

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f628at-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

18-pin Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology

High-Performance RISC CPU:

- Operating speeds from DC 20 MHz
- · Interrupt capability
- 8-level deep hardware stack
- Direct, Indirect and Relative Addressing modes
- 35 single-word instructions:
 - All instructions single cycle except branches

Special Microcontroller Features:

- · Internal and external oscillator options:
 - Precision internal 4 MHz oscillator factory calibrated to $\pm 1\%$
 - Low-power internal 48 kHz oscillator
 - External Oscillator support for crystals and resonators
- Power-saving Sleep mode
- · Programmable weak pull-ups on PORTB
- Multiplexed Master Clear/Input-pin
- Watchdog Timer with independent oscillator for reliable operation
- Low-voltage programming
- In-Circuit Serial Programming[™] (via two pins)
- Programmable code protection
- Brown-out Reset
- Power-on Reset
- · Power-up Timer and Oscillator Start-up Timer
- Wide operating voltage range (2.0-5.5V)
- Industrial and extended temperature range
- High-Endurance Flash/EEPROM cell:
 - 100,000 write Flash endurance
 - 1,000,000 write EEPROM endurance
 - 40 year data retention

Low-Power Features:

- · Standby Current:
- 100 nA @ 2.0V, typical
- · Operating Current:
 - 12 μA @ 32 kHz, 2.0V, typical
 - 120 μA @ 1 MHz, 2.0V, typical
- Watchdog Timer Current:
- 1 μA @ 2.0V, typical
- Timer1 Oscillator Current:
 - 1.2 μA @ 32 kHz, 2.0V, typical
- Dual-speed Internal Oscillator:
 - Run-time selectable between 4 MHz and 48 kHz
 - 4 µs wake-up from Sleep, 3.0V, typical

Peripheral Features:

- 16 I/O pins with individual direction control
- High current sink/source for direct LED drive
- · Analog comparator module with:
 - Two analog comparators
 - Programmable on-chip voltage reference (VREF) module
 - Selectable internal or external reference
 - Comparator outputs are externally accessible
- Timer0: 8-bit timer/counter with 8-bit programmable prescaler
- Timer1: 16-bit timer/counter with external crystal/ clock capability
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- · Capture, Compare, PWM module:
 - 16-bit Capture/Compare
 - 10-bit PWM
- Addressable Universal Synchronous/Asynchronous Receiver/Transmitter USART/SCI

Device	Program Memory	ram Data Memory		1/0	ССР	LIGADT	Comporatora	Timers	
Device	Flash (words)	SRAM (bytes)	EEPROM (bytes)	10	(PWM)	USARI	Comparators	8/16-bit	
PIC16F627A	1024	224	128	16	1	Y	2	2/1	
PIC16F628A	2048	224	128	16	1	Y	2	2/1	
PIC16F648A	4096	256	256	16	1	Y	2	2/1	

NOTES:

NOTES:

4.3 PCL and PCLATH

The Program Counter (PC) is 13-bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<12:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 4-4 shows the two situations for loading the PC. The upper example in Figure 4-4 shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in Figure 4-4 shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 4-4: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to the Application Note AN556 "*Implementing a Table Read*" (DS00556).

4.3.2 STACK

The PIC16F627A/628A/648A family has an 8-level deep x 13-bit wide hardware stack (Figure 4-1). The stack space is not part of either program or data space and the Stack Pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth PUSH overwrites the value that was stored from the first PUSH. The tenth PUSH overwrites the second PUSH (and so on).

Note 1:	There are no Status bits to indicate stack								
	overflow or stack underflow conditions.								

2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

4.4 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses data pointed to by the File Select Register (FSR). Reading INDF itself indirectly will produce 00h. Writing to the INDF register indirectly results in a no-operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 4-5.

A simple program to clear RAM location 20h-2Fh using indirect addressing is shown in Example 4-1.

|--|

	MOVLW	0x20	;initialize pointer				
	MOVWF	FSR	;to RAM				
NEXT	CLRF	INDF	clear INDF register;				
	INCF	FSR	;inc pointer				
	BTFSS	FSR,4	;all done?				
	GOTO	NEXT	;no clear next				
			;yes continue				
1							

Name	Function	Input Type	Output Type	Description			
RA0/AN0	RA0	ST	CMOS	Bidirectional I/O port			
	AN0	AN	_	Analog comparator input			
RA1/AN1	RA1	ST	CMOS	Bidirectional I/O port			
	AN1	AN	—	Analog comparator input			
RA2/AN2/VREF	RA2	ST	CMOS	Bidirectional I/O port			
	AN2	AN	—	Analog comparator input			
	VREF	_	AN	VREF output			
RA3/AN3/CMP1	RA3	ST	CMOS	Bidirectional I/O port			
	AN3	AN	—	Analog comparator input			
	CMP1	_	CMOS	Comparator 1 output			
RA4/T0CKI/CMP2	RA4	ST	OD	Bidirectional I/O port. Output is open drain type.			
	TOCKI	ST	—	External clock input for TMR0 or comparator output			
	CMP2	_	OD	Comparator 2 output			
RA5/MCLR/VPP	RA5	ST	—	Input port			
	MCLR	ST	_	Master clear. When configured as MCLR, this pin is an active low Reset to the device. Voltage on MCLR/VPP must not exceed VDD during normal device operation.			
	Vpp	HV	_	Programming voltage input			
RA6/OSC2/CLKOUT	RA6	ST	CMOS	Bidirectional I/O port			
	OSC2	—	XTAL	Oscillator crystal output. Connects to crystal resonator in Crystal Oscillator mode.			
	CLKOUT	—	CMOS	In RC or INTOSC mode. OSC2 pin can output CLKOUT, which has 1/4 the frequency of OSC1.			
RA7/OSC1/CLKIN	RA7	ST	CMOS	Bidirectional I/O port			
	OSC1	XTAL	—	Oscillator crystal input. Connects to crystal resonator in Crystal Oscillator mode.			
	CLKIN	ST		External clock source input. RC biasing pin.			
Legend: O = Outp — = Not u TTI = TTI	ut used Input	CN I OI	MOS = CN = Inp D = Op	IOS Output P = Power out ST = Schmitt Trigger Input oen Drain Output AN = Analog			

