

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f627a-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16F627A/628A/648A family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16F627A/628A/648A uses a Harvard architecture in which program and data are accessed from separate memories using separate busses. This improves bandwidth over traditional Von Neumann architecture where program and data are fetched from the same memory. Separating program and data memory further allows instructions to be sized differently than 8-bit wide data word. Instruction opcodes are 14-bits wide making it possible to have all single-word instructions. A 14-bit wide program memory access bus fetches a 14-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (35) execute in a single-cycle (200 ns @ 20 MHz) except for program branches.

Table 3-1 lists device memory sizes (Flash, Data and EEPROM).

TABLE 3-1: DEVICE MEMORY LIST

	Memory							
Device	Flash Program	RAM Data	EEPROM Data					
PIC16F627A	1024 x 14	224 x 8	128 x 8					
PIC16F628A	2048 x 14	224 x 8	128 x 8					
PIC16F648A	4096 x 14	256 x 8	256 x 8					
PIC16LF627A	1024 x 14	224 x 8	128 x 8					
PIC16LF628A	2048 x 14	224 x 8	128 x 8					
PIC16LF648A	4096 x 14	256 x 8	256 x 8					

The PIC16F627A/628A/648A can directly or indirectly address its register files or data memory. All Special Function Registers (SFR), including the program counter, are mapped in the data memory. The PIC16F627A/628A/648A have an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation, on any register, using any addressing mode. This symmetrical nature and lack of 'special optimal situations' makes programming with the PIC16F627A/628A/648A simple yet efficient. In addition, the learning curve is reduced significantly.

The PIC16F627A/628A/648A devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the working register (W register). The other operand is a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the Status Register. The C and DC bits operate as Borrow and Digit Borrow out bits, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

A simplified block diagram is shown in Figure 3-1, and a description of the device pins in Table 3-2.

Two types of data memory are provided on the PIC16F627A/628A/648A devices. Nonvolatile EEPROM data memory is provided for long term storage of data, such as calibration values, look-up table data, and any other data which may require periodic updating in the field. These data types are not lost when power is removed. The other data memory provided is regular RAM data memory. Regular RAM data memory is provided for temporary storage of data during normal operation. Data is lost when power is removed.

Name	Function	Input Type	Output Type	Description		
RB4/PGM	RB4	TTL	CMOS	Bidirectional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.		
	PGM	ST	_	Low-voltage programming input pin. When low-voltage programming is enabled, the interrupt-on-pin change and weak pull-up resistor are disabled.		
RB5	RB5	TTL	CMOS	Bidirectional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.		
RB6/T1OSO/T1CKI/PGC	RB6	TTL	CMOS	Bidirectional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.		
	T10S0	—	XTAL	Timer1 oscillator output		
	T1CKI	ST	—	Timer1 clock input		
	PGC	ST	—	ICSP™ programming clock		
RB7/T1OSI/PGD	RB7	TTL	CMOS	Bidirectional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.		
	T10SI	XTAL	—	Timer1 oscillator input		
	PGD	ST	CMOS	ICSP data I/O		
Vss	Vss	Power	—	Ground reference for logic and I/O pins		
Vdd	Vdd	Power	—	Positive supply for logic and I/O pins		
Legend: O = Output — = Not used TTL = TTL Input		CMOS = C I = Ir OD = O	MOS Output put pen Drain Out	P = Power ST = Schmitt Trigger Input put AN = Analog		

TABLE 3-2: PIC16F627A/628A/648A PINOUT DESCRIPTION (CONTINUED)

4.2.2 SPECIAL FUNCTION REGISTERS

The SFRs are registers used by the CPU and Peripheral functions for controlling the desired operation of the device (Table 4-3). These registers are static RAM.

