

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f628at-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

1.0 GENERAL DESCRIPTION

The PIC16F627A/628A/648A are 18-pin Flash-based members of the versatile PIC16F627A/628A/648A family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers.

All PIC[®] microcontrollers employ an advanced RISC architecture. The PIC16F627A/628A/648A have enhanced core features, an eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two-stage instruction pipeline allows all instructions to execute in a single-cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available, complemented by a large register set.

PIC16F627A/628A/648A microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

PIC16F627A/628A/648A devices have integrated features to reduce external components, thus reducing system cost, enhancing system reliability and reducing power consumption.

The PIC16F627A/628A/648A has 8 oscillator configurations. The single-pin RC oscillator provides a low-cost solution. The LP oscillator minimizes power consumption, XT is a standard crystal, and INTOSC is a self-contained precision two-speed internal oscillator.

The HS mode is for High-Speed crystals. The EC mode is for an external clock source.

The Sleep (Power-down) mode offers power savings. Users can wake-up the chip from Sleep through several external interrupts, internal interrupts and Resets.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lockup.

Table 1-1 shows the features of the PIC16F627A/628A/ 648A mid-range microcontroller family.

A simplified block diagram of the PIC16F627A/628A/ 648A is shown in Figure 3-1.

The PIC16F627A/628A/648A series fits in applications ranging from battery chargers to low power remote sensors. The Flash technology makes customizing application programs (detection levels, pulse generation, timers, etc.) extremely fast and convenient. The small footprint packages makes this microcontroller series ideal for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16F627A/628A/648A very versatile.

1.1 Development Support

The PIC16F627A/628A/648A family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low cost in-circuit debugger, a low cost development programmer and a full-featured programmer. A Third Party "C" compiler support tool is also available.

		PIC16F627A	PIC16F628A	PIC16F648A	PIC16LF627A	PIC16LF628A	PIC16LF648A
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20
	Flash Program Memory (words)	1024	2048	4096	1024	2048	4096
Memory	RAM Data Memory (bytes)	224	224	256	224	224	256
	EEPROM Data Memory (bytes)	128	128	256	128	128	256
	Timer module(s)	TMR0, TMR1, TMR2					
	Comparator(s)	2	2	2	2	2	2
Peripherals	Capture/Compare/ PWM modules	1	1	1	1	1	1
	Serial Communications	USART	USART	USART	USART	USART	USART
	Internal Voltage Reference	Yes	Yes	Yes	Yes	Yes	Yes
	Interrupt Sources	10	10	10	10	10	10
	I/O Pins	16	16	16	16	16	16
Features	Voltage Range (Volts)	3.0-5.5	3.0-5.5	3.0-5.5	2.0-5.5	2.0-5.5	2.0-5.5
	Brown-out Reset	Yes	Yes	Yes	Yes	Yes	Yes
	Packages	18-pin DIP, SOIC, 20-pin SSOP, 28-pin QFN					

TABLE 1-1: PIC16F627A/628A/648A FAMILY OF DEVICES

All PIC[®] family devices have Power-on Reset, selectable Watchdog Timer, selectable code-protect and high I/O current capability. All PIC16F627A/628A/648A family devices use serial programming with clock pin RB6 and data pin RB7.