TABLE 5-1: PORTA FUNCTIONS

TABLE 5-2:	SUMMARY OF REGISTERS AS	SOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other Resets
05h	PORTA	RA7	RA6	RA5 ⁽¹⁾	RA4	RA3	RA2	RA1	RA0	xxxx 0000	qqqu 0000
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111
1Fh	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
9Fh	VRCON	VREN	VROE	VRR	_	VR3	VR2	VR1	VR0	000- 0000	000- 0000

Legend: - = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition. Shaded cells are not used for PORTA.

Note 1: MCLRE configuration bit sets RA5 functionality.

10.0 COMPARATOR MODULE

The comparator module contains two analog comparators. The inputs to the comparators are multiplexed with the RA0 through RA3 pins. The on-chip Voltage Reference (Section 11.0 "Voltage Reference Module") can also be an input to the comparators.

The CMCON register, shown in Register 10-1, controls the comparator input and output multiplexers. A block diagram of the comparator is shown in Figure 10-1.

REGISTER 10-1: CMCON – COMPARATOR CONFIGURATION REGISTER (ADDRESS: 01Fh)

C2OUTC1OUTC2INVC1INVCISCM2CM1CM0bit 7bit 7bit 0bit 7C2OUT: Comparator 2 Output bit $When C2INV = 0$: $1 = C2 VIN+ > C2 VIN-0 = C2 VIN+ > C2 VIN-0 = C2 VIN+ < C2 VIN-0 = C2 VIN+ > C2 VIN-0 = C1 VIN+ > C2 VIN-0 = C1 VIN+ > C1 VIN-0 = C1 VIN+ = C1 VIN+ = C1 VIN-0 = C1 VIN+ = C1 $		R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
bit 7C2OUT: Comparator 2 Output bit $\frac{When C2INV = 0:}{1 = C2 VIN + 2 C2 VIN - 0 = C2 VIN + 2 C2 VIN - 0 = C2 VIN + C2 VIN - 0 = C1 VIN + C2 VIN - 0 = C1 VIN + C1 VIN - 0 = C1 VIN - C0N = C1 VIN + C1 VIN - C1N = C1 VIN + C1N = $		C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0		
bit 7 C2OUT: Comparator 2 Output bit $\frac{When C2INV = 0:}{1 = C2 VIN+ < C2 VIN-} \\ 0 = C2 VIN+ < C2 VIN- \\ 0 = C1 OUT: Comparator 1 Output bit \frac{When C1INV = 0:}{1 = C1 VIN+ C1 VIN-} \\ 0 = C1 VIN+ < C1 VIN- \\ 0 = C1 VIN- comparator 1 Output Inversion bit \\ 1 = C2 Output inverted \\ 0 = C2 Output not inverted \\ 0 = C1 Output inverted \\ 0 = C1 Output inverted \\ 0 = C1 Output not inverted \\ 0 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA3 C2 VIN- connects to RA3 D = C1 VIN- connects to RA3 C2 VIN- connects to RA3 D = C1 VIN- connects to RA3 C2 VIN- connects to RA3 D = C1 VIN- connects to RA3 C2 VIN- connects to RA3 C2 VIN- connects to RA3 D = C1 VIN- connects to RA3 C2 VIN- connects to RA3 D = C1 VIN- con$		bit 7				•			bit 0		
bit 7 C2OUT: Comparator 2 Output bit $\frac{When C2INV = 0;}{1 = C2 VIN+ < C2 VIN-}$ $0 = C2 VIN+ < C2 VIN-$ $0 = C2 VIN+ > C2 VIN-$ bit 6 C1OUT: Comparator 1 Output bit $\frac{When C1INV = 0;}{1 = C1 VIN+ > C1 VIN-}$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN- C0 = C1 VIN- C0 = C1 VIN-$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN- c0 = C1 VIN + C1 VIN-$ $0 = C1 VIN + C0 = C1 VIN + C1 VIN + C1 VIN-$ $0 = C1 VIN + C0 = C1 VIN + $											
$ \frac{When C2INV = 0:}{1 = C2 VIN+ > C2 VIN-} 0 = C2 VIN+ > C2 VIN-0 = C2 VIN+ < C2 VIN-0 = C2 VIN+ < C2 VIN-0 = C2 VIN+ > C2 VIN-0 = C2 VIN+ > C2 VIN-0 = C1 VIN+ > C2 VIN-0 = C1 VIN+ > C1 VIN-0 = C1 VIN+ < C1 VIN-0 = C1 VIN+ > C1 VIN-0 = C1 VIN+ < C1 VIN-0 = C1 VIN- CONPARATOR 2 VIN-0 = C1 VIN- C1 VIN-0 = C1 VIN- C1 VIN-0 = C1 Output inverted0 = C2 Output not inverted0 = C1 VIN- connects to RA30 = C1 VIN- connects to RA30 = C1 VIN- connects to RA30 = C1 VIN- connects to RA20 = C1 VIN- connects to RA20 = C1 VIN- connects to RA3C2 VIN- connects to RA20 = C1 VIN- connects to RA20 = C1 VIN- connects to RA3C2 VIN- connects to RA3C2 VIN- connects to RA20 = C1 VIN- connects to RA3C2 VIN- connects to RA3C2 VIN- connects to RA3C2 VIN- connects to RA4D1 = C1 VIN- $	bit 7	C2OUT: Co	omparator 2	Output bit							