The special registers can be classified into two sets (core and peripheral). The SFRs associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section of that peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset ⁽¹⁾	Details on Page		
Bank 0													
00h	INDF	Addressi	ng this locatio	on uses conte	ents of FSR t	o address da	ta memory (not a physic	al register)	xxxx xxxx	30		
01h	TMR0	Timer0 N	lodule's Regi	ster						XXXX XXXX	47		
02h	PCL	Program	Program Counter's (PC) Least Significant Byte										
03h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	24		
04h	FSR	Indirect D	Data Memory	Address Poir	nter					xxxx xxxx	30		
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx 0000	33		
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	38		
07h	—	Unimpler	nented							—	—		
08h	—	Unimpler	nented							—	—		
09h	—	Unimpler	nented							—	—		
0Ah	PCLATH	—	_	—	Write Buffer	for upper 5 b	bits of Progr	am Counter		0 0000	30		
0Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	26		
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	—	CCP1IF	TMR2IF	TMR1IF	0000 -000	28		
0Dh	_	Unimpler	nented							—	—		
0Eh	TMR1L	Holding F	Register for th	ne Least Sign	nificant Byte o	of the 16-bit T	MR1 Regist	ter		xxxx xxxx	50		
0Fh	TMR1H	Holding F	Register for th	ne Most Signi	ificant Byte o	f the 16-bit T	MR1 Registe	er		XXXX XXXX	50		
10h	T1CON	—	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	50		
11h	TMR2	TMR2 M	odule's Regis	ter						0000 0000	54		
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	54		
13h	—	Unimpler	nented							—	—		
14h	—	Unimpler	nented							—	—		
15h	CCPR1L	Capture/	Compare/PW	'M Register (LSB)					xxxx xxxx	57		
16h	CCPR1H	Capture/	Compare/PW	M Register (MSB)			-		xxxx xxxx	57		
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	57		
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	74		
19h	TXREG	USART 1	Fransmit Data	Register						0000 0000	79		
1Ah	RCREG	USART F	Receive Data	Register						0000 0000	82		
1Bh	—	Unimpler	nented							-	—		
1Ch	_	Unimpler	nented							—	—		
1Dh	—	Unimpler	nented							-	—		
1Eh	-	Unimpler	nented							-	—		
1Fh	CMCON	C2OUT	C1OUT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	63		

TABLE 4-3: SPECIAL REGISTERS SUMMARY BANK

Legend:- = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplementedNote1:For the initialization condition for registers tables, refer to Table 14-6 and Table 14-7.

9.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RB3/CCP1. An event is defined as:

- · Every falling edge
- Every rising edge
- · Every 4th rising edge
- Every 16th rising edge

An event is selected by control bits CCP1M<3:0> (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

9.1.1 CCP PIN CONFIGURATION

In Capture mode, the RB3/CCP1 pin should be configured as an input by setting the TRISB<3> bit.

Note:	If the RB3/CCP1 is configured as an
	output, a write to the port can cause a
	capture condition.

FIGURE 9-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

9.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

9.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF following any such change in Operating mode.

9.1.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M<3:0>. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any Reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 9-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 9-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		; the new prescaler
		; mode value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		; value

9.2 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RB3/CCP1 pin is:

- Driven high
- Driven low
- · Remains unchanged

The action on the pin is based on the value of control bits CCP1M<3:0> (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

FIGURE 9-2: C

COMPARE MODE OPERATION BLOCK DIAGRAM

9.2.1 CCP PIN CONFIGURATION

The user must configure the RB3/CCP1 pin as an output by clearing the TRISB<3> bit.

Note:	Clearing the CCP1CON register will force
	the RB3/CCP1 compare output latch to
	the default low level. This is not the data
	latch.

9.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

9.2.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

9.2.4 SPECIAL EVENT TRIGGER

In this mode (CCP1M<3:0>=1011), an internal hardware trigger is generated, which may be used to initiate an action. See Register 9-1.

The special event trigger output of the CCP occurs immediately upon a match between the TMR1H, TMR1L register pair and CCPR1H, CCPR1L register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the TMR1 clock. This allows the CCPR1 register pair to effectively be a 16-bit programmable period register for Timer1. The special event trigger output also starts an A/D conversion provided that the A/D module is enabled.

Note: Removing the match condition by changing the contents of the CCPR1H, CCPR1L register pair between the clock edge that generates the special event trigger and the clock edge that generates the TMR1 Reset will preclude the Reset from occuring.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR		Value on all other Resets	
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000	-000	0000	-000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000	-000	0000	-000
86h, 186h	TRISB	PORT	B Data	Direction R	egister					1111	1111	1111	1111
0Eh	TMR1L	Holdin	g Regis	ster for the l	Least Signif	icant Byte o	f the 16-bit	TMR1 Re	gister	xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holdin	g Regis	ster for the I	Most Signifi	cant Byte of	the 16-bit	TMR1 Reg	ister	xxxx	xxxx	uuuu	uuuu
10h	T1CON		_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu
15h	CCPR1L	Captur	re/Com	pare/PWM	Register1 (I	_SB)				xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/Compare/PWM Register1 (MSB)									xxxx	uuuu	uuuu
17h	CCP1CON		_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

TABLE 9-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.

