

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f628at-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0 General Description	7
2.0 PIC16F627A/628A/648A Device Varieties	9
3.0 Architectural Overview	. 11
4.0 Memory Organization	17
5.0 I/O Ports	
6.0 Timer0 Module	47
7.0 Timer1 Module	50
8.0 Timer2 Module	. 54
9.0 Capture/Compare/PWM (CCP) Module	. 57
10.0 Comparator Module	. 63
11.0 Voltage Reference Module	. 69
12.0 Universal Synchronous Asynchronous Receiver Transmitter (USART) Module	
13.0 Data EEPROM Memory	91
14.0 Special Features of the CPU	
15.0 Instruction Set Summary	117
16.0 Development Support	131
17.0 Electrical Specifications	135
18.0 DC and AC Characteristics Graphs and Tables	151
19.0 Packaging Information	163
Appendix A: Data Sheet Revision History	171
Appendix B: Device Differences	171
Appendix C: Device Migrations	172
Appendix D: Migrating from other PIC [®] Devices	172
The Microchip Web Site	173
Customer Change Notification Service	173
Customer Support	173
Reader Response	
Product Identification System	179

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

- To determine if an errata sheet exists for a particular device, please check with one of the following:
- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.

1.0 GENERAL DESCRIPTION

The PIC16F627A/628A/648A are 18-pin Flash-based members of the versatile PIC16F627A/628A/648A family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers.

All PIC[®] microcontrollers employ an advanced RISC architecture. The PIC16F627A/628A/648A have enhanced core features, an eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two-stage instruction pipeline allows all instructions to execute in a single-cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available, complemented by a large register set.

PIC16F627A/628A/648A microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

PIC16F627A/628A/648A devices have integrated features to reduce external components, thus reducing system cost, enhancing system reliability and reducing power consumption.

The PIC16F627A/628A/648A has 8 oscillator configurations. The single-pin RC oscillator provides a low-cost solution. The LP oscillator minimizes power consumption, XT is a standard crystal, and INTOSC is a self-contained precision two-speed internal oscillator.

The HS mode is for High-Speed crystals. The EC mode is for an external clock source.

The Sleep (Power-down) mode offers power savings. Users can wake-up the chip from Sleep through several external interrupts, internal interrupts and Resets.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lock-up.

Table 1-1 shows the features of the PIC16F627A/628A/ 648A mid-range microcontroller family.

A simplified block diagram of the PIC16F627A/628A/ 648A is shown in Figure 3-1.

The PIC16F627A/628A/648A series fits in applications ranging from battery chargers to low power remote sensors. The Flash technology makes customizing application programs (detection levels, pulse generation, timers, etc.) extremely fast and convenient. The small footprint packages makes this microcontroller series ideal for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16F627A/628A/648A very versatile.

1.1 Development Support

The PIC16F627A/628A/648A family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low cost in-circuit debugger, a low cost development programmer and a full-featured programmer. A Third Party "C" compiler support tool is also available.

		PIC16F627A	PIC16F628A	PIC16F648A	PIC16LF627A	PIC16LF628A	PIC16LF648A
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20
	Flash Program Memory (words)	1024	2048	4096	1024	2048	4096
Memory	RAM Data Memory (bytes)	224	224	256	224	224	256
	EEPROM Data Memory (bytes)	128	128	256	128	128	256
	Timer module(s)	TMR0, TMR1, TMR2					
	Comparator(s)	2	2	2	2	2	2
Peripherals	Capture/Compare/ PWM modules	1	1	1	1	1	1
	Serial Communications	USART	USART	USART	USART	USART	USART
	Internal Voltage Reference	Yes	Yes	Yes	Yes	Yes	Yes
	Interrupt Sources	10	10	10	10	10	10
	I/O Pins	16	16	16	16	16	16
Features	Voltage Range (Volts)	3.0-5.5	3.0-5.5	3.0-5.5	2.0-5.5	2.0-5.5	2.0-5.5
	Brown-out Reset	Yes	Yes	Yes	Yes	Yes	Yes
	Packages	18-pin DIP, SOIC, 20-pin SSOP, 28-pin QFN					

TABLE 1-1: PIC16F627A/628A/648A FAMILY OF DEVICES

All PIC[®] family devices have Power-on Reset, selectable Watchdog Timer, selectable code-protect and high I/O current capability. All PIC16F627A/628A/648A family devices use serial programming with clock pin RB6 and data pin RB7.