FIGURE 4-2: DATA MEMORY MAP OF THE PIC16F627A AND PIC16F628A

	1						7
Indirect addr. ⁽¹⁾	00h	Indirect addr. ⁽¹⁾	80h	Indirect addr. ⁽¹⁾	100h	Indirect addr. ⁽¹⁾	180
TMR0	01h	OPTION	81h	TMR0	101h	OPTION	181
PCL	02h	PCL	82h	PCL	102h	PCL	182
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183
FSR	04h	FSR	84h	FSR	104h	FSR	184
PORTA	05h	TRISA	85h		105h		185
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186
	07h		87h		107h		187
	08h		88h		108h		188
	09h		89h		109h		189
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18/
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	185
PIR1	0Ch	PIE1	8Ch		10Ch		180
	0Dh		8Dh		10Dh		18[
TMR1L	0Eh	PCON	8Eh		10Eh		18
TMR1H	0Fh		8Fh		10Fh		18F
T1CON	10h		90h				
TMR2	11h		91h				
T2CON	12h	PR2	92h				
	13h		93h				
	14h		94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h				
CCP1CON	17h		97h				
RCSTA	18h	TXSTA	98h				
TXREG	19h	SPBRG	99h				
RCREG	1Ah	EEDATA	9Ah				
	1Bh	EEADR	9Bh				
	1Ch	EECON1	9Ch				
	1Dh	EECON2 ⁽¹⁾	9Dh				
	1Eh		9Eh				
CMCON	1Fh	VRCON	9Fh		11Fh		
	20h		A0h	General	120h		
General		General		Register			
Purpose		Purpose		48 Bytes	14Fh		
Register		Register 80 Bytes			150h		
80 Bytes		00 2700					
	6Fh		EFh		16Fh		1EF
	70h		F0h	2002222	170h	20000000	1F0
16 Bytes		accesses		70h-7Fh		70h-7Fh	
	7Fb	701-711	FFh		17Fh		1FF
Bank 0		Bank 1		Bank 2		Bank 3	
Unimplem	iented dat	a memory locations, i	ead as 'o	,			

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset ⁽¹⁾	Details on Page
Bank 2											
100h	INDF	Addressing	g this location	uses contei	nts of FSR t	o address d	ata memory	(not a physi	cal register)	XXXX XXXX	30
101h	TMR0	Timer0 Mo	dule's Registe	er						XXXX XXXX	47
102h	PCL	Program C	Counter's (PC)	Least Sign	ificant Byte					0000 0000	30
103h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	24
104h	FSR	Indirect Da	ata Memory A	ddress Poin	ter	•		•	•	xxxx xxxx	30
105h	_	Unimplem	ented							_	—
106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	38
107h	—	Unimplem	ented							—	—
108h	—	Unimplem	ented							—	
109h	—	Unimplem	ented							—	
10Ah	PCLATH	_	—	—	Write	Buffer for u	pper 5 bits o	f Program C	ounter	0 0000	30
10Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	26
10Ch	—	Unimplem	ented		—						
10Dh	—	Unimplem	ented							—	
10Eh	—	Unimplem	ented							—	
10Fh	—	Unimplem	ented							—	
110h	—	Unimplem	ented							—	
111h	—	Unimplem	ented							—	
112h	—	Unimplem	ented							—	
113h	—	Unimplem	ented							—	
114h	—	Unimplem	ented							—	
115h	_	Unimplem	ented							_	
116h	_	Unimplem	ented							_	
117h	_	Unimplem	ented							_	
118h	_	Unimplem	ented							_	
119h	—	Unimplem	ented							—	—
11Ah	_	Unimplem	ented							_	
11Bh	—	Unimplem	ented							—	—
11Ch	—	Unimplem	ented							—	—
11Dh	—	Unimplem	ented							—	—
11Eh	—	Unimplem	ented							—	—
11Fh	—	Unimplem	ented							—	—

TABLE 4-5: SPECIAL FUNCTION REGISTERS SUMMARY BANK2

Legend:- = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented.Note1:For the initialization condition for registers tables, refer to Table 14-6 and Table 14-7.

7.0 TIMER1 MODULE

The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which are readable and writable. The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The Timer1 Interrupt, if enabled, is generated on overflow of the TMR1 register pair which latches the interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing the Timer1 interrupt enable bit TMR1IE (PIE1<0>).

Timer1 can operate in one of two modes:

- As a timer
- As a counter

The Operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

-n = Value at POR

In Timer mode, the TMR1 register pair value increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Timer1 also has an internal "Reset input". This Reset can be generated by the CCP module (Section 9.0 "Capture/Compare/PWM (CCP) Module"). Register 7-1 shows the Timer1 control register.

