi-Z ⁽²⁾ | DDRE5-DDRE0 | Pin | PTE5-PTE0 ⁽³⁾ | | 1 | Х | Output | DDRE5-DDRE0 | PTE5-PTE0 | PTE5-PTE0 | - 1. X = Don't care - 2. Hi-Z = High impedance - 3. Writing affects data register, but does not affect input. MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 #### TXINV — Transmit Inversion Bit This read/write bit reverses the polarity of transmitted data. Reset clears the TXINV bit. - 1 = Transmitter output inverted - 0 = Transmitter output not inverted #### NOTE Setting the TXINV bit inverts all transmitted values including idle, break, start, and stop bits. ### M — Mode (Character Length) Bit This read/write bit determines whether ESCI characters are eight or nine bits long (See Table 15-5). The ninth bit can serve as a receiver wakeup signal or as a parity bit. Reset clears the M bit. - 1 = 9-bit ESCI characters - 0 = 8-bit ESCI characters Table 15-5. Character Format Selection | Co | ontrol Bits | | Character Format | | | | | | | | |----|-------------|------------|------------------|--------|-----------|------------------|--|--|--|--| | М | PEN:PTY | Start Bits | Data Bits | Parity | Stop Bits | Character Length | | | | | | 0 | 0 X | 1 | 8 | None | 1 | 10 bits | | | | | | 1 | 0 X | 1 | 9 | None | 1 | 11 bits | | | | | | 0 | 1 0 | 1 | 7 | Even | 1 | 10 bits | | | | | | 0 | 1 1 | 1 | 7 | Odd | 1 | 10 bits | | | | | | 1 | 1 0 | 1 | 8 | Even | 1 | 11 bits | | | | | | 1 | 1 1 | 1 | 8 | Odd | 1 | 11 bits | | | | | #### **WAKE** — Wakeup Condition Bit This read/write bit determines which condition wakes up the ESCI: a logic 1 (address mark) in the MSB position of a received character or an idle condition on the RxD pin. Reset clears the WAKE bit. - 1 = Address mark wakeup - 0 = Idle line wakeup ## ILTY — Idle Line Type Bit This read/write bit determines when the ESCI starts counting logic 1s as idle character bits. The counting begins either after the start bit or after the stop bit. If the count begins after the start bit, then a string of logic 1s preceding the stop bit may cause false recognition of an idle character. Beginning the count after the stop bit avoids false idle character recognition, but requires properly synchronized transmissions. Reset clears the ILTY bit. - 1 = Idle character bit count begins after stop bit - 0 = Idle character bit count begins after start bit #### PEN — Parity Enable Bit This read/write bit enables the ESCI parity function (see Table 15-5). When enabled, the parity function inserts a parity bit in the MSB position (see Table 15-3). Reset clears the PEN bit. - 1 = Parity function enabled - 0 = Parity function disabled **Enhanced Serial Communications Interface (ESCI) Module** ## 15.8.8 ESCI Prescaler Register The ESCI prescaler register (SCPSC) together with the ESCI baud rate register selects the baud rate for both the receiver and the transmitter. #### NOTE There are two prescalers available to adjust the baud rate. One in the ESCI baud rate register and one in the ESCI prescaler register. Figure 15-18. ESCI Prescaler Register (SCPSC) #### PDS2-PDS0 — Prescaler Divisor Select Bits These read/write bits select the prescaler divisor as shown in Table 15-9. Reset clears PDS2-PDS0. #### NOTE The setting of '000' will bypass this prescaler. It is not recommended to bypass the prescaler while ENSCI is set, because the switching is not glitch free. Table 15-9. ESCI Prescaler Division Ratio | PS[2:1:0] | Prescaler Divisor (PD) | |-----------|------------------------| | 0 0 0 | Bypass this prescaler | | 0 0 1 | 2 | | 0 1 0 | 3 | | 0 1 1 | 4 | | 1 0 0 | 5 | | 1 0 1 | 6 | | 1 1 0 | 7 | | 1 1 1 | 8 | #### PSSB4-PSSB0 — Clock Insertion Select Bits These read/write bits select the number of clocks inserted in each 32 output cycle frame to achieve more timing resolution on the **average** prescaler frequency as shown in Table 15-10. Reset clears PSSB4–PSSB0. Use the following formula to calculate the ESCI baud rate: Baud rate = $$\frac{\text{Frequency of the SCI clock source}}{64 \times \text{BPD} \times \text{BD x (PD + PDFA)}}$$ where: Frequency of the SCI clock source = f_{Bus} or CGMXCLK (selected by ESCIBDSRC in the CONFIG2 register) BPD = Baud rate register prescaler divisor BD = Baud rate divisor PD = Prescaler divisor PDFA = Prescaler divisor fine adjust MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 # **Chapter 17 Serial Peripheral Interface (SPI) Module** ## 17.1 Introduction This section describes the serial peripheral interface (SPI) module, which allows full-duplex, synchronous, serial communications with peripheral devices. ## 17.2 Features Features of the SPI module include: - Full-duplex operation - Master and slave modes - Double-buffered operation with separate transmit and receive registers - Four master mode frequencies (maximum = bus frequency ÷ 2) - Maximum slave mode frequency = bus frequency - Serial clock with programmable polarity and phase - Two