

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f628a-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 PIC16F627A/628A/648A DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16F627A/628A/648A Product Identification System, at the end of this data sheet. When placing orders, please use this page of the data sheet to specify the correct part number.

2.1 Flash Devices

Flash devices can be erased and re-programmed electrically. This allows the same device to be used for prototype development, pilot programs and production.

A further advantage of the electrically erasable Flash is that it can be erased and reprogrammed in-circuit, or by device programmers, such as Microchip's PICSTART[®] Plus or PRO MATE[®] II programmers.

2.2 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who chose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are standard Flash devices, but with all program locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

2.3 Serialized Quick-Turnaround-Production (SQTPSM) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number, which can serve as an entry-code, password or ID number.

4.2.2.4 PIE1 Register

This register contains interrupt enable bits.

EGISTER 4-4:	PIE1 – PE	FIET - FERIFIERAL INTERRUPT ENABLE REGISTER T (ADDRESS: 801)											
	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0					
	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE					
	bit 7							bit 0					
bit 7	EEIE: EE V	EEIE: EE Write Complete Interrupt Enable Bit											
	 1 = Enables the EE write complete interrupt 0 = Disables the EE write complete interrupt 												
bit 6	CMIE: Corr	parator Inte	errupt Enab	le bit									
	 1 = Enables the comparator interrupt 0 = Disables the comparator interrupt 												
bit 5	RCIE: USA	RT Receive	e Interrupt E	nable bit									
	1 = Enable 0 = Disable	 1 = Enables the USART receive interrupt 0 = Disables the USART receive interrupt 											
bit 4	TXIE: USART Transmit Interrupt Enable bit												
	1 = Enable 0 = Disable	s the USAR s the USAF	T transmit i T transmit	nterrupt interrupt									
bit 3	Unimplem	ented: Read	d as '0'										
bit 2	CCP1IE: C	CP1 Interru	pt Enable b	it									
	1 = Enable 0 = Disable	s the CCP1 is the CCP1	interrupt interrupt										
bit 1	TMR2IE: T	MR2 to PR2	2 Match Inte	errupt Enable	e bit								
	1 = Enable 0 = Disable	s the TMR2 s the TMR2	to PR2 ma 2 to PR2 ma	tch interrupt atch interrup	t								
bit 0	TMR1IE: T	MR1 Overflo	ow Interrup	t Enable bit									
	1 = Enable 0 = Disable	 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt 											
	Legend:	Legend:											
	R = Reada	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
	-n = Value	at POR	'1' = E	Bit is set	'0' = Bit is c	leared	x = Bit is u	nknown					

REGISTER 4-4: PIE1 – PERIPHERAL INTERRUPT ENABLE REGISTER 1 (ADDRESS: 8Ch)

Name	Function	Input Type	Output Type	Description
RA0/AN0	RA0	ST	CMOS	Bidirectional I/O port
	AN0	AN	_	Analog comparator input
RA1/AN1	RA1	ST	CMOS	Bidirectional I/O port
	AN1	AN	—	Analog comparator input
RA2/AN2/VREF	RA2	ST	CMOS	Bidirectional I/O port
	AN2	AN	—	Analog comparator input
	VREF	_	AN	VREF output
RA3/AN3/CMP1	RA3	ST	CMOS	Bidirectional I/O port
	AN3	AN	—	Analog comparator input
	CMP1	_	CMOS	Comparator 1 output
RA4/T0CKI/CMP2	RA4	ST	OD	Bidirectional I/O port. Output is open drain type.
	TOCKI	ST	—	External clock input for TMR0 or comparator output
	CMP2	_	OD	Comparator 2 output
RA5/MCLR/VPP	RA5	ST	—	Input port
	MCLR	ST	_	Master clear. When configured as MCLR, this pin is an active low Reset to the device. Voltage on MCLR/VPP must not exceed VDD during normal device operation.
	Vpp	HV	_	Programming voltage input
RA6/OSC2/CLKOUT	RA6	ST	CMOS	Bidirectional I/O port
	OSC2	—	XTAL	Oscillator crystal output. Connects to crystal resonator in Crystal Oscillator mode.
	CLKOUT	—	CMOS	In RC or INTOSC mode. OSC2 pin can output CLKOUT, which has 1/4 the frequency of OSC1.
RA7/OSC1/CLKIN	RA7	ST	CMOS	Bidirectional I/O port
	OSC1	XTAL	—	Oscillator crystal input. Connects to crystal resonator in Crystal Oscillator mode.
	CLKIN	ST		External clock source input. RC biasing pin.
Legend: O = Outp — = Not u TTI = TTI	ut used Input	CN I OI	MOS = CN = Inp D = Op	IOS Output P = Power out ST = Schmitt Trigger Input oen Drain Output AN = Analog

TABLE 5-1: PORTA FUNCTIONS

TABLE 5-2:	SUMMARY OF REGISTERS AS	SOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other Resets
05h	PORTA	RA7	RA6	RA5 ⁽¹⁾	RA4	RA3	RA2	RA1	RA0	xxxx 0000	qqqu 0000
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
1Fh	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000

Legend: - = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition. Shaded cells are not used for PORTA.

Note 1: MCLRE configuration bit sets RA5 functionality.