For the PIC16F627A/628A/648A, when the Timer1 oscillator is enabled (T1OSCEN is set), the RB7/T1OSI/PGD and RB6/T1OSO/T1CKI/PGC pins become inputs. That is, the TRISB<7:6> value is ignored.

EK / - I.	TICON-			NEGISTER	ADDRESS.						
	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	_	—	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N			
	bit 7			· · ·		1		bit 0			
bit 7-6	Unimplem	ented: Rea	ad as '0'								
bit 5-4	T1CKPS<1	i :0> : Timer	1 Input Cloci	k Prescale S	elect bits						
	11 = 1:8 P i	rescale valı	ue								
	10 = 1:4 Pi	10 = 1:4 Prescale value									
	01 = 1:2 Pi	rescale valu	Je								
hit 3	TIOSCEN	· Timer1 Or	scillator Enal	hle Control b	it						
DIEG	1 = Oscillat	tor is enabl		JC 0011101 2							
	0 = Oscillat	tor is shut c	off(1)								
bit 2	T1SYNC: 7	Fimer1 Exte	ernal Clock Ir	nput Synchro	onization Contro	ol bit					
	TMR1CS =	<u>= 1</u>									
	1 = Do not	synchroniz	e external cl	ock input							
	0 = Synchr	onize exter	nal clock inp	out							
	<u>- This hit is i</u>	<u>: 0</u> anored Tin	ner1 uses th	e internal clc	vek when TMR ⁴	1CS = 0					
hit 1	TMR1CS	Timer1 Clor		alact hit		$\mathbf{U}\mathbf{U}=\mathbf{U}.$					
	1 = Extern:	al clock from	m nin RB6/T		I/PGC (on the	risina edae	.)				
	0 = Interna	I clock (Fo:	sc/4)	1000/1101		Tonig cage)				
bit 0	TMR1ON:	Timer1 On	bit								
	1 = Enable	s Timer1									
	0 = Stops 7	limer1									
	Note 1:	The oscilla	ator inverter a	and feedbacl	k resistor are tu	irned off to	eliminate p	ower drain.			
	Legend:										
	R = Reada	able bit	VV = V	Nritable bit	U = Unimpl	emented b	it. read as '	0'			

'1' = Bit is set

'0' = Bit is cleared

REGISTER 7-1: T1CON – TIMER1 CONTROL REGISTER (ADDRESS: 10h)

x = Bit is unknown

7.4 Timer1 Oscillator

A crystal oscillator circuit is built in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). It will continue to run during Sleep. It is primarily intended for a 32.768 kHz watch crystal. Table 7-1 shows the capacitor selection for the Timer1 oscillator.

The user must provide a software time delay to ensure proper oscillator start-up.

TABLE 7-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

Freq	C1	C2
32.768 kHz	15 pF	15 pF

Note: These values are for design guidance only. Consult Application Note AN826 "*Crystal Oscillator Basics and Crystal Selection for rfPIC*[®] *and PIC*[®] *Devices*" (DS00826) for further information on Crystal/Capacitor Selection.

7.5 Resetting Timer1 Using a CCP Trigger Output

If the CCP1 module is configured in Compare mode to generate a "special event trigger" (CCP1M<3:0> = 1011), this signal will reset Timer1.

Note:	The special event triggers from the CCP	1							
	module will not set interrupt flag b	it							
	TMR1IF (PIR1<0>).								

Timer1 must be configured for either timer or Synchronized Counter mode to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL register pair effectively becomes the period register for Timer1.

7.6 Resetting Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR or any other Reset except by the CCP1 special event triggers (see **Section 9.2.4** "**Special Event Trigger**").

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other Resets, the register is unaffected.

