

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f627a-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

FIGURE 4-3: DATA MEMORY MAP OF THE PIC16F648A

TMR0 PCL STATUS	01h					
PCL STATUS		OPTION	81h	TMR0	101h	OPTION
STATUS	02h	PCL	82h	PCL	102h	PCL
	03h	STATUS	83h	STATUS	103h	STATUS
FSR	04h	FSR	84h	FSR	104h	FSR
PORTA	05h	TRISA	85h		105h	
PORTB	06h	TRISB	86h	PORTB	106h	TRISB
	07h		87h		107h	
	08h		88h		108h	
	09h		89h		109h	
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON
PIR1	0Ch	PIE1	8Ch		10Ch	
	0Dh		8Dh		10Dh	
TMR1L	0Eh	PCON	8Eh		10Eh	
TMR1H	0Fh		8Fh		10Fh	
T1CON	10h		90h			
TMR2	11h		91h			
T2CON	12h	PR2	92h			
	13h		93h			
	14h		94h			
CCPR1L	15h		95h			
CCPR1H	16h		96h			
CCP1CON	17h		97h			
RCSTA	18h	TXSTA	98h			
TXREG	19h	SPBRG	99h			
RCREG	1Ah	EEDATA	9Ah			
	1Bh	EEADR	9Bh			
	1Ch	EECON1	9Ch			
	1Dh	EECON2 ⁽¹⁾	9Dh			
	1Eh		9Eh			
CMCON	1Fh	VRCON	9Fh		11Fh	
	20h		A0h		120h	
General		General		General		
Purpose		Purpose		Purpose Register		
		80 Bytes		80 Bytes		
80 Bytes						
	6Fh		EFh		16Fh	
40 D 1-	70h	accesses	F0h	accesses	170h	accesses
to Bytes		70h-7Fh		70h-7Fh		70h-7Fh
	7Fh		FFh		17Fh	
Bank 0		Bank 1		Bank 2		Bank 3

© 2009 Microchip Technology Inc.

Name	Function	Input Type	Output Type	Description		
RA0/AN0	RA0	ST	CMOS	Bidirectional I/O port		
	AN0	AN	_	Analog comparator input		
RA1/AN1	RA1	ST	CMOS	Bidirectional I/O port		
	AN1	AN	—	Analog comparator input		
RA2/AN2/VREF	RA2	ST	CMOS	Bidirectional I/O port		
	AN2	AN	—	Analog comparator input		
	VREF	_	AN	VREF output		
RA3/AN3/CMP1	RA3	ST	CMOS	Bidirectional I/O port		
	AN3	AN	—	Analog comparator input		
	CMP1	_	CMOS	Comparator 1 output		
RA4/T0CKI/CMP2	RA4	ST	OD	Bidirectional I/O port. Output is open drain type.		
	TOCKI	ST	—	External clock input for TMR0 or comparator output		
	CMP2	_	OD	Comparator 2 output		
RA5/MCLR/VPP	RA5	ST	—	Input port		
	MCLR	ST	_	Master clear. When configured as MCLR, this pin is an active low Reset to the device. Voltage on MCLR/VPP must not exceed VDD during normal device operation.		
	Vpp	HV	_	Programming voltage input		
RA6/OSC2/CLKOUT	RA6	ST	CMOS	Bidirectional I/O port		
	OSC2	—	XTAL	Oscillator crystal output. Connects to crystal resonator in Crystal Oscillator mode.		
	CLKOUT	—	CMOS	In RC or INTOSC mode. OSC2 pin can output CLKOUT, which has 1/4 the frequency of OSC1.		
RA7/OSC1/CLKIN	RA7	ST	CMOS	Bidirectional I/O port		
	OSC1	XTAL	—	Oscillator crystal input. Connects to crystal resonator in Crystal Oscillator mode.		
	CLKIN	ST		External clock source input. RC biasing pin.		
Legend: O = Outp — = Not u TTI = TTI	ut Jsed Input	CN I OI	MOS = CN = Inp D = Op	IOS Output P = Power out ST = Schmitt Trigger Input oen Drain Output AN = Analog		

TABLE 5-1: PORTA FUNCTIONS

TABLE 5-2:	SUMMARY OF REGISTERS AS	SOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other Resets
05h	PORTA	RA7	RA6	RA5 ⁽¹⁾	RA4	RA3	RA2	RA1	RA0	xxxx 0000	qqqu 0000
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
1Fh	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000

Legend: - = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition. Shaded cells are not used for PORTA.