2.0 PIC16F627A/628A/648A DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16F627A/628A/648A Product Identification System, at the end of this data sheet. When placing orders, please use this page of the data sheet to specify the correct part number.

2.1 Flash Devices

Flash devices can be erased and re-programmed electrically. This allows the same device to be used for prototype development, pilot programs and production.

A further advantage of the electrically erasable Flash is that it can be erased and reprogrammed in-circuit, or by device programmers, such as Microchip's PICSTART[®] Plus or PRO MATE[®] II programmers.

2.2 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who chose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are standard Flash devices, but with all program locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

2.3 Serialized Quick-Turnaround-Production (SQTPSM) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number, which can serve as an entry-code, password or ID number.

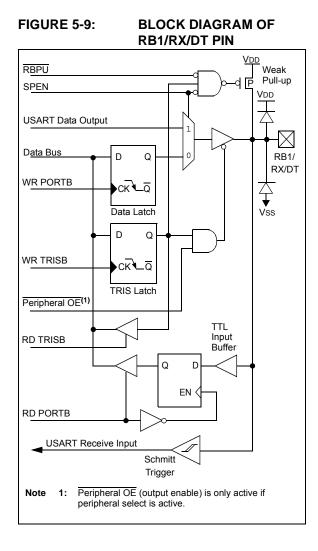
FIGURE 4-2: DATA MEMORY MAP OF THE PIC16F627A AND PIC16F628A

direct addr.(1)	00h	Indirect addr. ⁽¹⁾	80h	Indirect addr. ⁽¹⁾	100h	Indirect addr. ⁽¹⁾
TMR0	01h	OPTION	81h	TMR0	101h	OPTION
PCL	02h	PCL	82h	PCL	102h	PCL
STATUS	03h	STATUS	83h	STATUS	103h	STATUS
FSR	04h	FSR	84h	FSR	104h	FSR
PORTA	05h	TRISA	85h		105h	
PORTB	06h	TRISB	86h	PORTB	106h	TRISB
	07h		87h		107h	
	08h		88h		108h	
	09h		89h		109h	
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON
PIR1	0Ch	PIE1	8Ch		10Ch	
	0Dh		8Dh		10Dh	
TMR1L	0Eh	PCON	8Eh		10Eh	
TMR1H	0Fh		8Fh		10Fh	
T1CON	10h		90h			
TMR2	11h		91h			
T2CON	12h	PR2	92h			
	13h		93h			
	14h		94h			
CCPR1L	15h		95h			
CCPR1H	16h		96h			
CCP1CON	17h		97h			
RCSTA	18h	TXSTA	98h			
TXREG	19h	SPBRG	99h			
RCREG	1Ah	EEDATA	9Ah			
	1Bh	EEADR	9Bh			
	1Ch	EECON1	9Ch			
	1Dh	EECON2 ⁽¹⁾	9Dh			
	1Eh		9Eh			
CMCON	1Fh	VRCON	9Fh		11Fh	
	20h		A0h	General Purpose	120h	
General		General		Register		
Purpose Register		Purpose Register		48 Bytes	14Fh	
•		80 Bytes			150h	
80 Bytes						
	6Fh		EFh		16Fh	
16 Bytes	70h	accesses	F0h	accesses	170h	accesses
IO Dyles		70h-7Fh		70h-7Fh		70h-7Fh
	7Fh		FFh		17Fh	
Bank 0		Bank 1		Bank 2		Bank 3
-	4 4	a memory locations, r		,		

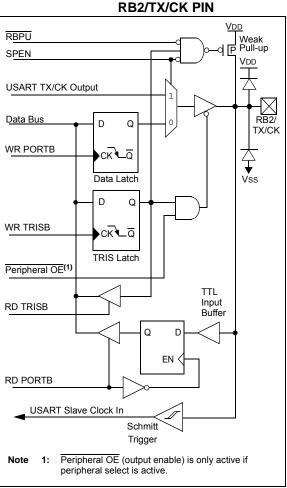
4.2.2.6 PCON Register

The PCON register contains flag bits to differentiate between a Power-on Reset, an external MCLR Reset, WDT Reset or a Brown-out Reset.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if BOR is cleared, indicating a brown-out has occurred. The BOR Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BOREN bit in the Configuration Word).