$1 = C2 \forall N+ < C2 \forall N+ 0 = C2 \forall N+ < C2 \forall N+ 0 = C2 \forall N+ < C2 \forall N+ 0 = C2 \forall N+ < C2 \forall N+ 0 = C2 \forall N+ > C2 \forall N+ 0 = C2 \forall N+ > C2 \forall N+ 0 = C1 UN+ > C2 \forall N+ 0 = C1 VN+ > C1 VN+ 0 = C1 VN+ > C1 VN+ 0 = C1 VN+ < C1 VN+ 0 = C1 VN+ > C1 VN+ 0 = C1 VN+ > C1 VN+ 0 = C1 VN+ > C1 VN+ 0 = C2 Output inverted 0 = C2 Output not inverted 0 = C2 Output not inverted 0 = C1 VN- connects to RA3 0 = C1 VN- connects to RA3 C2 VN- connects to RA4 0 = C1 VN- connects to RA4 0 = C1 VN- connects to RA4 Dit 2-0 CM$		When C2I	NV = 0:								
$b = C2 \forall N+ \langle C2 \forall N- $ $\frac{When C2INV = 1:}{1 = C2 \forall N+ \langle C2 \forall N- \\0 = C2 \forall N+ \langle C2 \forall N- \\0 = C2 \forall N+ \langle C2 \forall N- \\0 = C2 \forall N+ \rangle C2 \forall N- \\0 = C1 \forall V- \\0 = C1 \forall V- \\0 = C1 \forall N- \\0 = C1 \\0 = C2 \\0 = C1 \\0 =$		1 = C2 VIN+ > C2 VIN-									
When C2INV = 1: 1 = C2 VIN+ < C2 VIN- 0 = C2 VIN+ > C2 VIN- 0 = C2 VIN+ > C2 VIN-bit 6C10UT: Comparator 1 Output bit When C1INV = 0: 1 = C1 VIN+ > C1 VIN- 0 = C1 VIN+ < C1 VIN- 		0 = C2 VIN	+ < C2 VIN-								
1 = C2 VIN+ < C2 VIN- 0 = C2 VIN+ > C2 VIN- 0 = C2 VIN+ > C2 VIN- bit 6 C10UT: Comparator 1 Output bit When C1INV = 0: 1 = C1 VIN+ > C1 VIN- 0 = C1 VIN+ < C1 VIN- 0 = C1 VIN+ > C1 VIN- 0 = C1 VIN+ > C1 VIN- 0 = C1 VIN+ > C1 VIN- bit 5 C2INV: Comparator 2 Output Inversion bit 1 = C2 Output inverted 0 = C2 Output inverted 0 = C1 Output inverted 0 = C1 Output inverted 0 = C1 Output inverted bit 3 CIS: Comparator I put Switch bit When CM<2:0>: = 001 Then: 1 = C1 VIN- connects to RA3 0 =		When C2I	NV = 1:								
bit 6 C10UT: Comparator 1 Output bit $\frac{When C1INV = 0:}{1 = C1 VIN+ > C1 VIN-}$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN+ > C1 VIN-$ $0 = C1 VIN+ > C1 VIN-$ bit 5 C2INV: Comparator 2 Output Inversion bit 1 = C2 Output inverted $0 = C2 Output not inverted$ bit 4 C1INV: Comparator 1 Output Inversion bit 1 = C1 Output not inverted bit 3 CIS: Comparator Input Switch bit $\frac{When CM<2:0>: = 001}{Then:}$ $1 = C1 VIN- connects to RA3$ $0 = C1 VIN- connects to RA3$ $C2 VIN- connects to RA3$ $C3 VIN- connects to RA3$		1 = C2 VIN	+ < C2 VIN-								
bit 6C10UT: Comparator 1 Output bit $\frac{When C1INV = 0:}{1 = C1 VIN+ > C1 VIN-}$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN+ > C1 VIN-$ bit 5C2INV: Comparator 2 Output Inversion bit $1 = C2$ Output inverted $0 = C2$ Output inverted $0 = C2$ Output not inverted bit 4C1INV: Comparator 1 Output Inversion bit $1 = C1$ Output inverted $0 = C1$ Output not inverted 		0 = C2 VIN	+ > C2 VIN-								
When C1INV = 0: $1 = C1 VIN+ C1 VIN 0 = C1 VIN+ C1 VIN-$ bit 5C2INV: Comparator 2 Output Inversion bit $1 = C2$ Output inverted $0 = C2$ Output inverted $0 = C2$ Output inverted $0 = C1$ Output inverted $0 = C1$ Output not invertedbit 3CIS: Comparator 1 Output Inversion bit $1 = C1 Output not inverted$ $0 = C1 Output not inverted$ $0 = C1 Output not inverted$ bit 3CIS: Comparator Input Switch bitWhen CM<2:0>: = 001 Then: $1 = C1 VIN-$ connects to RA3 $0 = C1 VIN-$ connects to RA1bit 2-0CM<2:0>: Comparator Mode bitsFigure 10-1 shows the comparator modes and CM<2:0> bit settings	bit 6	C1OUT : Co	omparator 1	Output bit							
$1 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN+ < C1 VIN-$ $\frac{When C1INV = 1:}{1 = C1 VIN+ < C1 VIN-}$ $0 = C1 VIN+ < C1 VIN-$ $0 = C1 VIN+ > C1 VIN-$ bit 5 $C2INV: Comparator 2 Output Inversion bit$ $1 = C2 Output inverted$ $0 = C2 Output not inverted$ bit 4 $C1INV: Comparator 1 Output Inversion bit$ $1 = C1 Output not inverted$ bit 3 $CIS: Comparator Input Switch bit$ $\frac{When CM<2:0>: = 0.01}{Then:}$ $1 = C1 VIN- connects to RA3$ $0 = C1 VIN- connects to RA3$ $C2 VIN- connects to RA3$ $C3 VIN- connects to RA4$ bit 2-0 $CM < 2:0>: Comparator Mode bits$ Figure 10-1 shows the comparator modes and CM < 2:0> bit settings		When C1I	<u>VV = 0:</u>								