Note 1: MCLRE configuration bit sets RA5 functionality.

FIGURE 5-11: BLOCK DIAGRAM OF RB3/CCP1 PIN

6.3.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution). Use the instruction sequences shown in Example 6-1 when changing the prescaler assignment from Timer0 to WDT, to avoid an unintended device Reset.

EXAMPLE 6-1: CHANGING PRESCALER (TIMER0 \rightarrow WDT)

		,
BCF	STATUS, RPO	;Skip if already in
		;Bank 0
CLRWDT		;Clear WDT
CLRF	TMR0	;Clear TMR0 and
		;Prescaler
BSF	STATUS, RPO	;Bank 1
MOVLW	'00101111 <i>'</i> b	;These 3 lines
		;(5, 6, 7)
MOVWF	OPTION_REG	;are required only
		;if desired PS<2:0>
		;are
CLRWDT		;000 or 001
MOVLW	'00101xxx'b	;Set Postscaler to
MOVWF	OPTION_REG	;desired WDT rate
BCF	STATUS, RPO	;Return to Bank 0

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 6-2. This precaution must be taken even if the WDT is disabled.

EXAMPLE 6-2: CHANGING PRESCALER (WDT \rightarrow TIMER0)

		•
CLRWDT		;Clear WDT and ;prescaler
BSF	STATUS, RPO	
MOVLW	b'xxxx0xxx'	;Select TMR0, new ;prescale value and ;clock source
MOVWF BCF	OPTION_REG STATUS, RP0	

TABLE 6-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other Resets
01h, 101h	TMR0	Timer0 M	odule Reg	ister						XXXX XXXX	uuuu uuuu
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
81h, 181h	OPTION ⁽²⁾	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

Legend: - = Unimplemented locations, read as '0', u = unchanged, x = unknown. Shaded cells are not used for Timer0.

Note 1: Option is referred by $OPTION_REG$ in $MPLAB^{®}$ IDE Software.

9.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RB3/CCP1. An event is defined as:

- · Every falling edge
- Every rising edge
- · Every 4th rising edge
- Every 16th rising edge

An event is selected by control bits CCP1M<3:0> (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

9.1.1 CCP PIN CONFIGURATION

In Capture mode, the RB3/CCP1 pin should be configured as an input by setting the TRISB<3> bit.

Note:	If the RB3/CCP1 is configured as an
	output, a write to the port can cause a
	capture condition.

FIGURE 9-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

9.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

9.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF following any such change in Operating mode.

9.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M<3:0>. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any Reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 9-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 9-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		; the new prescaler
		; mode value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		; value

9.2 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RB3/CCP1 pin is:

- Driven high
- Driven low
- · Remains unchanged

The action on the pin is based on the value of control bits CCP1M<3:0> (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

FIGURE 9-2: C

COMPARE MODE OPERATION BLOCK DIAGRAM

10.1 Comparator Configuration

There are eight modes of operation for the comparators. The CMCON register is used to select the mode. Figure 10-1 shows the eight possible modes. The TRISA register controls the data direction of the comparator pins for each mode.

If the Comparator mode is changed, the comparator output level may not be valid for the specified mode change delay shown in Table 17-2.

- Note 1: Comparator interrupts should be disabled during a Comparator mode change, otherwise a false interrupt may occur.
 - 2: Comparators can have an inverted output. See Figure 10-1.

FIGURE 10-1: COMPARATOR I/O OPERATING MODES

FIGURE 12-3: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)

TABLE 12-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART Tra	nsmit Da	ta Registe	er					0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Baud Rate Generator Register							0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'.

Shaded cells are not used for Asynchronous Transmission.