REGISTER 4-6:

PCON – POWER CONTROL REGISTER (ADDRESS: 8Eh)


U-0	U-0	U-0	U-0	R/W-1	U-0	R/W-0	R/W-x
_	—	_	_	OSCF		POR	BOR
bit 7							bit 0

- bit 7-4 Unimplemented: Read as '0'
- bit 3 OSCF: INTOSC Oscillator Frequency bit
 - 1 = 4 MHz typical
 - 0 = 48 kHz typical
- bit 2 Unimplemented: Read as '0'
- bit 1 **POR**: Power-on Reset Status bit
 - 1 = No Power-on Reset occurred
 - 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
- bit 0 BOR: Brown-out Reset Status bit
 - 1 = No Brown-out Reset occurred
 - 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 5-10: BLOCK DIAGRAM OF

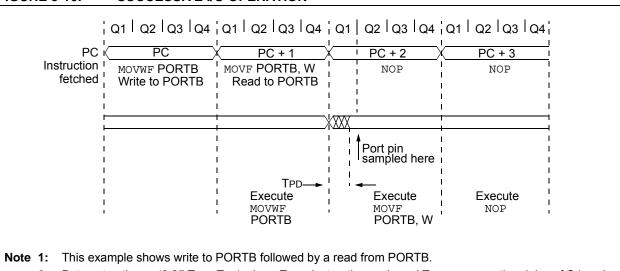
5.3 I/O Programming Considerations

5.3.1 BIDIRECTIONAL I/O PORTS

Any instruction that writes operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit 5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit 5 and PORTB is written to the output latches. If another bit of PORTB is used as a bidirectional I/O pin (e.g., bit 0) and is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit 0 is switched into Output mode later on, the content of the data latch may now be unknown.

Reading a port register reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-2 shows the effect of two sequential read-modify-write instructions (ex., ${\tt BCF}, {\tt BSF},$ etc.) on an I/O port


A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-OR", "wired-AND"). The resulting high output currents may damage the chip.

EXAMPLE 5-2: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings:	:PORTB<7:4> Inputs
;	PORTB<3:0> Outputs
;PORTB<7:6> have extern	nal pull-up and are
;not connected to other	c circuitry
;	
;	PORT latchPORT Pins
BCF STATUS, RPO	;
BCF PORTB, 7	;01pp pppp 11pp pppp
BSF STATUS, RPO	;
	;10pp pppp 11pp pppp
BCF TRISB, 6	;10pp pppp 10pp pppp
;	, the sets - set fore
, Note that the user may	v have expected the
; pin values to be 00pp	-
; caused RB7 to be latch	
; (High).	ica ab che più value
, (111911).	

5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-16). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

2: Data setup time = (0.25 TCY - TPD) where TCY = instruction cycle and TPD = propagation delay of Q1 cycle to output valid. Therefore, at higher clock frequencies, a write followed by a read may be problematic.

FIGURE 5-16: SUCCESSIVE I/O OPERATION

7.3 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 7.3.2 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note:	In Asynchronous Counter mode, Timer1
	cannot be used as a time base for capture
	or compare operations.

7.3.1 EXTERNAL CLOCK INPUT TIMING WITH UNSYNCHRONIZED CLOCK

If control bit $\overline{\text{T1SYNC}}$ is set, the timer will increment completely asynchronously. The input clock must meet certain minimum high and low time requirements. Refer to Table 17-8 in the Electrical Specifications Section, timing parameters 45, 46 and 47.

7.3.2 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading the TMR1H or TMR1L register, while the timer is running from an external asynchronous clock, will produce a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself poses certain problems since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Example 7-1 is an example routine to read the 16-bit timer value. This is useful if the timer cannot be stopped.

EXAMPLE 7-1: READING A 16-BIT FREE-RUNNING TIMER

	All inte	rrupts are d	lisabled
,	MOVF	TMR1H, W	
	MOVWF		, kedd high byte
	MOVF	,	;Read low byte
	MOVWF	TMPL	;
	MOVF	TMR1H, W	;Read high byte
	SUBWF	TMPH, W	;Sub 1st read with
			;2nd read
	BTFSC	STATUS, Z	;Is result = 0
	GOTO	CONTINUE	;Good 16-bit read
;			
;	TMR1L ma	v have rolle	ed over between the
;		-	l low bytes. Reading
'		5	
;	5	and low byc	es now will read a good
;	value.		
;			
	MOVF	TMR1H, W	;Read high byte
	MOVWF	TMPH	;
	MOVF	TMR1L, W	;Read low byte
	MOVWF	TMPL	i
;	Re-enabl	e the Intern	rupts (if required)
	ONTINUE		;Continue with your
			; code
			, coue