7.7 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

TABLE 7-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
0Eh	TMR1L	Holding R	egister fo	r the Least S	ignificant Byt	e of the 16-bit	TMR1 Reg	ster		XXXX XXXX	uuuu uuuu
0Fh	TMR1H	Holding R	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register							XXXX XXXX	uuuu uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer1 module.

9.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The CCP (Capture/Compare/PWM) module contains a 16-bit register which can operate as a 16-bit Capture register, as a 16-bit Compare register or as a PWM master/slave Duty Cycle register. Table 9-1 shows the timer resources of the CCP module modes.

CCP1 Module

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

Additional information on the CCP module is available in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023).

TABLE 9-1: CCP MODE – TIMER RESOURCE

CCP Mode	Timer Resource				
Capture	Timer1				
Compare	Timer1				
PWM	Timer2				

REGISTER 9-1: CCP1CON – CCP OPERATION REGISTER (ADDRESS: 17h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0
bit 7							bit 0

- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 CCP1X:CCP1Y: PWM Least Significant bits
 - <u>Capture Mode</u> Unused <u>Compare Mode</u> Unused <u>PWM Mode</u>

These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.

bit 3-0 CCP1M<3:0>: CCPx Mode Select bits

- 0000 = Capture/Compare/PWM off (resets CCP1 module)
- 0100 = Capture mode, every falling edge
- 0101 = Capture mode, every rising edge
- 0110 = Capture mode, every 4th rising edge
- 0111 = Capture mode, every 16th rising edge
- 1000 = Compare mode, set output on match (CCP1IF bit is set)
- 1001 = Compare mode, clear output on match (CCP1IF bit is set)
- 1010 = Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is unaffected)
- 1011 = Compare mode, trigger special event (CCP1IF bit is set; CCP1 resets TMR1
- 11xx = PWM mode

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

BAUD	Fosc = 20 MHz		SPBRG	16 MHz		SPBRG	10 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9.615	+0.16%	129	9.615	+0.16%	103	9.615	+0.16%	64
19200	19.230	+0.16%	64	19.230	+0.16%	51	18.939	-1.36%	32
38400	37.878	-1.36%	32	38.461	+0.16%	25	39.062	+1.7%	15
57600	56.818	-1.36%	21	58.823	+2.12%	16	56.818	-1.36%	10
115200	113.636	-1.36%	10	111.111	-3.55%	8	125	+8.51%	4
250000	250	0	4	250	0	3	NA	_	—
625000	625	0	1	NA	_	—	625	0	0
1250000	1250	0	0	NA	—	_	NA	—	—

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD	Fosc = 7.16	6 MHz	SPBRG	5.068 MHz		SPBRG	4 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9.520	-0.83%	46	9598.485	0.016%	32	9615.385	0.160%	25
19200	19.454	+1.32%	22	18632.35	-2.956%	16	19230.77	0.160%	12
38400	37.286	-2.90%	11	39593.75	3.109%	7	35714.29	-6.994%	6
57600	55.930	-2.90%	7	52791.67	-8.348%	5	62500	8.507%	3
115200	111.860	-2.90%	3	105583.3	-8.348%	2	125000	8.507%	1
250000	NA	_	_	316750	26.700%	0	250000	0.000%	0
625000	NA	_	_	NA	_	_	NA	_	_
1250000	NA	_	_	NA	_	_	NA	_	_

BAUD	Fosc = 3.57	9 MHz	SPBRG	1 MHz		SPBRG	32.768 kHz		SPBRG
RATE (K)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)
9600	9725.543	1.308%	22	8.928	-6.994%	6	NA	NA	NA
19200	18640.63	-2.913%	11	20833.3	8.507%	2	NA	NA	NA
38400	37281.25	-2.913%	5	31250	-18.620%	1	NA	NA	NA
57600	55921.88	-2.913%	3	62500	+8.507	0	NA	NA	NA
115200	111243.8	-2.913%	1	NA	_	_	NA	NA	NA
250000	223687.5	-10.525%	0	NA	_	_	NA	NA	NA
625000	NA	_	_	NA	_	_	NA	NA	NA
1250000	NA	—	—	NA	—	—	NA	NA	NA