12.3 USART Address Detect Function

12.3.1 USART 9-BIT RECEIVER WITH ADDRESS DETECT

When the RX9 bit is set in the RCSTA register, 9 bits are received and the ninth bit is placed in the RX9D bit of the RCSTA register. The USART module has a special provision for multiprocessor communication. Multiprocessor communication is enabled by setting the ADEN bit (RCSTA<3>) along with the RX9 bit. The port is now programmed such that when the last bit is received, the contents of the Receive Shift Register (RSR) are transferred to the receive buffer, the ninth bit of the RSR (RSR<8>) is transferred to RX9D, and the receive interrupt is set if and only if RSR<8> = 1. This feature can be used in a multiprocessor system as follows:

A master processor intends to transmit a block of data to one of many slaves. It must first send out an address byte that identifies the target slave. An address byte is identified by setting the ninth bit (RSR<8>) to a '1' (instead of a '0' for a data byte). If the ADEN and RX9 bits are set in the slave's RCSTA register, enabling multiprocessor communication, all data bytes will be ignored. However, if the ninth received bit is equal to a '1', indicating that the received byte is an address, the slave will be interrupted and the contents of the RSR register will be transferred into the receive buffer. This allows the slave to be interrupted only by addresses, so that the slave can examine the received byte to see if it is being addressed. The addressed slave will then clear its ADEN bit and prepare to receive data bytes from the master.

When ADEN is enabled (= 1), all data bytes are ignored. Following the Stop bit, the data will not be loaded into the receive buffer, and no interrupt will occur. If another byte is shifted into the RSR register, the previous data byte will be lost. The ADEN bit will only take effect when the receiver is configured in 9-bit mode (RX9 = 1). When ADEN is disabled (= 0), all data bytes are received and the 9th bit can be used as the parity bit.

The receive block diagram is shown in Figure 12-4.

Reception is enabled by setting bit CREN (RCSTA<4>).

12.3.1.1 Setting up 9-bit mode with Address Detect

Follow these steps when setting up Asynchronous Reception with Address Detect Enabled:

- 1. TRISB<1> and TRISB<2> should both be set to '1' to configure the RB1/RX/DT and RB2/TX/CK pins as inputs. Output drive, when required, is controlled by the peripheral circuitry.
- 2. Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH.
- 3. Enable asynchronous communication by setting or clearing bit SYNC and setting bit SPEN.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. Set bit RX9 to enable 9-bit reception.
- 6. Set ADEN to enable address detect.
- 7. Enable the reception by setting enable bit CREN or SREN.
- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 9. Read the 8-bit received data by reading the RCREG register to determine if the device is being addressed.
- 10. If an OERR error occurred, clear the error by clearing enable bit CREN if it was already set.
- 11. If the device has been addressed (RSR<8> = 1 with address match enabled), clear the ADEN and RCIF bits to allow data bytes and address bytes to be read into the receive buffer and interrupt the CPU.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART	Receive	Data Reg	gister					0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Ra	ate Gene	erator Reg	jister					0000 0000	0000 0000

TABLE 12-8: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

13.0 DATA EEPROM MEMORY

The EEPROM data memory is readable and writable during normal operation (full VDD range). This memory is not directly mapped in the register file space. Instead it is indirectly addressed through the Special Function Registers (SFRs). There are four SFRs used to read and write this memory. These registers are:

- EECON1
- EECON2 (Not a physically implemented register)
- EEDATA
- EEADR

EEDATA holds the 8-bit data for read/write and EEADR holds the address of the EEPROM location being accessed. PIC16F627A/628A devices have 128 bytes of data EEPROM with an address range from 0h to 7Fh. The PIC16F648A device has 256 bytes of data EEPROM with an address range from 0h to FFh. The EEPROM data memory allows byte read and write. A byte write automatically erases the location and writes the new data (erase before write). The EEPROM data memory is rated for high erase/write cycles. The write time is controlled by an on-chip timer. The write time will vary with voltage and temperature, as well as from chip-to-chip. Please refer to AC specifications for exact limits.

When the device is code-protected, the CPU can continue to read and write the data EEPROM memory. A device programmer can no longer access this memory.

Additional information on the data EEPROM is available in the *PIC[®] Mid-Range Reference Manual* (DS33023).