8.0 TIMER2 MODULE

Timer2 is an 8-bit timer with a prescaler and a postscaler. It can be used as the PWM time base for PWM mode of the CCP module. The TMR2 register is readable and writable, and is cleared on any device Reset.

The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS<1:0> (T2CON<1:0>).

The Timer2 module has an 8-bit period register PR2. The TMR2 register value increments from 00h until it matches the PR2 register value and then resets to 00h on the next increment cycle. The PR2 register is a readable and writable register. The PR2 register is initialized to FFh upon Reset.

The match output of Timer2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a Timer2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

Timer2 can be shut off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

Register 8-1 shows the Timer2 control register.

8.1 Timer2 Prescaler and Postscaler

The prescaler and postscaler counters are cleared when any of the following occurs:

- a write to the TMR2 register
- · a write to the T2CON register
- any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out Reset)

The TMR2 register is not cleared when T2CON is written.

8.2 TMR2 Output

The TMR2 output (before the postscaler) is fed to the Synchronous Serial Port module which optionally uses it to generate shift clock.

FIGURE 8-1: TIMER2 BLOCK DIAGRAM

NOTES:

9.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available: the CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

PWM duty cycle =

(CCPR1L:CCP1CON<5:4>) · Tosc · TMR2 prescale value

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Maximum PWM resolution (bits) for a given PWM frequency:

Note: If the PWM duty cycle value is longer than the PWM period the CCP1 pin will not be cleared.

For an example PWM period and duty cycle calculation, see the *PIC[®] Mid-Range Reference Manual* (DS33023).

9.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- Make the CCP1 pin an output by clearing the TRISB<3> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.

TABLE 9-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.5

TABLE 9-4: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
86h, 186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
11h	TMR2	Timer2 M	odule's Reg	ister						0000 0000	0000 0000
92h	PR2	Timer2 M	odule's Peri	od Register						1111 1111	1111 1111
12h	T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	uuuu uuuu
15h	CCPR1L	Capture/0	Compare/PV		xxxx xxxx	uuuu uuuu					
16h	CCPR1H	Capture/0	Compare/PV		XXXX XXXX	uuuu uuuu					
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.

10.0 COMPARATOR MODULE

The comparator module contains two analog comparators. The inputs to the comparators are multiplexed with the RA0 through RA3 pins. The on-chip Voltage Reference (Section 11.0 "Voltage Reference Module") can also be an input to the comparators.

The CMCON register, shown in Register 10-1, controls the comparator input and output multiplexers. A block diagram of the comparator is shown in Figure 10-1.

REGISTER 10-1: CMCON – COMPARATOR CONFIGURATION REGISTER (ADDRESS: 01Fh)