separately enabled interrupts: - SPRF (SPI receiver full) - SPTE (SPI transmitter empty) - Mode fault error flag with CPU interrupt capability - Overflow error flag with CPU interrupt capability - Programmable wired-OR mode - I²C (inter-integrated circuit) compatibility - I/O (input/output) port bit(s) software configurable with pullup device(s) if configured as input port bit(s) #### 17.3 Pin Name Conventions The text that follows describes the SPI. The SPI I/O pin names are \overline{SS} (slave select), SPSCK (SPI serial clock), CGND (clock ground), MOSI (master out slave in), and MISO (master in/slave out). The SPI shares four I/O pins with four parallel I/O ports. The full names of the SPI I/O pins are shown in Table 17-1. The generic pin names appear in the text that follows. **Table 17-1. Pin Name Conventions** | SPI Generic
Pin Names: | | MISO | MOSI | SS | SPSCK | CGND | |---------------------------|-----|-----------|-----------|---------|------------|----------| | Full SPI
Pin Names: | SPI | PTD1/MISO | PTD2/MOSI | PTD0/SS | PTD3/SPSCK | V_{SS} | 245 ## 17.11 SPI During Break Interrupts The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. See Chapter 16 System Integration Module (SIM). To allow software to clear status bits during a break interrupt, write a logic 1 to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect status bits during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a 2-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic 0. After the break, doing the second step clears the status bit. Since the SPTE bit cannot be cleared during a break with the BCFE bit cleared, a write to the transmit data register in break mode does not initiate a transmission nor is this data transferred into the shift register. Therefore, a write to the SPDR in break mode with the BCFE bit cleared has no effect. ## 17.12 I/O Signals The SPI module has five I/O pins and shares four of them with a parallel I/O port. They are: - MISO Data received - MOSI Data transmitted - SPSCK Serial clock - SS Slave select - CGND Clock ground (internally connected to V_{SS}) The SPI has limited inter-integrated circuit (I^2C) capability (requiring software support) as a master in a single-master environment. To communicate with I^2C peripherals, MOSI becomes an open-drain output when the SPWOM bit in the SPI control register is set. In I^2C communication, the MOSI and MISO pins are connected to a bidirectional pin from the I^2C peripheral and through a pullup resistor to V_{DD} . ## 17.12.1 MISO (Master In/Slave Out) MISO is one of the two SPI module pins that transmits serial data. In full duplex operation, the MISO pin of the master SPI module is connected to the MISO pin of the slave SPI module. The master SPI simultaneously receives data on its MISO pin and transmits data from its MOSI pin. Slave output data on the MISO pin is enabled only when the <u>SPI</u> is configured as a slave. The SPI is configured as a slave when its SPMSTR bit is logic 0 and its <u>SS</u> pin is at logic 0. To support a multiple-slave system, a logic 1 on the <u>SS</u> pin puts the MISO pin in a high-impedance state. When enabled, the SPI controls data direction of the MISO pin regardless of the state of the data direction register of the shared I/O port. MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 | Addr. | Register Name | | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | |---|--|-----------------|---------------------------|---------|------|-------------|----------------|-------|------------|--------| | | Timer 2 Counter | Read: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | \$002D Register Low (T2CNTL)
See page 266. | Write: | | | | | | | | | | | | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | = | Timer 2 Counter Modulo
Register High (T2MODH) | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | | See page 267. | Reset: | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | \$002F | , | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | See page 267. | Reset: | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | | | \$0030 Control Register (T2SC0) | Timer 2 Channel 0 Status and | Read: | CH0F | CH0IE | MS0B | MS0A | ELS0B | ELS0A | TOV0 | CH0MAX | | | Control Register (T2SC0) | Write: | 0 | CITOL | | | | | | | | | See page 267. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0031 F | Timer 2 Channel 0
Register High (T2CH0H) | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | | See page 270. | Reset: | Indeterminate after reset | | | | | | | | | \$0032 | Timer 2 Channel 0
Register Low (T2CH0L) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | | See page 270. | Reset: | Indeterminate after reset | | | | | | | | | | Timer 2 Channel 1 Status and | Read: | CH1F | - CH1IE | 0 | MS1A | ELS1B | ELS1A | TOV1 | CH1MAX | | \$0033 Control Register (T2SC1) | Write: | 0 | OTTIL | | WOTA | LLOID | 220171 | 1011 | CITIWI/ (X | | | | See page 267. | Reset: | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | \$0034 | Timer 2 Channel 1