REGISTER 13-1: EEDATA – EEPROM DATA REGISTER (ADDRESS: 9Ah)

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| EEDAT7 | EEDAT6 | EEDAT5 | EEDAT4 | EEDAT3 | EEDAT2 | EEDAT1 | EEDAT0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 **EEDATn**: Byte value to Write to or Read from data EEPROM memory location.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 13-2: EEADR – EEPROM ADDRESS REGISTER (ADDRESS: 9Bh)

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EADR7 | EADR6 | EADR5 | EADR4 | EADR3 | EADR2 | EADR1 | EADR0 |
| bit 7 | | | | | | | bit 0 |

bit 7 PIC16F627A/628A

Unimplemented Address: Must be set to '0'

PIC16F648A

EEADR: Set to '1' specifies top 128 locations (128-255) of EEPROM Read/Write Operation **EEADR**: Specifies one of 128 locations of EEPROM Read/Write Operation

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 6-0

13.7 Using the Data EEPROM

The data EEPROM is a high endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). When variables in one section change frequently, while variables in another section do not change, it is possible to exceed the total number of write cycles to the EEPROM (specification D124) without exceeding the total number of write cycles to a single byte (specifications D120 and D120A). If this is the case, then an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

A simple data EEPROM refresh routine is shown in Example 13-4.

Note: If data EEPROM is only used to store constants and/or data that changes rarely, an array refresh is likely not required. See specification D124.

EXAMPLE 13-4: DATA EEPROM REFRESH ROUTINE

	BANKSEL	0X80	;select Bank1
	CLRF	EEADR	;start at address 0
	BCF	INTCON, GIE	disable interrupts
	BTFSC	INTCON, GIE	see AN576
	GOTO	\$ - 2	
	BSF	EECON1, WREN	;enable EE writes
Loc	q		
	BSF	EECON1, RD	;retrieve data into EEDATA
	MOVLW	0x55	;first step of
	MOVWF	EECON2	; required sequence
	MOVLW	0xAA	;second step of
	MOVWF	EECON2	; required sequence
	BSF	EECON1, WR	;start write sequence
	BTFSC	EECON1, WR	;wait for write complete
	domo	A 1	
	G0.1.0	Ş - 1	
	GOTO	\$ - I	
#IF	GOTO DEF16F64	\$ - I 8A	;256 bytes in 16F648A
#IF	GOTO DEF16F64 INCFSZ	Ş - I 8A EEADR. f	;256 bytes in 16F648A :test for end of memory
#IF	DEF16F64 INCFSZ	Ş - I 8A EEADR, f	;256 bytes in 16F648A ;test for end of memory :128 bytes in 16F627A/628A
#IF #EI	DEF16F64 INCFSZ INCF	Ş - 1 8A EEADR, f EEADR, f	;256 bytes in 16F648A ;test for end of memory ;128 bytes in 16F627A/628A :next address
#IF #EI	GOIO DEF16F64 INCFSZ SE INCF BTFSS	<pre>\$ - 1 8A EEADR, f EEADR, f EEADR, 7</pre>	;256 bytes in 16F648A ;test for end of memory ;128 bytes in 16F627A/628A ;next address :test for end of memory
#IF #EI #EN	GOIO DEF16F64 INCFSZ SE INCF BTFSS DIF	Ş - 1 8A EEADR, f EEADR, f EEADR, 7	;256 bytes in 16F648A ;test for end of memory ;128 bytes in 16F627A/628A ;next address ;test for end of memory :end of conditional assembly
#IF #EI #EN	DEF16F64 INCFSZ SE INCF BTFSS DIF	Ş - 1 8A EEADR, f EEADR, f EEADR, 7	;256 bytes in 16F648A ;test for end of memory ;128 bytes in 16F627A/628A ;next address ;test for end of memory ;end of conditional assembly
#IF #EI #EN	GOIO DEF16F64 INCFSZ SE INCF BTFSS DIF GOTO	<pre>\$ - 1 8A EEADR, f EEADR, f EEADR, 7 Loop</pre>	;256 bytes in 16F648A ;test for end of memory ;128 bytes in 16F627A/628A ;next address ;test for end of memory ;end of conditional assembly ;repeat for all locations
#IF #EI #EN	GOTO DEF16F64 INCFSZ SE INCF BTFSS DIF GOTO	<pre>\$ - 1 8A EEADR, f EEADR, f EEADR, 7 Loop</pre>	;256 bytes in 16F648A ;test for end of memory ;128 bytes in 16F627A/628A ;next address ;test for end of memory ;end of conditional assembly ;repeat for all locations
#IF #EI #EN	GOTO DEF16F64 INCFSZ SE INCF BTFSS DIF GOTO BCF	<pre>\$ - 1 8A EEADR, f EEADR, f EEADR, 7 Loop EECON1, WREN</pre>	;256 bytes in 16F648A ;test for end of memory ;128 bytes in 16F627A/628A ;next address ;test for end of memory ;end of conditional assembly ;repeat for all locations ;disable EE writes
#IF #EI #EN	GOTO DEF16F64 INCFSZ SE INCF BTFSS DIF GOTO BCF BSF	<pre>\$ - 1 8A EEADR, f EEADR, f EEADR, 7 Loop EECON1, WREN INTCON. GIE</pre>	<pre>;256 bytes in 16F648A ;test for end of memory ;128 bytes in 16F627A/628A ;next address ;test for end of memory ;end of conditional assembly ;repeat for all locations ;disable EE writes :enable interrupts (optional)</pre>