9.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available: the CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

PWM duty cycle =

(CCPR1L:CCP1CON<5:4>) · Tosc · TMR2 prescale value

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Maximum PWM resolution (bits) for a given PWM frequency:

Note: If the PWM duty cycle value is longer than the PWM period the CCP1 pin will not be cleared.

For an example PWM period and duty cycle calculation, see the *PIC[®] Mid-Range Reference Manual* (DS33023).

9.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- Make the CCP1 pin an output by clearing the TRISB<3> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.

TABLE 9-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.5

TABLE 9-4: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
86h, 186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
11h	TMR2	Timer2 M	odule's Reg	ister						0000 0000	0000 0000
92h	PR2	Timer2 M	odule's Peri	od Register						1111 1111	1111 1111
12h	T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	uuuu uuuu
15h	CCPR1L	Capture/0	Compare/PV	/M Register	1 (LSB)					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/0	Compare/PV	/M Register	1 (MSB)					XXXX XXXX	uuuu uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.

Follow these steps when setting up an Asynchronous Reception:

- 1. TRISB<1> and TRISB<2> should both be set to '1' to configure the RB1/RX/DT and RB2/TX/CK pins as inputs. Output drive, when required, is controlled by the peripheral circuitry.
- Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH. (Section 12.1 "USART Baud Rate Generator (BRG)").
- 3. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. Enable the reception by setting bit CREN.
- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If an OERR error occurred, clear the error by clearing enable bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR		ר Value o all othe Reset	
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000	-000	0000	-000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000	000x	0000	000x
1Ah	RCREG	USART R	eceive [Data Regi	ster					0000	0000	0000	0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000	-000	0000	-000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000	-010	0000	-010
99h	SPBRG	Baud Rate Generator Register								0000	0000	0000	0000

TABLE 12-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

FIGURE 14-10: TIME OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

CLRW	Clear V	V		
Syntax:	[label]	CLRW		
Operands:	None	None		
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$			
Status Affected:	Z			
Encoding:	00	0001	0000	0011
Description:	W register is cleared. Zero bit (Z) is set.			
Words:	1			
Cycles:	1			
Example	CLRW			
	Before Instruction W = 0x5A After Instruction W = 0x00 Z = 1			

COMF	Complement f		
Syntax:	[<i>label</i>] COMF f,d		
Operands:	$0 \le f \le 127$ $d \in [0,1]$		
Operation:	$(\overline{f}) \rightarrow (dest)$		
Status Affected:	Z		
Encoding:	00 1001 dfff ffff		
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.		
Words:	1		
Cycles:	1		
Example	COMF REG1, 0		
	Before Instruction REG1 = 0x13 After Instruction REG1 = 0x13 W = 0xEC		

CLRWDT	Clear Watchdog Timer		
Syntax:	[label] CLRWDT		
Operands:	None		
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$		
Status Affected:	TO, PD		
Encoding:	00 0000 0110 0100		
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.		
Words:	1		
Cycles:	1		
Example	CLRWDT		
	Before Instruction WDT counter = ? After Instruction WDT counter = $0x00$ WDT prescaler = 0 TO = 1		

DECF	Decrement f		
Syntax:	[label] DECF f,d		
Operands:	$0 \le f \le 127$ d $\in [0,1]$		
Operation:	(f) - 1 \rightarrow (dest)		
Status Affected:	Z		
Encoding:	00 0011 dfff ffff		
Description:	Decrement register 'f'. If 'd' is '0'. the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.		
Words:	1		
Cycles:	1		
Example	DECF CNT, 1		
	Before Instruction CNT = 0x01 Z = 0 After Instruction CNT = 0x00 Z = 1		

e/] XORL <≤255	Wk		Syntax:		
x ≤ 255			Syntax:		
			Operands:		
.XOR. k → 0	(W) kkkk	kkkk	Operation: Status Affected:		
The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register.			Encoding: Description:		
.w _{0xAF} re Instructio W = 0xB	on 5		Words: Cycles: <u>Example</u>		
	uw 0xAF ore Instruction W = 0xB r Instruction	W 0xAF ore Instruction W = 0xB5 r Instruction	w = 0xAF ore Instruction W = 0xB5 r Instruction		

DRWF	Exclusive OR W with f		
ntax:	[label] XORWF	f,d	
perands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$		
peration:	(W) .XOR. (f) \rightarrow (des	t)	
atus Affected:	Z		
ncoding:	00 0110 df	ff ffff	
escription:	Exclusive OR the con W register with registe '0', the result is stored register. If 'd' is '1', th stored back in registe	itents of the er 'f'. If 'd' is d in the W e result is er 'f'.	
ords:	1		
cles:	1		
ample	XORWF REG1, 1		
	Before Instruction		
	REG1 = 0xAF W = 0xB5	. 5	
	After Instruction		
	REG1 = 0x1A W = 0xB5	5	