$\frac{When C1INV + C1 VIN}{When C1INV + C1 VIN}$ $\frac{When C1INV + C1 VIN}{0 = C1 VIN + C1 VIN}$ bit 5 C2INV: Comparator 2 Output Inversion bit $1 = C2$ Output inverted $0 = C2$ Output not inverted bit 4 C1INV: Comparator 1 Output Inversion bit $1 = C1$ Output inverted bit 3 CIS: Comparator Input Switch bit $\frac{When CM + 2:0 + := 001}{Then:}$ $1 = C1 VIN - connects to RA3$ $0 = C1 VIN - connects to RA3$ $C2 VIN - connects to RA3$ $C3 = C1 VIN - connects to RA3$ $C2 VIN - connects to RA3$ $C3 = C1 VIN - connects to RA4$ bit 2-0 CM - 2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM - 2:0> bit settings		1 = C1 VIN	+ > C1 VIN								
When C1INV = 1: 1 = C1 VIN+ < C1 VIN- 0 = C1 VIN+ > C1 VIN- 0 = C1 VIN+ > C1 VIN-bit 5C2INV: Comparator 2 Output Inversion bit 1 = C2 Output inverted 0 = C2 Output not invertedbit 4C1INV: Comparator 1 Output Inversion bit 1 = C1 Output inverted 0 = C1 Output not invertedbit 3CIS: Comparator Input Switch bit When CM<2:0>: = 001 Then: 1 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA0When CM<2:0> = 010 Then: 1 = C1 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA1bit 2-0CM<2:0> : Comparator Ndde bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings											
1 = C1 VIN+ < C1 VIN- 0 = C1 VIN+ > C1 VIN- 0 = C1 VIN+ > C1 VIN- bit 5 C2INV: Comparator 2 Output Inversion bit 1 = C2 Output inverted 0 = C2 Output not inverted bit 4 C1INV: Comparator 1 Output Inversion bit 1 = C1 Output inverted 0 = C1 Output not inverted bit 3 CIS: Comparator Input Switch bit When CM<2:0>: = 001 Then: 1 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA1 bit 2-0 CM<2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings		When C1I	NV = 1:								
bit 5 C2 INV: Comparator 2 Output Inversion bit 1 = C2 Output inverted 0 = C2 Output not inverted bit 4 C1INV: Comparator 1 Output Inversion bit 1 = C1 Output inverted 0 = C1 Output inverted 0 = C1 Output not inverted bit 3 CIS: Comparator Input Switch bit When CM<2:0>: = 001 Then: 1 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA3 C2 VIN- connects to RA3 C2 VIN- connects to RA3 C2 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA3 C2 VIN- connects to RA4 bit 2-0 CM<2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings		1 = C1 VIN	+ < C1 VIN-								
bit 5 C2INV: Comparator 2 Output Inversion bit 1 = C2 Output inverted 0 = C2 Output not inverted bit 4 C1INV: Comparator 1 Output Inversion bit 1 = C1 Output inverted 0 = C1 Output not inverted bit 3 CIS: Comparator Input Switch bit When CM<2:0>: = 001 Then: 1 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA0 When CM<2:0> = 010 Then: 1 = C1 VIN- connects to RA3 C2 VIN- connects to RA4 bit 2-0 CM<2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings		0 = C1 VIN	+ > C1 VIN-								
bit 4 C1INV: Comparator 1 Output Inverted 0 = C2 Output not inverted 1 = C1 Output inverted 0 = C1 Output not inverted bit 3 CIS: Comparator Input Switch bit When CM<2:0>: = 001 Then: 1 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA0 When CM<2:0> = 010 Then: 1 = C1 VIN- connects to RA3 C2 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA2 0 = C1 VIN- connects to RA2 0 = C1 VIN- connects to RA1 bit 2-0 CM<2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings	bit 5	C2INV: Comparator 2 Output Inversion bit									
bit 4 C1INV: Comparator 1 Output Inversion bit 1 = C1 Output inverted 0 = C1 Output not inverted bit 3 CIS: Comparator Input Switch bit <u>When CM<2:0>: = 001</u> Then: 1 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA0 <u>When CM<2:0> = 010</u> Then: 1 = C1 VIN- connects to RA3 C2 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA1 bit 2-0 CM<2:0> : Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings		1 = C2 Output inverted									