AND Literal with W

ANDLW

ADDLW	Add Lite	ral and	w	
Syntax:	[label] A	ADDLW	/ k	
Operands:	$0 \le k \le 25$	55		
Operation:	(W) + k –	→ (W)		
Status Affected:	C, DC, Z			
Encoding:	11	111x	kkkk	kkkk
Description:	The conte are added 'k' and the W registe	ents of d to the e result er.	the W reg eight bit is placed	gister literal I in the
Words:	1			
Cycles:	1			
Example	ADDLW	0x15		
	Before In: W After Instr W	structio = 0x1 ruction = 0x2	n 10 25	

15.2 Instruction	Descriptions
------------------	--------------

Oymax.	
Operands:	$0 \le k \le 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Encoding:	11 1001 kkkk kkkk
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example	ANDLW 0x5F
	Before Instruction
	W = 0xA3
	W = 0x03
ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f.d
e yman.	[
Operands:	0 ≤ f ≤ 127
Operands:	$0 \le f \le 127$ $d \in [0,1]$ (A) AND (f) (dept)
Operands: Operation:	$0 \le f \le 127$ d \equiv [0,1] (W) .AND. (f) \rightarrow (dest)
Operation: Status Affected:	$0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest) Z
Operands: Operation: Status Affected: Encoding:	$0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest) Z 00 0101 dfff ffff
Operands: Operation: Status Affected: Encoding: Description:	$\begin{array}{c} 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) .AND. (f) \rightarrow (dest) \\ \hline Z \\ \hline 00 \\ Olo1 \\ dfff \\ ffff \\ \hline AND the W register with register \\ f'. If 'd' is '0', the result is stored \\ in the W register. If 'd' is '1', the \\ result is stored back in register \\ f'. \end{array}$
Operands: Operation: Status Affected: Encoding: Description: Words:	$0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest) Z 00 0101 dfff ffff AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'. 1
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest) Z 00 0101 dfff ffff AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'. 1 1 1
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	$0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest) Z 00 0101 dfff ffff AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'. 1 1 ANDWF REG1, 1

ADDWF	Add W and f	
Syntax:	[<i>label</i>] ADDWF f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	
Operation:	(W) + (f) \rightarrow (dest)	
Status Affected:	C, DC, Z	
Encoding:	00 0111 dfff ffff	
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.	
Words:	1	
Cycles:	1	
Example	ADDWF REG1, 0	
	Before Instruction W = 0x17 REG1 = 0xC2 After Instruction W = 0xD9 REG1 = 0xC2 Z = 0 C = 0 DC = 0	