Register High (T2CH1H) | Read:
Write: | Bit 15 | 14 | 13 | 12 | 11 | 10 | 9 | Bit 8 | | | See page 270. | Reset: | | | | Indetermina | te after reset | | | | | \$0035 | Timer 2 Channel 1
Register Low (T2CH1L) | Read:
Write: | Bit 7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit 0 | | See page 270. | | Reset: | | | | Indetermina | te after reset | | | | | | | | = Unimplemented | | | | | | | | Figure 19-3. TIM I/O Register Summary (Sheet 2 of 2) #### 19.4.1 TIM Counter Prescaler The TIM clock source can be one of the seven prescaler outputs. The prescaler generates seven clock rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIM status and control register select the TIM clock source. ## 19.4.2 Input Capture With the input capture function, the TIM can capture the time at which an external event occurs. When an active edge occurs on the pin of an input capture channel, the TIM latches the contents of the TIM counter into the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input captures can generate TIM CPU interrupt requests. MC68HC908GZ16 • MC68HC908GZ8 Data Sheet, Rev. 4 #### Timer Interface Module (TIM) ## CHxF — Channel x Flag Bit When channel x is an input capture channel, this read/write bit is set when an active edge occurs on the channel x pin. When channel x is an output compare channel, CHxF is set when the value in the TIM counter registers matches the value in the TIM channel x registers. When TIM CPU interrupt requests are enabled (CHxIE = 1), clear CHxF by reading TIM channel x status and control register with CHxF set and then writing a logic 0 to CHxF. If another interrupt request occurs before the clearing sequence is complete, then writing logic 0 to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF. Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect. - 1 = Input capture or output compare on channel x - 0 = No input capture or output compare on channel x #### CHxIE — Channel x Interrupt Enable Bit This read/write bit enables TIM CPU interrupt service requests on channel x. Reset clears the CHxIE bit. - 1 = Channel x CPU interrupt requests enabled - 0 = Channel x CPU interrupt requests disabled #### MSxB — Mode Select Bit B This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIM1 channel 0 and TIM2 channel 0 status and control registers. Setting MS0B disables the channel 1 status and control register and reverts TCH1 to general-purpose I/O. Reset clears the MSxB bit. - 1 = Buffered output compare/PWM operation enabled - 0 = Buffered output compare/PWM operation disabled #### MSxA — Mode Select Bit A When ELSxB:A \neq 00, this read/write bit selects either input capture operation or unbuffered output compare/PWM operation. See Table 19-3. - 1 = Unbuffered output compare/PWM operation - 0 = Input capture operation When ELSxB:A = 00, this read/write bit selects the initial output level of the TCHx pin. See Table 19-3. Reset clears the MSxA bit. - 1 = Initial output level low - 0 = Initial output level high #### NOTE Before changing a channel function by writing to the MSxB or MSxA bit, set the TSTOP and TRST bits in the TIM status and control register (TSC). ## **ELSxB** and **ELSxA** — Edge/Level Select Bits When channel x is an input capture channel, these read/write bits control the active edge-sensing logic on channel x. When channel x is an output compare channel, ELSxB and ELSxA control the channel x output behavior when an output compare occurs. When ELSxB and ELSxA are both clear, channel x is not connected to port D, and pin PTDx/TCHx is available as a general-purpose I/O pin. Table 19-3 shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits. ## **Electrical Specifications** # 21.3 Functional Operating Range | Characteristic | Symbol | Value | Unit | |-----------------------------|-----------------|----------------------|------| | Operating temperature range | T _A | -40 to +125 | °C | | Operating voltage range | V _{DD} | 5.0 ±10%
3.3 ±10% | V | ## 21.4 Thermal Characteristics | Characteristic | Symbol | Value | Unit | | |--|-------------------|--|------|--| | Thermal resistance 32-pin LQFP 48-pin LQFP | $\theta_{\sf JA}$ | 95
95 | °C/W | | | I/O pin power dissipation | P _{I/O} | User determined | W | | | Power dissipation ⁽¹⁾ | P _D | $P_D = (I_{DD} \times V_{DD}) + P_{I/O} = K/(T_J + 273 \text{ °C})$ | W | | | Constant ⁽²⁾ | К | $P_{D} \times (T_{A} + 273 \text{ °C})$ $+ P_{D}^{2} \times \theta_{JA}$ | W/°C | | | Average junction temperature | T _J | $T_A + (P_D \times \theta_{JA})$ | °C | | Power dissipation is a function of temperature. K is a constant unique to the device. K can be determined for a known T_A and measured P_D. With this value of K, P_D and T_J can be determined for any value of T_A.