C2OUTC1OUTC2INVC1INVCISCM2CM1CM0bit 7bit 7bit 0bit 7C2OUT: Comparator 2 Output bit $When C2INV = 0$: $1 = C2 VIN+ > C2 VIN-0 = C2 VIN+ > C2 VIN-0 = C2 VIN+ < C2 VIN-0 = C2 VIN+ > C2 VIN-0 = C1 VIN+ > C2 VIN-0 = C1 VIN+ > C1 VIN-0 = C1 VIN+ = C1 VIN+ = C1 VIN-0 = C1 VIN+ = C1 $		R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
bit 7C2OUT: Comparator 2 Output bit $\frac{When C2INV = 0:}{1 = C2 VIN + 2 C2 VIN - 0 = C2 VIN + 2 C2 VIN - 0 = C2 VIN + C2 VIN - 0 = C1 VIN + C2 VIN - 0 = C1 VIN + C1 VIN - 0 = C1 VIN - C0N = C1 VIN + C1 VIN - C1N = C1 VIN + C1N = $		C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0					
bit 7 C2OUT: Comparator 2 Output bit $\frac{When C2INV = 0:}{1 = C2 VIN+ < C2 VIN-} \\ 0 = C2 VIN+ < C2 VIN- \\ 0 = C1 OUT: Comparator 1 Output bit \frac{When C1INV = 0:}{1 = C1 VIN+ C1 VIN-} \\ 0 = C1 VIN+ < C1 VIN- \\ 0 = C1 VIN- comparator 1 Output Inversion bit \\ 1 = C2 Output inverted \\ 0 = C2 Output not inverted \\ 0 = C1 Output inverted \\ 0 = C1 Output inverted \\ 0 = C1 Output not inverted \\ 0 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA3 C2 VIN- connects to RA3 D = C1 VIN- connects to RA3 C2 VIN- connects to RA3 D = C1 VIN- connects to RA3 C2 VIN- connects to RA3 D = C1 VIN- connects to RA3 C2 VIN- connects to RA3 C2 VIN- connects to RA3 D = C1 VIN- connects to RA3 C2 VIN- connects to RA3 D = C1 VIN- con$		bit 7				•			bit 0					
bit 7 C2OUT: Comparator 2 Output bit $\frac{When C2INV = 0;}{1 = C2 VIN+ < C2 VIN-}$ $0 = C2 VIN+ < C2 VIN-$ $0 = C2 VIN+ > C2 VIN-$ bit 6 C1OUT: Comparator 1 Output bit $\frac{When C1INV = 0;}{1 = C1 VIN+ > C1 VIN-}$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN- C0 = C1 VIN- C0 = C1 VIN-$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN + C0 = C1 VIN + C1 VIN + C1 VIN-$ $0 = C1 VIN + C0 = C1 VIN + $														
$ \frac{When C2INV = 0:}{1 = C2 VIN+ > C2 VIN-} 0 = C2 VIN+ > C2 VIN-0 = C2 VIN+ < C2 VIN-0 = C2 VIN+ < C2 VIN-0 = C2 VIN+ > C2 VIN-0 = C2 VIN+ > C2 VIN-0 = C1 VIN+ > C2 VIN-0 = C1 VIN+ > C1 VIN-0 = C1 VIN+ < C1 VIN-0 = C1 VIN+ > C1 VIN-0 = C1 VIN+ < C1 VIN-0 = C1 VIN- CONPARATOR 2 VIN-0 = C1 VIN- C1 VIN-0 = C1 VIN- C1 VIN-0 = C1 Output inverted0 = C2 Output not inverted0 = C1 VIN- connects to RA30 = C1 VIN- connects to RA30 = C1 VIN- connects to RA30 = C1 VIN- connects to RA20 = C1 VIN- connects to RA20 = C1 VIN- connects to RA3C2 VIN- connects to RA20 = C1 VIN- connects to RA20 = C1 VIN- connects to RA3C2 VIN- connects to RA3C2 VIN- connects to RA20 = C1 VIN- connects to RA3C2 VIN- connects to RA3C2 VIN- connects to RA3C2 VIN- connects to RA4D1 = C1 VIN- $	bit 7	C2OUT: Comparator 2 Output bit												
$1 = C2 \forall N+ < C2 \forall N+ 0 = C2 \forall N+ < C2 \forall N+ 0 = C2 \forall N+ < C2 \forall N+ 0 = C2 \forall N+ < C2 \forall N+ 0 = C2 \forall N+ > C2 \forall N+ 0 = C2 \forall N+ > C2 \forall N+ 0 = C1 UN+ > C2 \forall N+ 0 = C1 VN+ > C1 VN+ 0 = C1 VN+ > C1 VN+ 0 = C1 VN+ < C1 VN+ 0 = C1 VN+ > C1 VN+ 0 = C1 VN+ > C1 VN+ 0 = C1 VN+ > C1 VN+ 0 = C2 Output inverted 0 = C2 Output not inverted 0 = C2 Output not inverted 0 = C1 VN- connects to RA3 0 = C1 VN- connects to RA3 C2 VN- connects to RA4 0 = C1 VN- connects to RA4 0 = C1 VN- connects to RA4 Dit 2-0 CM$		When C2I	NV = 0:											
$b = C2 \forall N+ \langle C2 \forall N- $ $\frac{When C2INV = 1:}{1 = C2 \forall N+ \langle C2 \forall N- \\0 = C2 \forall N+ \langle C2 \forall N- \\0 = C2 \forall N+ \langle C2 \forall N- \\0 = C2 \forall N+ \rangle C2 \forall N- \\0 = C1 \forall V- \\0 = C1 \forall V- \\0 = C1 \forall N- \\0 = C1 \\0 = C2 \\0 = C1 \\0 =$		1 = C2 VIN	+ > C2 VIN-											
When C2INV = 1: 1 = C2 VIN+ < C2 VIN- 0 = C2 VIN+ > C2 VIN- 0 = C2 VIN+ > C2 VIN-bit 6C10UT: Comparator 1 Output bit When C1INV = 0: 1 = C1 VIN+ > C1 VIN- 0 = C1 VIN+ < C1 VIN- 		0 = C2 VIN	+ < C2 VIN-											
1 = C2 VIN+ < C2 VIN- 0 = C2 VIN+ > C2 VIN- 0 = C2 VIN+ > C2 VIN- bit 6 C10UT: Comparator 1 Output bit When C1INV = 0: 1 = C1 VIN+ > C1 VIN- 0 = C1 VIN+ < C1 VIN- 0 = C1 VIN+ > C1 VIN- 0 = C1 VIN+ > C1 VIN- 0 = C1 VIN+ > C1 VIN- bit 5 C2INV: Comparator 2 Output Inversion bit 1 = C2 Output inverted 0 = C2 Output inverted 0 = C1 Output inverted 0 = C1 Output inverted 0 = C1 Output inverted bit 3 CIS: Comparator I put Switch bit When CM<2:0>: = 001 Then: 1 = C1 VIN- connects to RA3 0 =		When C2I	NV = 1:											
bit 6 C10UT: Comparator 1 Output bit $\frac{When C1INV = 0:}{1 = C1 VIN+ > C1 VIN-}$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN+ > C1 VIN-$ $0 = C1 VIN+ > C1 VIN-$ bit 5 C2INV: Comparator 2 Output Inversion bit 1 = C2 Output inverted $0 = C2 Output not inverted$ bit 4 C1INV: Comparator 1 Output Inversion bit 1 = C1 Output not inverted bit 3 CIS: Comparator Input Switch bit $\frac{When CM<2:0>: = 001}{Then:}$ $1 = C1 VIN- connects to RA3$ $0 = C1 VIN- connects to RA3$ $C2 VIN- connects to RA3$ $C3 VIN- connects to RA3$		1 = C2 VIN	+ < C2 VIN-											