Follow these steps when setting up an Asynchronous Reception:

- 1. TRISB<1> and TRISB<2> should both be set to '1' to configure the RB1/RX/DT and RB2/TX/CK pins as inputs. Output drive, when required, is controlled by the peripheral circuitry.
- Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH. (Section 12.1 "USART Baud Rate Generator (BRG)").
- 3. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. Enable the reception by setting bit CREN.
- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If an OERR error occurred, clear the error by clearing enable bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu PC	e on DR	Valu all o Res	e on ther sets
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000	-000	0000	-000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000	000x	0000	000x
1Ah	RCREG	USART Receive Data Register						0000	0000	0000	0000		
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000	-000	0000	-000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000	-010	0000	-010
99h	SPBRG Baud Rate Generator Register					0000	0000	0000	0000				

TABLE 12-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

14.4.5 TIME OUT SEQUENCE

On power-up, the time out sequence is as follows: First PWRT time-out is invoked after POR has expired. Then OST is activated. The total time out will vary based on oscillator configuration and <u>PWRTE</u> bit Status. For example, in RC mode with <u>PWRTE</u> bit set (PWRT disabled), there will be no time out at all. Figure 14-8, Figure 14-11 and Figure 14-12 depict time out sequences.

Since the time outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 14-11). This is useful for testing purposes or to synchronize more than one PIC16F627A/628A/ 648A device operating in parallel.

Table 14-6 shows the Reset conditions for some special registers, while Table 14-7 shows the Reset conditions for all the registers.

14.4.6 POWER CONTROL (PCON) STATUS REGISTER

The PCON/Status register, PCON (address 8Eh), has two bits.

Bit 0 is $\overline{\text{BOR}}$ (Brown-out Reset). $\overline{\text{BOR}}$ is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if $\overline{\text{BOR}} = 0$ indicating that a brown-out has occurred. The $\overline{\text{BOR}}$ Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (by setting BOREN bit = 0 in the Configuration Word).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset if POR is '0', it will indicate that a Power-on Reset must have occurred (VDD may have gone too low).

Occillator Configuration	Power-u	ıp Timer	Brown-o	Wake-up from	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	Sleep
XT, HS, LP	72 ms + 1024•Tosc	1024•Tosc	72 ms + 1024•Tosc	1024•Tosc	1024•Tosc
RC, EC	72 ms	—	72 ms	—	—
INTOSC	72 ms	—	72 ms	—	6 μs

TABLE 14-3: TIME OUT IN VARIOUS SITUATIONS

TABLE 14-4: STATUS/PCON BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Condition	
0	Х	1	1	Power-on Reset	
0	Х	0	Х	Illegal, TO is set on POR	
0	Х	Х	0	Illegal, PD is set on POR	
1	0	Х	Х	Brown-out Reset	
1	1	0	u	WDT Reset	
1	1	0	0	WDT Wake-up	
1	1	u	u	MCLR Reset during normal operation	
1	1	1	0	MCLR Reset during Sleep	

Legend: u = unchanged, x = unknown

IORLW	Inclusive OR Literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Encoding:	11 1000 kkkk kkkk
Description:	The contents of the W register is OR'ed with the eight-bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example	IORLW 0x35
	Before Instruction W = 0x9A After Instruction W = 0xBF Z = 0
IORWE	Inclusive OR W with f

MOVLW	Move Literal to W				
Syntax:	[<i>label</i>] MOVLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	$k \rightarrow (W)$				
Status Affected:	None				
Encoding:	11 00xx kkkk kkkk				
Description:	The eight bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.				
Words:	1				
Cycles:	1				
Example	MOVLW 0x5A				
	After Instruction W = 0x5A				

IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] IORWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) .OR. (f) \rightarrow (dest)
Status Affected:	Z
Encoding:	00 0100 dfff ffff
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.
Words:	1
Cycles:	1
Example	IORWF REG1, 0
	Before Instruction REG1 = 0x13 W = 0x91 After Instruction REG1 = 0x13 W = 0x93 Z = 1

MOVF	Move f					
Syntax:	[<i>label</i>] MOVF f,d					
Operands:	$0 \le f \le 127$ d $\in [0,1]$					
Operation:	$(f) \rightarrow (dest)$					
Status Affected:	Z					
Encoding:	00 1000 dfff ffff					
Description:	The contents of register T is moved to a destination dependent upon the status of 'd'. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.					
Words:	1					
Cycles:	1					
Example	MOVF REG1, 0					
	After Instruction W= value in REG1 register Z = 1					

RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	See description below
Status Affected:	С
Encoding:	00 1100 dfff ffff
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. $\hline C \rightarrow \hline REGISTERF$
Words:	1
Cycles:	1
Example	RRF REG1, 0
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

SLEEP

Syntax:	[label]	SLEE	Р	
Operands:	None			
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \ \text{prescaler}, \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$			
Status Affected:	TO, PE	0		
Encoding:	00	0000	0110	0011
Description:	The power-down Status bit, PD is cleared. Time out Status bit, TO is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped. See Section 14.8 "Power-Down Mode (Sleep)" for more details.			
Words:	1			
Cycles:	1			
Example:	SLEEP			

SUBLW	Subtract W from Literal
Syntax:	[<i>label</i>] SUBLW k
Operands:	$0 \le k \le 255$
Operation:	$k - (W) \rightarrow (W)$
Status Affected:	C, DC, Z
Encoding:	11 110x kkkk kkkk
Description:	The W register is subtracted (2's complement method) from the eight- bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example 1:	SUBLW 0x02
	Before Instruction
	W = 1 C = ?
	After Instruction
	W = 1 C = 1; result is positive
Example 2:	Before Instruction
	W = 2 C = ?
	After Instruction
	W = 0 C = 1; result is zero
Example 3:	Before Instruction
	W = 3 C = ?
	After Instruction
	W = 0xFF C = 0; result is negative

e/] XORL <≤255	Wk		Syntax:	
x ≤ 255				
			Operands:	
veration:(W) .XOR. $k \rightarrow$ (W)atus Affected:Zcoding:111010kkkkkkkk				
contents of KOR'ed with Il 'k'. The re V register.	Encoding: Description:			
.w _{0xAF} re Instructio W = 0xB	on 5		Words: Cycles: <u>Example</u>	
	uw 0xAF ore Instruction W = 0xB r Instruction	W 0xAF ore Instruction W = 0xB5 r Instruction	w = 0xAF ore Instruction W = 0xB5 r Instruction	

DRWF	Exclusive OR W with f						
ntax:	[label] XORWF	f,d					
perands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
peration:	(W) .XOR. (f) \rightarrow (des	t)					
atus Affected:	Z						
ncoding:	00 0110 df	ff ffff					
escription:	Exclusive OR the con W register with registe '0', the result is stored register. If 'd' is '1', th stored back in registe	itents of the er 'f'. If 'd' is d in the W e result is er 'f'.					
ords:	1						
cles:	1						
ample	XORWF REG1, 1						
	Before Instruction						
	REG1 = 0xAF W = 0xB5						
	After Instruction						
	REG1 = 0x1A W = 0xB5	5					

17.5 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

т						
F	Frequency	Т	Time			
Lowercase subscripts (pp) and their meanings:						
рр						
ck	CLKOUT	OSC	OSC1			
io	I/O port	tO	ТОСКІ			
mc	MCLR					
Uppercase	letters and their meanings:					
S						
F	Fall	Р	Period			
Н	High	R	Rise			
I	Invalid (High-impedance)	V	Valid			
L	Low	Z	High-Impedance			