bit 1 = C1 Output inverted 1 = C1 Output inverted 0 = C1 Output not inverted bit 3 CIS: Comparator Input Switch bit $\frac{When CM < 2:0 >: = 001}{Then:}$ $1 = C1 VIN- connects to RA3$ 0 = C1 VIN- connects to RA0 $\frac{When CM < 2:0 >= 010}{Then:}$ $1 = C1 VIN- connects to RA3$ C2 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA1 bit 2-0 CM < 2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM < 2:0> bit settings	hit 4	C1INV [·] Co	moarator 1 (Dutnut Inve	rsion hit						
bit 3 CIS : Comparator Input Switch bit $\frac{When CM<2:0>:=001}{Then:}$ $1 = C1 VIN- connects to RA3$ $0 = C1 VIN- connects to RA0$ $\frac{When CM<2:0> = 010}{Then:}$ $1 = C1 VIN- connects to RA3$ $C2 VIN- connects to RA3$ $C2 VIN- connects to RA2$ $0 = C1 VIN- connects to RA2$ $0 = C1 VIN- connects to RA1$ bit 2-0 CM<2:0> : Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings	bit i	1 = C1 Output inverted									
bit 3 CIS: Comparator Input Switch bit When CM<2:0>: = 001 Then: 1 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA0 When CM<2:0> = 010 Then: 1 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA0 When CM<2:0> = 010 Then: 1 = C1 VIN- connects to RA3 C2 VIN- connects to RA3 C2 VIN- connects to RA0 C2 VIN- connects to RA1 bit 2-0 CM CM C2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings		0 = C1 Output not inverted									
When $CM<2:0>:=001$ Then: $1 = C1 VIN- connects to RA30 = C1 VIN- connects to RA0When CM<2:0>=010Then:1 = C1 VIN- connects to RA3C2 VIN- connects to RA20 = C1 VIN- connects to RA0C2 VIN- connects to RA1bit 2-0CM<2:0>: Comparator Mode bitsFigure 10-1 shows the comparator modes and CM<2:0> bit settings$	bit 3	CIS: Comp	parator Input	Switch bit							
Then: 1 = C1 VIN- connects to RA3 0 = C1 VIN- connects to RA0 When CM<2:0> = 010 Then: 1 = C1 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA0 C2 VIN- connects to RA0 C2 VIN- connects to RA1 bit 2-0 CM<2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings		<u>When CM<2:0>: = 001</u>									
$1 = C1 \text{ VIN- connects to RA3}$ $0 = C1 \text{ VIN- connects to RA0}$ $\frac{\text{When CM<2:0> = 010}}{\text{Then:}}$ $1 = C1 \text{ VIN- connects to RA3}$ $C2 \text{ VIN- connects to RA2}$ $0 = C1 \text{ VIN- connects to RA0}$ $C2 \text{ VIN- connects to RA0}$ $C2 \text{ VIN- connects to RA1}$ bit 2-0 $CM<2:0>: Comparator Mode bits$ Figure 10-1 shows the comparator modes and CM<2:0> bit settings		Then:									
When CM<2:0> = 010 Then: 1 = C1 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA0 C2 VIN- connects to RA0 C2 VIN- connects to RA1 bit 2-0 CM<2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings		1 = C1 VIN- connects to RA3									
When CM<2:0> = 010 Then: 1 = C1 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA0 C2 VIN- connects to RA1 bit 2-0 CM<2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings											
Then: 1 = C1 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA0 C2 VIN- connects to RA1 bit 2-0 CM<2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings		When CM<	< <u>2:0> = 010</u>								
 1 = C1 VIN- connects to RA3 C2 VIN- connects to RA2 0 = C1 VIN- connects to RA0 C2 VIN- connects to RA1 bit 2-0 CM<2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings 		Then:		544							
bit 2-0 CM<2:0>: Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings		1 = C1 VIN	- connects to	RA3							
bit 2-0 CM<2:0> : Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings		0 = C1 VIN	- connects to	0 RAZ							
bit 2-0 CM<2:0> : Comparator Mode bits Figure 10-1 shows the comparator modes and CM<2:0> bit settings		C2 VIN	- connects t	o RA1							
Figure 10-1 shows the comparator modes and CM<2:0> bit settings	bit 2-0	CM<2:0>:	Comparator	Mode bits							
		Figure 10-	1 shows the	comparator	modes and	d CM<2:0> bit s	ettings				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