bit 6C10UT: Comparator 1 Output bit $\frac{When C1INV = 0:}{1 = C1 VIN+ > C1 VIN-}$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN+ > C1 VIN-$ bit 5C2INV: Comparator 2 Output Inversion bit $1 = C2$ Output inverted $0 = C2$ Output inverted $0 = C2$ Output not inverted bit 4C1INV: Comparator 1 Output Inversion bit $1 = C1$ Output inverted $0 = C1$ Output not inverted 		0 = C2 VIN	+ > C2 VIN-											
When C1INV = 0: $1 = C1 VIN+ C1 VIN 0 = C1 VIN+ C1 VIN-$ bit 5C2INV: Comparator 2 Output Inversion bit $1 = C2$ Output inverted $0 = C2$ Output inverted $0 = C2$ Output inverted $0 = C1$ Output inverted $0 = C1$ Output not invertedbit 3CIS: Comparator 1 Output Inversion bit $1 = C1 Output not inverted$ $0 = C1 Output not inverted$ $0 = C1 Output not inverted$ bit 3CIS: Comparator Input Switch bitWhen CM<2:0>: = 001 Then: $1 = C1 VIN-$ connects to RA3 $0 = C1 VIN-$ connects to RA1bit 2-0CM<2:0>: Comparator Mode bitsFigure 10-1 shows the comparator modes and CM<2:0> bit settings	bit 6	C1OUT : Co	omparator 1	Output bit										
$1 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN+ < C1 VIN-$ $\frac{When C1INV = 1:}{1 = C1 VIN+ < C1 VIN-}$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN+ > C1 VIN-$ bit 5 $C2INV: Comparator 2 Output Inversion bit$ $1 = C2 Output inverted$ $0 = C2 Output not inverted$ bit 4 $C1INV: Comparator 1 Output Inversion bit$ $1 = C1 Output not inverted$ bit 3 $CIS: Comparator Input Switch bit$ $\frac{When CM<2:0>: = 0.01}{Then:}$ $1 = C1 VIN- connects to RA3$ $0 = C1 VIN- connects to RA3$ $C2 VIN- connects to RA3$ $C3 VIN- connects to RA4$ bit 2-0 $CM < 2:0>: Comparator Mode bits$ Figure 10-1 shows the comparator modes and CM < 2:0> bit settings		When C1I	<u>VV = 0:</u>											
$\frac{When C1INV + C1 VIN}{When C1INV + C1 VIN}$ $\frac{When C1INV + C1 VIN}{0 = C1 VIN + C1 VIN}$ bit 5 C2INV: Comparator 2 Output Inversion bit $1 = C2$ Output inverted $0 = C2$ Output not inverted bit 4 C1INV: Comparator 1 Output Inversion bit $1 = C1$ Output inverted bit 3 CIS: Comparator Input Switch bit $\frac{When CM + 2:0 + := 001}{Then:}$ $1 = C1 VIN - connects to RA3$ $0 = C1 VIN - connects to RA3$ $C2 VIN - connects to RA3$ $C3 = C1 VIN - connects to RA3$ $C2 VIN - connects to RA3$ $C3 = C1 VIN - connects to RA4$ bit 2-0 CM - 2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM - 2:0> bit settings		1 = C1 VIN	+ > C1 VIN											
When C1INV = 1: 1 = C1 VIN+ < C1 VIN- 0 = C1 VIN+ > C1 VIN- 0 = C1 VIN+ > C1 VIN-bit 5C2INV: Comparator 2 Output Inversion bit 1 = C2 Output inverted 0 = C2 Output not invertedbit 4C1INV: Comparator 1 Output Inversion bit 1 = C1 Output inverted 0 = C1 Output not invertedbit 3CIS: Comparator Input Switch bit When CM<2:0>: = 001 Then: 1 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA0When CM<2:0> = 010 Then: 1 = C1 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA1bit 2-0CM<2:0> : Comparator Ndde bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings														
1 = C1 VIN+ < C1 VIN- 0 = C1 VIN+ > C1 VIN- 0 = C1 VIN+ > C1 VIN- bit 5 C2INV: Comparator 2 Output Inversion bit 1 = C2 Output inverted 0 = C2 Output not inverted bit 4 C1INV: Comparator 1 Output Inversion bit 1 = C1 Output inverted 0 = C1 Output not inverted bit 3 CIS: Comparator Input Switch bit When CM<2:0>: = 001 Then: 1 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA1 bit 2-0 CM<2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings		When C1I	NV = 1:											
bit 5 C2 INV: Comparator 2 Output Inversion bit 1 = C2 Output inverted 0 = C2 Output not inverted bit 4 C1INV: Comparator 1 Output Inversion bit 1 = C1 Output inverted 0 = C1 Output inverted 0 = C1 Output not inverted bit 3 CIS: Comparator Input Switch bit When CM<2:0>: = 001 Then: 1 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA3 C2 VIN- connects to RA3 C2 VIN- connects to RA3 C2 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA3 C2 VIN- connects to RA4 bit 2-0 CM<2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings		1 = C1 VIN	+ < C1 VIN-											
bit 5 C2INV: Comparator 2 Output Inversion bit 1 = C2 Output inverted 0 = C2 Output not inverted bit 4 C1INV: Comparator 1 Output Inversion bit 1 = C1 Output inverted 0 = C1 Output not inverted bit 3 CIS: Comparator Input Switch bit When CM<2:0>: = 001 Then: 1 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA0 When CM<2:0> = 010 Then: 1 = C1 VIN- connects to RA3 C2 VIN- connects to RA4 bit 2-0 CM<2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings		0 = C1 Vin + > C1 Vin												