FIGURE 17-3: LOAD CONDITIONS

17.6 **Timing Diagrams and Specifications**

FIGURE 17-4: EXTERNAL CLOCK TIMING

ΤΔRI F 17-4·	FXTERNAL	CLOCK	TIMING	REQUIREMENTS
IADLL II = 4.		CLOCK		

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions	
	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	4	MHz	XT and RC Osc mode, VDD = 5.0 V	
			DC		20	MHz	HS, EC Osc mode	
			DC		200	kHz	LP Osc mode	
		Oscillator Frequency ⁽¹⁾	—		4	MHz	RC Osc mode, VDD = 5.0V	
			0.1		4	MHz	XT Osc mode	
			1	—	20	MHz	HS Osc mode	
			—		200	kHz	LP Osc mode	
			—	4	—	MHz	INTOSC mode (fast)	
				48	—	kHz	INTOSC mode (slow)	
1	Tosc	External CLKIN Period ⁽¹⁾	250		—	ns	XT and RC Osc mode	
			50	_	_	ns	HS, EC Osc mode	
			5		—	μS	LP Osc mode	
		Oscillator Period ⁽¹⁾	250	_	—	ns	RC Osc mode	
			250		10,000	ns	XT Osc mode	
			50	_	1,000	ns	HS Osc mode	
			5	_	_	μS	LP Osc mode	
			_	250	_	ns	INTOSC mode (fast)	
				21	—	μS	INTOSC mode (slow)	
2	Тсү	Instruction Cycle Time	200	Тсү	DC	ns	Tcy = 4/Fosc	
3	TosL, TosH	External CLKIN (OSC1) High External CLKIN Low	100*		—	ns	XT oscillator, Tosc L/H duty cycle	
4	RC	External Biased RC Frequency	10 kHz*		4 MHz		VDD = 5.0V	
* т	bass nor	amotora are oberactorized but a	at tastad					

These parameters are characterized but not tested.

t Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-based period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Max" cycle time limit is "DC" (no clock) for all devices.

TABLE 17-7:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TMCL	MCLR Pulse Width (low)	2000			ns	VDD = 5V, -40°C to +85°C
31	Twdt	Watchdog Timer Time out Period (No Prescaler)	7*	18	33*	ms	VDD = 5V, -40°C to +85°C
32	Tost	Oscillation Start-up Timer Period	_	1024 Tosc			Tosc = OSC1 period
33	TPWRT	Power-up Timer Period	28*	72	132*	ms	VDD = 5V, -40°C to +85°C
34	Tioz	I/O High-impedance from MCLR Low or Watchdog Timer Reset	_	_	2.0*	μS	
35	TBOR	Brown-out Reset pulse width	100*	_	_	μS	$VDD \le VBOR (D005)$

Legend: TBD = To Be Determined.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 17-8: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

18-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES			
Dimensio	n Limits	MIN	NOM	MAX	
Number of Pins	Ν	18			
Pitch	е		.100 BSC		
Top to Seating Plane	Α	-	-	.210	
Molded Package Thickness	A2	.115	.130	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	Е	.300	.310	.325	
Molded Package Width	E1	.240	.280		
Overall Length	D	.880	.900	.920	
Tip to Seating Plane	L	.115	.130	.150	
Lead Thickness	С	.008	.010	.014	
Upper Lead Width	b1	.045	.060	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	-	-	.430	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-007B

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX			
Number of Pins	Ν	28					
Pitch	е	0.65 BSC					
Overall Height	Α	0.80 0.90 1.00					
Standoff	A1	0.00 0.02 0.0					
Contact Thickness	A3	0.20 REF					
Overall Width	E	6.00 BSC					
Exposed Pad Width	E2	3.65 3.70 4.20					
Overall Length	D	6.00 BSC					
Exposed Pad Length	D2	3.65 3.70 4.20					
Contact Width	b	0.23 0.30 0.35					
Contact Length	L	0.50 0.55 0.70					
Contact-to-Exposed Pad	К	0.20 – –					

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B