10.1 Comparator Configuration

There are eight modes of operation for the comparators. The CMCON register is used to select the mode. Figure 10-1 shows the eight possible modes. The TRISA register controls the data direction of the comparator pins for each mode.

If the Comparator mode is changed, the comparator output level may not be valid for the specified mode change delay shown in Table 17-2.

- Note 1: Comparator interrupts should be disabled during a Comparator mode change, otherwise a false interrupt may occur.
 - 2: Comparators can have an inverted output. See Figure 10-1.

FIGURE 10-1: COMPARATOR I/O OPERATING MODES

12.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 12-1 shows the formula for computation of the baud rate for different USART modes, which only apply in Master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 12-1. From this, the error in baud rate can be determined.

Example 12-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz Desired Baud Rate = 9600 BRGH = 0 SYNC = 0

EQUATION 12-1: CALCULATING BAUD RATE ERROR

$$Desired Baud Rate = \frac{Fosc}{64(x+1)}$$

$$9600 = \frac{16000000}{64(x+1)}$$

$$x = 25.042$$

$$Calculated Baud Rate = \frac{16000000}{64(25+1)} = 9615$$

$$Error = \frac{(Calculated Baud Rate - Desired Baud Rate)}{Desired Baud Rate}$$

$$= \frac{9615 - 9600}{9600} = 0.16\%$$

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the FOSC/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared) and ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

The data on the RB1/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

TABLE 12-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate = Fosc/(16(X+1))
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	NA

Legend: X = value in SPBRG (0 to 255)

TABLE 12-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
99h	SPBRG	Baud Ra	Baud Rate Generator Register								0000 0000

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for the BRG.

FIGURE 12-5: ASYNCHRONOUS RECEPTION WITH ADDRESS DETECT

RB1/RX/DT (Pin)Startbit	bit 0 / bit 1 / 5 / bit 8 / Stop	Start bit 0 bit 8	Stop		
RCV Shift Reg				(
RCV Buffer Reg	bit 8 = 0, Data Byte	bit 8 = 1, Address Byte	Word 1		
Read RCV Buffer Reg RCREG		<u></u>		<u> </u>	ſ
RCIF (interrupt flag)		<u></u>			¥
ADEN = 1 ⁽¹⁾ (Address Match Enable)	<u> </u>	<u>_</u>	<u>:</u>	<u> </u>	<u>'1'</u>
Note: This timing dia (Receive Buffe	agram shows a data byte follov er) because ADEN = 1 and bit (ved by an address byte. The $8 = 0$.	data byte is	not read i	nto the RCREG

FIGURE 12-6: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST

FIGURE 12-7: ASYNCHRONOUS RECEPTION WITH ADDRESS BYTE FIRST FOLLOWED BY VALID DATA BYTE

RB1/RX/DT (pir	n) Start bit bit 0 bit 1 5 bit 8 Stop bit bit 0 5 bit 8 Stop bit
RCV Shift Reg — RCV Buffer R Read RCV Buffer Reg	teg
RCREG RCIF (Interrupt Flag	
ADEN (Address Mat Enable)	
Note:	This timing diagram shows an address byte followed by an data byte. The data byte is read into the RCREG (Receive Buffer) because ADEN was updated after an address match, and was cleared to a '0', so the contents of the Receive Shift Register (RSR) are read into the Receive Buffer regardless of the value of bit 8.

13.0 DATA EEPROM MEMORY

The EEPROM data memory is readable and writable during normal operation (full VDD range). This memory is not directly mapped in the register file space. Instead it is indirectly addressed through the Special Function Registers (SFRs). There are four SFRs used to read and write this memory. These registers are:

- EECON1
- EECON2 (Not a physically implemented register)
- EEDATA
- EEADR

EEDATA holds the 8-bit data for read/write and EEADR holds the address of the EEPROM location being accessed. PIC16F627A/628A devices have 128 bytes of data EEPROM with an address range from 0h to 7Fh. The PIC16F648A device has 256 bytes of data EEPROM with an address range from 0h to FFh.

The EEPROM data memory allows byte read and write. A byte write automatically erases the location and writes the new data (erase before write). The EEPROM data memory is rated for high erase/write cycles. The write time is controlled by an on-chip timer. The write time will vary with voltage and temperature, as well as from chip-to-chip. Please refer to AC specifications for exact limits.

When the device is code-protected, the CPU can continue to read and write the data EEPROM memory. A device programmer can no longer access this memory.

Additional information on the data EEPROM is available in the *PIC[®] Mid-Range Reference Manual* (DS33023).

REGISTER 13-1: EEDATA – EEPROM DATA REGISTER (ADDRESS: 9Ah)

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| EEDAT7 | EEDAT6 | EEDAT5 | EEDAT4 | EEDAT3 | EEDAT2 | EEDAT1 | EEDAT0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 **EEDATn**: Byte value to Write to or Read from data EEPROM memory location.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 13-2: EEADR – EEPROM ADDRESS REGISTER (ADDRESS: 9Bh)

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EADR7 | EADR6 | EADR5 | EADR4 | EADR3 | EADR2 | EADR1 | EADR0 |
| bit 7 | | | | | | | bit 0 |

bit 7 PIC16F627A/628A

Unimplemented Address: Must be set to '0'

PIC16F648A

EEADR: Set to '1' specifies top 128 locations (128-255) of EEPROM Read/Write Operation **EEADR**: Specifies one of 128 locations of EEPROM Read/Write Operation

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 6-0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other Resets ⁽¹⁾
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE		CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000

TABLE 14-8:SUMMARY OF INTERRUPT REGISTERS

Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal operation.

14.6 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (e.g., W register and Status register). This must be implemented in software.