bit 4 C1INV: Comparator 1 Output Inverted 0 = C2 Output not inverted 1 = C1 Output inverted 0 = C1 Output not inverted bit 3 CIS: Comparator Input Switch bit When CM<2:0>: = 001 Then: 1 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA0 When CM<2:0> = 010 Then: 1 = C1 VIN- connects to RA3 C2 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA2 0 = C1 VIN- connects to RA2 0 = C1 VIN- connects to RA1 bit 2-0 CM<2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings	bit 5	LINV: Comparator 2 Output Inversion bit												
bit 4 C1INV: Comparator 1 Output Inversion bit 1 = C1 Output inverted 0 = C1 Output not inverted bit 3 CIS: Comparator Input Switch bit <u>When CM<2:0>: = 001</u> Then: 1 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA0 <u>When CM<2:0> = 010</u> Then: 1 = C1 VIN- connects to RA3 C2 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA1 bit 2-0 CM<2:0> : Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings		L = C2 Ομιρμι Ιηνεπεα 0 = C2 Ομιρμι not inverted												
bit 1 = C1 Output inverted 1 = C1 Output inverted 0 = C1 Output not inverted bit 3 CIS: Comparator Input Switch bit $\frac{When CM < 2:0 >: = 001}{Then:}$ $1 = C1 VIN- connects to RA3$ 0 = C1 VIN- connects to RA0 $\frac{When CM < 2:0 >= 010}{Then:}$ $1 = C1 VIN- connects to RA3$ C2 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA1 bit 2-0 CM < 2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM < 2:0> bit settings	hit 4	C1INV [·] Co	moarator 1 (Dutnut Inve	rsion hit									
bit 3 CIS : Comparator Input Switch bit $\frac{When CM<2:0>:=001}{Then:}$ $1 = C1 VIN- connects to RA3$ $0 = C1 VIN- connects to RA0$ $\frac{When CM<2:0> = 010}{Then:}$ $1 = C1 VIN- connects to RA3$ $C2 VIN- connects to RA3$ $C2 VIN- connects to RA2$ $0 = C1 VIN- connects to RA2$ $0 = C1 VIN- connects to RA1$ bit 2-0 CM<2:0> : Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings	bit i	1 = C1 Output inverted												
bit 3 CIS: Comparator Input Switch bit When CM<2:0>: = 001 Then: 1 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA0 When CM<2:0> = 010 Then: 1 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA0 When CM<2:0> = 010 Then: 1 = C1 VIN- connects to RA3 C2 VIN- connects to RA3 C2 VIN- connects to RA0 C2 VIN- connects to RA1 bit 2-0 CM CM C2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings		0 = C1 Output not inverted												
When $CM<2:0>:=001$ Then: $1 = C1 VIN- connects to RA30 = C1 VIN- connects to RA0When CM<2:0>=010Then:1 = C1 VIN- connects to RA3C2 VIN- connects to RA20 = C1 VIN- connects to RA0C2 VIN- connects to RA1bit 2-0CM<2:0>: Comparator Mode bitsFigure 10-1 shows the comparator modes and CM<2:0> bit settings$	bit 3	CIS: Comp	parator Input	Switch bit										
Then: 1 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA0 When CM<2:0> = 010 Then: 1 = C1 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA0 C2 VIN- connects to RA0 C2 VIN- connects to RA1 bit 2-0 CM<2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings		When CM<	<2:0>: = 001	<u>.</u>										
$1 = C1 \text{ VIN- connects to RA3}$ $0 = C1 \text{ VIN- connects to RA0}$ $\frac{\text{When CM<2:0> = 010}}{\text{Then:}}$ $1 = C1 \text{ VIN- connects to RA3}$ $C2 \text{ VIN- connects to RA2}$ $0 = C1 \text{ VIN- connects to RA0}$ $C2 \text{ VIN- connects to RA0}$ $C2 \text{ VIN- connects to RA1}$ bit 2-0 $CM<2:0>: Comparator Mode bits$ Figure 10-1 shows the comparator modes and CM<2:0> bit settings		Then:												
When CM<2:0> = 010 Then: 1 = C1 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA0 C2 VIN- connects to RA0 C2 VIN- connects to RA1 bit 2-0 CM<2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings		1 = C1 VIN	- connects to	RA3										
When CM<2:0> = 010 Then: 1 = C1 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA0 C2 VIN- connects to RA1 bit 2-0 CM<2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings														
Then: 1 = C1 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA0 C2 VIN- connects to RA1 bit 2-0 CM<2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings		When CM<	< <u>2:0> = 010</u>											
 1 = C1 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA0 C2 VIN- connects to RA1 bit 2-0 CM<2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings 		Then:		544										
bit 2-0 CM<2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings		1 = C1 VIN	- connects to	RA3										
bit 2-0 CM<2:0> : Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings		0 = C1 VIN	- connects to	0 RAZ										
bit 2-0 CM<2:0> : Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings		C2 VIN	- connects t	o RA1										
Figure 10-1 shows the comparator modes and CM<2:0> bit settings	bit 2-0	CM<2:0>:	Comparator	Mode bits										
		Figure 10-	1 shows the	comparator	modes and	d CM<2:0> bit s	ettings							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 10-4: ANALOG INPUT MODE