REG1, 7

REG1 = 0x0A

REG1 = 0x8A

Before Instruction

After Instruction

BSF

BCF	Bit Clear f	BTFSC	Bit Test f, Skip if Clear
Syntax:	[<i>label</i>]BCF f,b	Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f \le b >)$	Operation:	skip if (f) = 0
Status Affected:	None	Status Affected:	None
Encoding:	01 00bb bfff ffff	Encoding:	01 10bb bfff ffff
Description:	Bit 'b' in register 'f' is cleared.	Description:	If bit 'b' in register 'f' is '0', then the
Words:	1		next instruction is skipped.
Cycles:	1		instruction fetched during the
<u>Example</u>	BCF REG1, 7		current instruction execution is
	Before Instruction REG1 = 0xC7		discarded, and a NOP is executed instead, making this a two-cycle instruction.
	REG1 = 0x47	Words:	1
		Cycles:	1(2)
BSF	Bit Set f	Example	HERE BTFSC REG1 FALSE GOTO PROCESS_CODE
Syntax:	[label] BSF f,b		TRUE •
Operands:	$0 \le f \le 127$		•
	$0 \le b \le 7$		Before Instruction
Operation:	$1 \rightarrow (f \le b >)$		PC = address HERE
Status Affected:	None		if $REG<1> = 0$.
Encoding:	01 01bb bfff ffff		PC = address TRUE
Description:	Bit 'b' in register 'f' is set.		if REG<1> =1,
Words:	1		PC = address FALSE
Cycles:	1		

Example

IORLW	Inclusive OR Literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Encoding:	11 1000 kkkk kkkk
Description:	The contents of the W register is OR'ed with the eight-bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example	IORLW 0x35
	Before Instruction W = 0x9A After Instruction W = 0xBF Z = 0
IORWE	Inclusive OR W with f

MOVLW	Move Literal to W	
Syntax:	[<i>label</i>] MOVLW k	
Operands:	$0 \leq k \leq 255$	
Operation:	$k \rightarrow (W)$	
Status Affected:	None	
Encoding:	11 00xx kkkk kkkk	
Description:	The eight bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.	
Words:	1	
Cycles:	1	
Example	MOVLW 0x5A	
	After Instruction W = 0x5A	

IORWF	Inclusive OR W with f						
Syntax:	[<i>label</i>] IORWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	(W) .OR. (f) \rightarrow (dest)						
Status Affected:	Z						
Encoding:	00 0100 dfff ffff						
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.						
Words:	1						
Cycles:	1						
Example	IORWF REG1, 0						
	Before Instruction REG1 = 0x13 W = 0x91 After Instruction REG1 = 0x13 W = 0x93 Z = 1						

MOVF	Move f						
Syntax:	[label] MOVF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	$(f) \rightarrow (dest)$						
Status Affected:	Z						
Encoding:	00 1000 dfff ffff						
Description:	ne contents of register 'f' is moved to a destination dependent upon the status of 'd'. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.						
Words:	1						
Cycles:	1						
Example	MOVF REG1, 0						
	After Instruction W= value in REG1 register Z = 1						

17.2 DC Characteristics: PIC16F627A/628A/648A (Industrial) PIC16LF627A/628A/648A (Industrial)

DC CHAF	RACTERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le Ta \le +85^{\circ}C$ for industrial						
Param	LF and F Device	Mint	Tur	Max	Unite		Conditions	
No.	Characteristics	wiinŢ	тур	wax	Units	VDD	Note	
Supply '	Voltage (VDD)							
D001	LF	2.0	—	5.5	V	_		
DUUT	LF/F	3.0	—	5.5	V			
Power-c	lown Base Current (IPD)	•	•	•				
	LF	_	0.01	0.80	μA	2.0	WDT, BOR, Comparators, VREF and	
D020	LF/F	—	0.01	0.85	μΑ	3.0	T1OSC: disabled	
		_	0.02	2.7	μA	5.0		
Peripheral Module Current (∆IMOD) ⁽¹⁾								
	LF	-	1	2.0	μΑ	2.0	WDT Current	
D021	LF/F	—	2	3.4	μA	3.0		
		_	9	17.0	μA	5.0		
D000	LF/F	_	29	52	μA	4.5	BOR Current	
D022		_	30	55	μA	5.0		
	LF	_	15	22	μA	2.0	Comparator Current	
D023	LF/F	_	22	37	μA	3.0	(Both comparators enabled)	
		_	44	68	μA	5.0		
	LF	_	34	55	μA	2.0	VREF Current	
D024	LF/F	_	50	75	μA	3.0		
		_	80	110	μA	5.0		
	LF	_	1.2	2.0	μA	2.0	T1Osc Current	
D025	LF/F	_	1.3	2.2	μA	3.0		
		_	1.8	2.9	μA	5.0		
Supply	Current (IDD)				<u> </u>	1		
	LF	_	10	15	μA	2.0	Fosc = 32 kHz	
D010	LF/F	_	15	25	μA	3.0	LP Oscillator Mode	
		_	28	48	μA	5.0		
	LF	_	125	190	μΑ	2.0	Fosc = 1 MHz	
D011	LF/F	_	175	340	μA	3.0	XT Oscillator Mode	
		_	320	520	μA	5.0	-	
	LF	_	250	350	μA	2.0	Fosc = 4 MHz	
D012	LF/F	_	450	600	μA	3.0	XT Oscillator Mode	
		_	710	995	μA	5.0	1	
	LF	—	395	465	μA	2.0	Fosc = 4 MHz	
D012A	LF/F	—	565	785	μA	3.0	INTOSC	
		_	0.895	1.3	mA	5.0	1	
D010	LF/F	—	2.5	2.9	mA	4.5	Fosc = 20 MHz	
D013		_	2.75	3.3	mA	5.0	HS Oscillator Mode	