Example 14-1 stores and restores the Status and W registers. The user register, W_TEMP, must be defined in a common memory location (i.e., W_TEMP is defined at 0x70 in Bank 0 and is therefore, accessible at 0xF0, 0x170 and 0x1F0). The Example 14-1:

- · Stores the W register
- · Stores the Status register
- Executes the ISR code
- Restores the Status (and bank select bit register)
- Restores the W register

EXAMPLE 14-1: SAVING THE STATUS AND W REGISTERS IN RAM

MOVWF	W_TEMP	;copy W to temp register, ;could be in any bank
SWAPF	STATUS,W	;swap status to be saved ;into W
BCF	STATUS, RPO	;change to bank 0 ;regardless of current ;bank
MOVWF	STATUS_TEM	?;save status to bank 0 ;register
:		
:(]	ISR)	
:		
SWAPF registe	STATUS_TEMI er	P,W;swap STATUS_TEMP
		;into W, sets bank to
origina	al	
		;state
MOVWF	STATUS	;move W into STATUS
		;register
SWAPF	W_TEMP,F	;swap W_TEMP
SWAPF	W_TEMP,W	;swap W_TEMP into W

14.7 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the CLKIN pin. That means that the WDT will run, even if the clock on the OSC1 and OSC2 pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation, a WDT time out generates a device Reset. If the device is in Sleep mode, a WDT time out causes the device to wake-up and continue with normal operation. The WDT can be permanently disabled by programming the configuration Bits").

14.7.1 WDT PERIOD

The WDT has a nominal time-out period of 18 ms (with no prescaler). The time-out periods vary with temperature, VDD and process variations from part to part (see DC Specifications, Table 17-7). If longer timeout periods are desired, a postscaler with a division ratio of up to 1:128 can be assigned to the WDT under software control by writing to the OPTION register. Thus, time-out periods up to 2.3 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device Reset.

The $\overline{\text{TO}}$ bit in the Status register will be cleared upon a Watchdog Timer time out.

14.7.2 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT prescaler) it may take several seconds before a WDT time out occurs.

CLRW	Clear V	V		
Syntax:	[label]	CLRW		
Operands:	None			
Operation:	$\begin{array}{c} 00h \rightarrow 0\\ 1 \rightarrow Z \end{array}$	(W)		
Status Affected:	Z			
Encoding:	00	0001	0000	0011
Description:	W regis (Z) is se	ter is cle et.	ared. Zer	o bit
Words:	1			
Cycles:	1			
Example	CLRW			
	Before	Instruction W = $0x$ Struction W = $0x$ 7 = 1	on 5A 00	

COMF	Complement f
Syntax:	[<i>label</i>] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (dest)$
Status Affected:	Z
Encoding:	00 1001 dfff ffff
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example	COMF REG1, 0
	Before Instruction REG1 = 0x13 After Instruction REG1 = 0x13 W = 0xEC

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Encoding:	00 0000 0110 0100
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.
Words:	1
Cycles:	1
Example	CLRWDT
	Before Instruction WDT counter = ? After Instruction WDT counter = $0x00$ WDT prescaler = 0 TO = 1

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (dest)
Status Affected:	Z
Encoding:	00 0011 dfff ffff
Description:	Decrement register 'f'. If 'd' is '0'. the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example	DECF CNT, 1
	Before Instruction CNT = 0x01 Z = 0 After Instruction CNT = 0x00 Z = 1

INCF	Increment f	INCFSZ	Increment f, Skip if 0			
Syntax:	[<i>label</i>] INCF f,d	Syntax:	[<i>label</i>] INCFSZ f,d			
Operands:	$0 \le f \le 127$ $d \in [0,1]$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation:	(f) + 1 \rightarrow (dest)	Operation:	(f) + 1 \rightarrow (dest), skip if result = 0			
Status Affected:	Z	Status Affected:	None			
Encoding:	00 1010 dfff ffff	Encoding:	00 1111 dfff ffff			
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.	Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.			
Words:	1		If the result is '0', the next			
Cycles:	1		fetched is discarded. A NOP is			
Example	INCF REG1, 1		executed instead making it a			
	Before Instruction		two-cycle instruction.			
	REG1 = 0xFF	Words:	1			
	Z = 0	Cycles:	1(2)			
	$\frac{\text{REG1} = 0\text{x00}}{\text{Z} = 1}$	<u>Example</u>	HERE INCFSZ REG1, 1 GOTO LOOP CONTINUE •			
			•			
			Before Instruction			

PC = address HERE After Instruction REG1 = REG1 + 1 if CNT = 0, PC = address CONTINUE if REG1≠ 0, PC = address HERE +1

SUBWF	Subtract W from f				
Syntax:	[label] SUBWF f,d				
Operands:	$0 \le f \le 127$ d $\in [0,1]$				
Operation:	(f) - (W) \rightarrow (dest)				
Status Affected:	C, DC, Z				
Encoding:	00 0010 dfff ffff				
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example 1:	SUBWF REG1, 1				
	Before Instruction				
	REG1 = 3 W = 2 C = ?				
	After Instruction				
	REG1 = 1 W = 2 C = 1; result is positive DC = 1 Z = 0				
Example 2:	Before Instruction				
	REG1 = 2 W = 2 C = ?				
	After Instruction				
	REG1 = 0 W = 2 C = 1; result is zero Z = DC = 1				
Example 3:	Before Instruction				
	REG1 = 1 W = 2 C = ?				
	After Instruction				
	REG1 = 0xFF $W = 2$ $C = 0; result is negative$ $Z = DC = 0$				