TABLE 10-1:	REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other Resets
1Fh	CMCON	C2OUT	C10UT	C2INV	C1NV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

Legend: x = Unknown, u = Unchanged, - = Unimplemented, read as '0'

FIGURE 11-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 11-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value On POR	Value On All Other Resets
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000
1Fh	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

Legend: - = Unimplemented, read as '0'.

12.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 12-1 shows the formula for computation of the baud rate for different USART modes, which only apply in Master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 12-1. From this, the error in baud rate can be determined.

Example 12-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz Desired Baud Rate = 9600 BRGH = 0 SYNC = 0

EQUATION 12-1: CALCULATING BAUD RATE ERROR

$$Desired Baud Rate = \frac{Fosc}{64(x+1)}$$

$$9600 = \frac{16000000}{64(x+1)}$$

$$x = 25.042$$

$$Calculated Baud Rate = \frac{16000000}{64(25+1)} = 9615$$

$$Error = \frac{(Calculated Baud Rate - Desired Baud Rate)}{Desired Baud Rate}$$

$$= \frac{9615 - 9600}{9600} = 0.16\%$$

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the FOSC/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared) and ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

The data on the RB1/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

TABLE 12-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate = Fosc/(16(X+1))
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	NA

Legend: X = value in SPBRG (0 to 255)

TABLE 12-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
99h	SPBRG	Baud Ra	ite Genera	ator Regis	ster					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for the BRG.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN CREN ADEN FERR OERR RX9D 0000 000x 0000 0						0000 000x	
19h	TXREG	USART 1	Fransmit	Data Re	egister					0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Ra	te Genei	rator Reg	gister					0000 0000	0000 0000

TABLE 12-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

FIGURE 12-8: SYNCHRONOUS TRANSMISSION

FIGURE 12-9: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

13.0 DATA EEPROM MEMORY

The EEPROM data memory is readable and writable during normal operation (full VDD range). This memory is not directly mapped in the register file space. Instead it is indirectly addressed through the Special Function Registers (SFRs). There are four SFRs used to read and write this memory. These registers are:

- EECON1
- EECON2 (Not a physically implemented register)
- EEDATA
- EEADR

EEDATA holds the 8-bit data for read/write and EEADR holds the address of the EEPROM location being accessed. PIC16F627A/628A devices have 128 bytes of data EEPROM with an address range from 0h to 7Fh. The PIC16F648A device has 256 bytes of data EEPROM with an address range from 0h to FFh.

The EEPROM data memory allows byte read and write. A byte write automatically erases the location and writes the new data (erase before write). The EEPROM data memory is rated for high erase/write cycles. The write time is controlled by an on-chip timer. The write time will vary with voltage and temperature, as well as from chip-to-chip. Please refer to AC specifications for exact limits.

When the device is code-protected, the CPU can continue to read and write the data EEPROM memory. A device programmer can no longer access this memory.

Additional information on the data EEPROM is available in the *PIC[®] Mid-Range Reference Manual* (DS33023).

REGISTER 13-1: EEDATA – EEPROM DATA REGISTER (ADDRESS: 9Ah)

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| EEDAT7 | EEDAT6 | EEDAT5 | EEDAT4 | EEDAT3 | EEDAT2 | EEDAT1 | EEDAT0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 **EEDATn**: Byte value to Write to or Read from data EEPROM memory location.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 13-2: EEADR – EEPROM ADDRESS REGISTER (ADDRESS: 9Bh)

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EADR7 | EADR6 | EADR5 | EADR4 | EADR3 | EADR2 | EADR1 | EADR0 |
| bit 7 | | | | | | | bit 0 |

bit 7 PIC16F627A/628A

Unimplemented Address: Must be set to '0'

PIC16F648A

EEADR: Set to '1' specifies top 128 locations (128-255) of EEPROM Read/Write Operation **EEADR**: Specifies one of 128 locations of EEPROM Read/Write Operation

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 6-0

13.7 Using the Data EEPROM

The data EEPROM is a high endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). When variables in one section change frequently, while variables in another section do not change, it is possible to exceed the total number of write cycles to the EEPROM (specification D124) without exceeding the total number of write cycles to a single byte (specifications D120 and D120A). If this is the case, then an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

A simple data EEPROM refresh routine is shown in Example 13-4.

Note: If data EEPROM is only used to store constants and/or data that changes rarely, an array refresh is likely not required. See specification D124.