Note 1: The "∆" current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement. Max values should be used when calculating total current consumption.

TABLE 17-1: DC Characteristics: PIC16F627A/628A/648A (Industrial, Extended) PIC16LF627A/628A/648A (Industrial) PIC16LF627A/628A/648A (Industrial)

DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial and} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \\ \mbox{Operating voltage VDD range as described in DC specification} \\ \mbox{Table 17-2 and Table 17-3} \end{array}$							
Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
		Data EEPROM Memory							
D120 D120A	Ed Ed	Endurance Endurance	100K 10K	1M 100K		E/W E/W	$\begin{array}{l} -40^\circ C \leq T A \leq 85^\circ C \\ 85^\circ C \leq T A \leq 125^\circ C \end{array}$		
D121	Vdrw	VDD for read/write	VMIN		5.5	V	VMIN = Minimum operating voltage		
D122	TDEW	Erase/Write cycle time	—	4	8*	ms	C		
D123	TRETD	Characteristic Retention	40	—	_	Year	Provided no other		
D124	Tref	Number of Total Erase/Write Cycles before Refresh ⁽¹⁾	1M	10M	_	E/W	specifications are violated -40°C to +85°C		
		Program Flash Memory							
D130	Eр	Endurance	10K	100K	—	E/W	$-40^\circ C \le T A \le 85^\circ C$		
D130A	Eр	Endurance	1000	10K	_	E/W	$85^{\circ}C \le TA \le 125^{\circ}C$		
D131	Vpr	VDD for read	VMIN	—	5.5	V	VMIN = Minimum operating voltage		
D132	VIE	VDD for Block erase	4.5	—	5.5	V	-		
D132A	VPEW	VDD for write	VMIN	—	5.5	V	VMIN = Minimum operating voltage		
D133	TIE	Block Erase cycle time	—	4	8*	ms	VDD > 4.5V		
D133A	TPEW	Write cycle time	—	2	4*	ms			
D134	TRETP	Characteristic Retention	40	—	—	year	Provided no other specifications are violated		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Refer to **Section 13.7 "Using the Data EEPROM**" for a more detailed discussion on data EEPROM endurance.

18-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES				
Dimensio	n Limits	MIN	NOM	MAX		
Number of Pins	Ν	N 18				
Pitch	е	.100 BSC				
Top to Seating Plane	А	-	-	.210		
Molded Package Thickness	A2	.115	.130	.195		
Base to Seating Plane	A1	.015	-	-		
Shoulder to Shoulder Width	E	.300	.310	.325		
Molded Package Width	E1	.240	.250	.280		
Overall Length	D	.880	.900	.920		
Tip to Seating Plane	L	.115	.130	.150		
Lead Thickness	С	.008	.010	.014		
Upper Lead Width	b1	.045	.060	.070		
Lower Lead Width	b	.014	.018	.022		
Overall Row Spacing §	eB	-	_	.430		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-007B

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com