SWAPF	Swap Nibbles in f						
Syntax:	[<i>label</i>] SWAPF f,d						
Operands:	$0 \le f \le 127$ d $\in [0,1]$						
Operation:	(f<3:0>) → (dest<7:4>), (f<7:4>) → (dest<3:0>)						
Status Affected:	None						
Encoding:	00 1110 dfff ffff						
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W register. If 'd' is '1', the result is placed in register 'f'						
Words:	1						
Cycles:	1						
Example	SWAPF REG1, 0						
	Before Instruction						
	REG1 = 0xA5						
	After Instruction						
	REG1 = 0xA5						
	W = 0x5A						
TRIC							
I RIS Svintovi							
Operands:	$\begin{bmatrix} I a D e I \end{bmatrix}$ TRIS T						
Operation:	$(W) \rightarrow TRIS$ register f						
Status Affected	None						
Encoding:	00 0000 0110 0fff						
Description:	The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly						
Wordo:							
Cycles:	1						
Evample	1						
	To maintain upward compatibil- ity with future PIC [®] MCU products, do not use this instruction.						

TABLE 17-2: COMPARATOR SPECIFICATIONS

Operating Conditions: 2.0V < VDD <5.5V, -40°C < TA < +125°C, unless otherwise stated.							
Param No.	Characteristics	Sym	Min	Тур	Мах	Units	Comments
D300	Input Offset Voltage	VIOFF	_	±5.0	±10	mV	
D301	Input Common Mode Voltage	VICM	0		Vdd - 1.5*	V	
D302	Common Mode Rejection Ratio	CMRR	55*		_	db	
D303	Response Time ⁽¹⁾	TRESP		300	400*	ns	VDD = 3.0V to 5.5V -40° to +85°C
			—	400	600*	ns	VDD = 3.0V to 5.5V -85° to +125°C
			—	400	600*	ns	VDD = 2.0V to 3.0V -40° to +85°C
D304	Comparator Mode Change to Output Valid	TMC2OV	—	300	10*	μ	

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 17-3: VOLTAGE REFERENCE SPECIFICATIONS

Operating Conditions: 2.0V < VDD < 5.5V, -40°C < TA < +125°C, unless otherwise stated.								
Spec No.	Characteristics	Sym	Min	Тур	Мах	Units	Comments	
D310	Resolution	VRES	_	—	Vdd/24 Vdd/32	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)	
D311	Absolute Accuracy	Vraa	_		1/4 ⁽²⁾ * 1/2 ⁽²⁾ *	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)	
D312	Unit Resistor Value (R)	Vrur	—	2k*	_	Ω		
D313	Settling Time ⁽¹⁾	TSET	_	_	10*	μS		

* These parameters are characterized but not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from '0000' to '1111'.

2: When VDD is between 2.0V and 3.0V, the VREF output voltage levels on RA2 described by the equation:[VDD/2 ± (3 – VDD)/2] may cause the Absolute Accuracy (VRAA) of the VREF output signal on RA2 to be greater than the stated max.

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units
10	TosH2ckL	OSC1↑ to CLKOUT↓	PIC16F62XA		75	200*	ns
10A			PIC16LF62XA	—	_	400*	ns
11	TosH2ckH	OSC1↑ to CLKOUT↑	PIC16F62XA	—	75	200*	ns
11A			PIC16LF62XA	—	_	400*	ns
12	TcĸR	CLKOUT rise time	PIC16F62XA	—	35	100*	ns
12A			PIC16LF62XA	—		200*	ns
13	ТскF	CLKOUT fall time	PIC16F62XA	—	35	100*	ns
13A			PIC16LF62XA	—	_	200*	ns
14	TckL2IoV	CLKOUT \downarrow to Port out valid	KOUT \downarrow to Port out valid		_	20*	ns
15	TIOV2CKH	Port in valid before CLKOUT \uparrow	PIC16F62XA	Tosc+200 ns*	_	_	ns
			PIC16LF62XA	Tosc+400 ns*	_	_	ns
16	TckH2iol	Port in hold after CLKOUT \uparrow		0			ns
17	TosH2IoV	OSC1↑ (Q1 cycle) to	PIC16F62XA	—	50	150*	ns
		Port out valid	PIC16LF62XA	—		300*	ns
18	TosH2ıol	OSC1↑ (Q2 cycle) to Port input invalid (I/O in hold time)		100* 200*		_	ns

TABLE 17-6: CLKOUT AND I/O TIMING REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			MILLIMETERS			
Dimensior	MIN	NOM	MAX				
Number of Pins	Ν	20					
Pitch	е		0.65 BSC				
Overall Height	Α	-	-	2.00			
Molded Package Thickness	A2	1.65	1.75	1.85			
Standoff	A1	0.05	-	-			
Overall Width	E	7.40	7.80	8.20			
Molded Package Width	E1	5.00	5.30	5.60			
Overall Length	D	6.90	7.20	7.50			
Foot Length	L	0.55	0.75	0.95			
Footprint	L1	1.25 REF					
Lead Thickness	С	0.09	-	0.25			
Foot Angle	φ	0°	4°	8°			
Lead Width	b	0.22	_	0.38			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com