EXAMPLE 13-4: DATA EEPROM REFRESH ROUTINE

	BANKSEL	0X80	;select Bank1
	CLRF	EEADR	;start at address 0
	BCF	INTCON, GIE	disable interrupts
	BTFSC	INTCON, GIE	see AN576
	GOTO	\$ - 2	
	BSF	EECON1, WREN	;enable EE writes
Loc	q		
	BSF	EECON1, RD	;retrieve data into EEDATA
	MOVLW	0x55	;first step of
	MOVWF	EECON2	; required sequence
	MOVLW	0xAA	;second step of
	MOVWF	EECON2	; required sequence
	BSF	EECON1, WR	;start write sequence
	BTFSC	EECON1, WR	;wait for write complete
	domo	A 1	
	G0.1.0	Ş - 1	
	GOTO	\$ - I	
#IF	GOTO DEF16F64	\$ - I 8A	;256 bytes in 16F648A
#IF	GOTO DEF16F64 INCFSZ	Ş - I 8A EEADR. f	;256 bytes in 16F648A :test for end of memory
#IF	DEF16F64 INCFSZ	Ş - I 8A EEADR, f	;256 bytes in 16F648A ;test for end of memory :128 bytes in 16F627A/628A
#IF #EI	DEF16F64 INCFSZ INCF	Ş - 1 8A EEADR, f EEADR, f	;256 bytes in 16F648A ;test for end of memory ;128 bytes in 16F627A/628A :next address
#IF #EI	GOIO DEF16F64 INCFSZ SE INCF BTFSS	<pre>\$ - 1 8A EEADR, f EEADR, f EEADR, 7</pre>	;256 bytes in 16F648A ;test for end of memory ;128 bytes in 16F627A/628A ;next address :test for end of memory
#IF #EI #EN	GOIO DEF16F64 INCFSZ SE INCF BTFSS DIF	Ş - 1 8A EEADR, f EEADR, f EEADR, 7	;256 bytes in 16F648A ;test for end of memory ;128 bytes in 16F627A/628A ;next address ;test for end of memory :end of conditional assembly
#IF #EI #EN	DEF16F64 INCFSZ SE INCF BTFSS DIF	Ş - 1 8A EEADR, f EEADR, f EEADR, 7	;256 bytes in 16F648A ;test for end of memory ;128 bytes in 16F627A/628A ;next address ;test for end of memory ;end of conditional assembly
#IF #EI #EN	GOIO DEF16F64 INCFSZ SE INCF BTFSS DIF GOTO	<pre>\$ - 1 8A EEADR, f EEADR, f EEADR, 7 Loop</pre>	;256 bytes in 16F648A ;test for end of memory ;128 bytes in 16F627A/628A ;next address ;test for end of memory ;end of conditional assembly ;repeat for all locations
#IF #EI #EN	GOTO DEF16F64 INCFSZ SE INCF BTFSS DIF GOTO	<pre>\$ - 1 8A EEADR, f EEADR, f EEADR, 7 Loop</pre>	;256 bytes in 16F648A ;test for end of memory ;128 bytes in 16F627A/628A ;next address ;test for end of memory ;end of conditional assembly ;repeat for all locations
#IF #EI #EN	GOTO DEF16F64 INCFSZ SE INCF BTFSS DIF GOTO BCF	<pre>\$ - 1 8A EEADR, f EEADR, f EEADR, 7 Loop EECON1, WREN</pre>	;256 bytes in 16F648A ;test for end of memory ;128 bytes in 16F627A/628A ;next address ;test for end of memory ;end of conditional assembly ;repeat for all locations ;disable EE writes
#IF #EI #EN	GOTO DEF16F64 INCFSZ SE INCF BTFSS DIF GOTO BCF BSF	<pre>\$ - 1 8A EEADR, f EEADR, f EEADR, 7 Loop EECON1, WREN INTCON. GIE</pre>	<pre>;256 bytes in 16F648A ;test for end of memory ;128 bytes in 16F627A/628A ;next address ;test for end of memory ;end of conditional assembly ;repeat for all locations ;disable EE writes :enable interrupts (optional)</pre>

13.8 Data EEPROM Operation During Code-Protect

When the device is code-protected, the CPU is able to read and write data to the data EEPROM.

TABLE 13-1: REGISTERS/BITS ASSOCIATED WITH DATA EEPROM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other Resets
9Ah	EEDATA	EEPRO	M Data R	egister						xxxx xxxx	uuuu uuuu
9Bh	EEADR	EEPRO	M Addres	s Registe	er					xxxx xxxx	uuuu uuuu
9Ch	EECON1	_	_	_	_	WRERR	WREN	WR	RD	x000	q000
9Dh	EECON2 ⁽¹⁾	EEPRO	M Contro	l Register	2						

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. Shaded cells are not used by data EEPROM.

Note 1: EECON2 is not a physical register.

AND Literal with W

ANDLW

ADDLW	Add Lite	ral and	w	
Syntax:	[label] A	ADDLW	/ k	
Operands:	$0 \le k \le 25$	55		
Operation:	(W) + k –	→ (W)		
Status Affected:	C, DC, Z			
Encoding:	11	111x	kkkk	kkkk
Description:	The conte are added 'k' and the W registe	ents of d to the e result er.	the W reg eight bit is placed	gister literal I in the
Words:	1			
Cycles:	1			
Example	ADDLW	0x15		
	Before In: W After Instr W	structio = 0x1 ruction = 0x2	n 10 25	

15.2 Instruction	Descriptions
------------------	--------------

Oymax.	
Operands:	$0 \le k \le 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Encoding:	11 1001 kkkk kkkk
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example	ANDLW 0x5F
	Before Instruction
	W = 0xA3
	W = 0x03
ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f.d
e yman.	
Operands:	0 ≤ f ≤ 127
Operands:	$0 \le f \le 127$ $d \in [0,1]$ (A) AND (f) (dept)
Operands: Operation:	$0 \le f \le 127$ d \equiv [0,1] (W) .AND. (f) \rightarrow (dest)
Operation: Status Affected:	$0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest) Z
Operands: Operation: Status Affected: Encoding:	$0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest) Z 00 0101 dfff ffff
Operands: Operation: Status Affected: Encoding: Description:	$\begin{array}{c} 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) .AND. (f) \rightarrow (dest) \\ \hline Z \\ \hline 00 \\ Olo1 \\ dfff \\ ffff \\ \hline AND the W register with register \\ f'. If 'd' is '0', the result is stored \\ in the W register. If 'd' is '1', the \\ result is stored back in register \\ f'. \end{array}$
Operands: Operation: Status Affected: Encoding: Description: Words:	$0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest) Z 00 0101 dfff ffff AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'. 1
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest) Z 00 0101 dfff ffff AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'. 1 1 1
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	$0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest) Z 00 0101 dfff ffff AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'. 1 1 ANDWF REG1, 1