17.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings(†)

Ambient temperature under bias	40 to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3 to +6.5V
Voltage on MCLR and RA4 with respect to Vss	0.3 to +14V
Voltage on all other pins with respect to Vss	0.3V to VDD + 0.3V
Total power dissipation ⁽¹⁾	
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Input clamp current, Ιικ (Vi < 0 or Vi > VDD)	± 20 mA
Output clamp current, loк (Vo < 0 or Vo >VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA and PORTB (Combined)	
Maximum current sourced by PORTA and PORTB (Combined)	
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\Sigma$ IOH} + Σ {(VDD $-\Sigma$	VOH) x IOH} + Σ (VOI x IOL)

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}}$ pin rather than pulling this pin directly to Vss.

Parameter No.	Sym	Characteristic	Min	Тур	Max	Units	Conditions
F10	Fiosc	Oscillator Center frequency	—	4	_	MHz	
F13	∆losc	Oscillator Accuracy	3.96	4	4.04	MHz	Vdd = 3.5 V, 25°C
			3.92	4	4.08	MHz	$\begin{array}{l} 2.0V \leq V \text{DD} \leq 5.5V \\ 0^\circ \text{C} \leq \text{Ta} \leq +85^\circ \text{C} \end{array}$
			3.80	4	4.20	MHz	$2.0V \le VDD \le 5.5V$ -40°C \le TA \le +85°C (IND) -40°C \le TA \le +125°C (EXT)
F14 [*]	TIOSCST	Oscillator Wake-up from Sleep	_	6	8	μS	VDD = 2.0V, -40°C to +85°C
		start-up time		4	6	μS	VDD = 3.0V, -40°C to +85°C
			—	3	5	μS	VDD = 5.0V, -40°C to +85°C

TABLE 17-5: PRECISION INTERNAL OSCILLATOR PARAMETERS

Legend: TBD = To Be Determined.

* Characterized but not tested.

FIGURE 17-5: CLKOUT AND I/O TIMING

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units
10	TosH2ckL	OSC1↑ to CLKOUT↓	PIC16F62XA		75	200*	ns
10A			PIC16LF62XA	—	_	400*	ns
11	TosH2ckH	OSC1↑ to CLKOUT↑	PIC16F62XA	—	75	200*	ns
11A			PIC16LF62XA	—	_	400*	ns
12	TcĸR	CLKOUT rise time	PIC16F62XA	—	35	100*	ns
12A			PIC16LF62XA	_		200*	ns
13	ТскF	CLKOUT fall time	PIC16F62XA	—	35	100*	ns
13A			PIC16LF62XA	—	_	200*	ns
14	TckL2IoV	CLKOUT \downarrow to Port out valid		—	_	20*	ns
15	TIOV2CKH	Port in valid before CLKOUT \uparrow	PIC16F62XA	Tosc+200 ns*	_	_	ns
			PIC16LF62XA	Tosc+400 ns*	_	_	ns
16	TckH2iol	Port in hold after CLKOUT \uparrow		0		-	ns
17	TosH2IoV	OSC1↑ (Q1 cycle) to	PIC16F62XA	—	50	150*	ns
		Port out valid	PIC16LF62XA	—		300*	ns
18	TosH2ıol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)		100* 200*		_	ns

TABLE 17-6: CLKOUT AND I/O TIMING REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

NOTES:

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	X /XX XXX Temperature Package Pattern Range	Examples: a) PIC16F627A - E/P 301 = Extended Temp., BDIB package 20 MHz parmel Voc lim
Device:	PIC16F627A/628A/648A:Standard VDD range 3.0V to 5.5V PIC16F627A/628A/648AT:VDD range 3.0V to 5.5V (Tape and Reel) PIC16LF627A/628A/648A:VDD range 2.0V to 5.5V PIC16LF627A/628A/648AT:VDD range 2.0V to 5.5V (Tape and Reel)	 b) PIC16LF627A - I/SO = Industrial Temp., SOIC package, 20 MHz, extended VDD limits.
Temperature Range:	I = -40°C to +85°C E = -40°C to+125°C	
Package:	P = PDIP SO = SOIC (Gull Wing, 7.50 mm body) SS = SSOP (5.30 mm ML = QFN (28 Lead)	