ADDWF	Add W and f					
Syntax:	[<i>label</i>] ADDWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(W) + (f) \rightarrow (dest)					
Status Affected:	C, DC, Z					
Encoding:	00 0111 dfff ffff					
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example	ADDWF REG1, 0					
	Before Instruction W = 0x17 REG1 = 0xC2 After Instruction W = 0xD9 REG1 = 0xC2 Z = 0 C = 0 DC = 0					

CLRW	Clear V	V			
Syntax:	[label] CLRW				
Operands:	None				
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$				
Status Affected:	Z				
Encoding:	00	0001	0000	0011	
Description:	W register is cleared. Zero bit (Z) is set.				
Words:	1				
Cycles:	1 CLRW Before Instruction W = 0x5A After Instruction W = 0x00 Z = 1				
Example					

COMF	Complement f				
Syntax:	[<i>label</i>] COMF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	$(\overline{f}) \rightarrow (dest)$				
Status Affected:	Z				
Encoding:	00 1001 dfff ffff				
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example	COMF REG1, 0				
	Before Instruction REG1 = 0x13 After Instruction REG1 = 0x13 W = 0xEC				

CLRWDT	Clear Watchdog Timer					
Syntax:	[label] CLRWDT					
Operands:	None					
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$					
Status Affected:	TO, PD					
Encoding:	00 0000 0110 0100					
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.					
Words:	1					
Cycles:	1					
Example	CLRWDT					
	Before Instruction WDT counter = ? After Instruction WDT counter = $0x00$ WDT prescaler = 0 $\frac{TO}{PD}$ = 1 = 1					

DECF	Decrement f				
Syntax:	[label] DECF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(f) - 1 \rightarrow (dest)				
Status Affected:	Z				
Encoding:	00 0011 dfff ffff				
Description:	Decrement register 'f'. If 'd' is '0'. the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example	DECF CNT, 1				
	Before Instruction CNT = 0x01 Z = 0 After Instruction CNT = 0x00 Z = 1				

IORLW	Inclusive OR Literal with W					
Syntax:	[<i>label</i>] IORLW k					
Operands:	$0 \le k \le 255$					
Operation:	(W) .OR. $k \rightarrow$ (W)					
Status Affected:	Z					
Encoding:	11 1000 kkkk kkkk					
Description:	The contents of the W register is OR'ed with the eight-bit literal 'k'. The result is placed in the W register.					
Words:	1					
Cycles:	1					
Example	IORLW 0x35					
	Before Instruction W = 0x9A After Instruction W = 0xBF Z = 0					
IORWE	Inclusive OR W with f					

MOVLW	Move Literal to W					
Syntax:	[<i>label</i>] MOVLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$k \rightarrow (W)$					
Status Affected:	None					
Encoding:	11 00xx kkkk kkkk					
Description:	The eight bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.					
Words:	1					
Cycles:	1					
Example	MOVLW 0x5A					
	After Instruction W = 0x5A					

IORWF	Inclusive OR W with f				
Syntax:	[<i>label</i>] IORWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(W) .OR. (f) \rightarrow (dest)				
Status Affected:	Z				
Encoding:	00 0100 dfff ffff				
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.				
Words:	1				
Cycles:	1				
Example	IORWF REG1, 0				
	Before Instruction REG1 = 0x13 W = 0x91 After Instruction REG1 = 0x13 W = 0x93 Z = 1				

MOVF	Move f					
Syntax:	[<i>label</i>] MOVF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	$(f) \rightarrow (dest)$					
Status Affected:	Z					
Encoding:	00 1000 dfff ffff					
Description:	The contents of register 'f' is moved to a destination dependent upon the status of 'd'. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.					
Words:	1					
Cycles:	1					
Example	MOVF REG1, 0					
	After Instruction W= value in REG1 register Z = 1					

16.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

16.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

16.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

TABLE 17-7:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TMCL	MCLR Pulse Width (low)	2000			ns	VDD = 5V, -40°C to +85°C
31	Twdt	Watchdog Timer Time out Period (No Prescaler)	7*	18	33*	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc			Tosc = OSC1 period
33	TPWRT	Power-up Timer Period	28*	72	132*	ms	VDD = 5V, -40°C to +85°C
34	Tioz	I/O High-impedance from MCLR Low or Watchdog Timer Reset	_	_	2.0*	μS	
35	TBOR	Brown-out Reset pulse width	100*	_	_	μS	$VDD \le VBOR (D005)$

Legend: TBD = To Be Determined.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 17-8: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

FIGURE 18-13: TYPICAL INTERNAL OSCILLATOR FREQUENCY vs. VDD TEMPERATURE = -40°C TO 85°C