PIC16F627A/628A/648A

NOTES:

REGISTER 14-1: CONFIG – CONFIGURATION WORD REGISTER

CP		_		CPD	LVP	BOREN	MCLRE	FOSC2	PWRTE	WDTE	F0SC1	F0SC0
bit 13												bit 0
bit 13:	CP: Flash Program Memory Code Protection bit ⁽²⁾ (PIC16F648A) 1 = Code protection off 0 = 0000h to 0FFFh code-protected (PIC16F628A) 1 = Code protection off 0 = 0000h to 07FFh code-protected (PIC16F627A) 1 = Code protection off 0 = 0000h to 03FFh code-protected											
bit 12-9:	Unimplemen	ted: Read as	ʻ0'									
bit 8:	CPD : Data Code Protection bit ⁽³⁾ 1 = Data memory code protection off 0 = Data memory code-protected											
bit 7:	LVP : Low-Voltage Programming Enable bit 1 = RB4/PGM pin has PGM functio <u>n, low</u> -voltage programming enabled 0 = RB4/PGM is digital I/O, HV on MCLR must be used for programming											
bit 6:	BOREN: Brown-out Reset Enable bit ⁽¹⁾ 1 = BOR Reset enabled 0 = BOR Reset disabled											
bit 5:	MCLRE: RA5/MCLR/VPP Pin Function Select bit 1 = RA5/MCLR/VPP pin function is MCLR 0 = RA5/MCLR/VPP pin function is digital Input, MCLR internally tied to VDD											
bit 3:	PWRTE : Power-up Timer Enable bit ⁽¹⁾ 1 = PWRT disabled 0 = PWRT enabled											
bit 2:	WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled											
bit 4, 1-0:	FOSC<2:0>: Oscillator Selection bits ⁽⁴⁾ 111 = RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN 110 = RC oscillator: I/O function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN 101 = INTOSC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 101 = INTOSC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 101 = EC: I/O function on RA6/OSC2/CLKOUT pin, CLKIN on RA7/OSC1/CLKIN 101 = HS oscillator: High-speed crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 102 = XT oscillator: Crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 103 = LP oscillator: Low-power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN											
	 Enabling Brown-out Reset does not automatically enable the Power-up Timer (PWRT) the way it does on the PIC16F627/628 devices. The code protection scheme has changed from the code protection scheme used on the PIC16F627/628 devices. The entire Flash program memory needs to be bulk erased to set the CP bit, turning the code protection off. See "PIC16F627A/628A/648A EEPROM Memory Programming Specification" (DS41196) for details. The entire data EEPROM needs to be bulk erased to set the CPD bit, turning the code protection off. See "PIC16F627A/ 628A/648A EEPROM Memory Programming Specification" (DS41196) for details. When MCLR is asserted in INTOSC mode, the internal clock oscillator is disabled. 											
	Legend:											
	R = Readable	e bit	W = Wri	table bit		U = Ur	nimplement	ted bit, read	d as '0'			
	-n = Value at	POR	'1' = bit	is set		'0' = bi	it is cleared	l	x =	bit is unkn	own	

14.2.3 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used; one with series resonance, or one with parallel resonance.

Figure 14-2 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180° phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 14-2: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

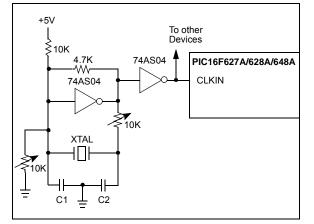
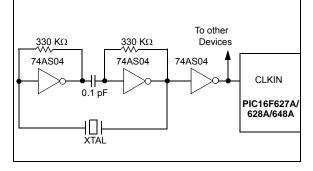
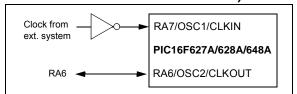



Figure 14-3 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180° phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 14-3: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

14.2.4 PRECISION INTERNAL 4 MHz OSCILLATOR


The internal precision oscillator provides a fixed 4 MHz (nominal) system clock at VDD = 5V and $25^{\circ}C$. See **Section 17.0 "Electrical Specifications"**, for information on variation over voltage and temperature.

14.2.5 EXTERNAL CLOCK IN

For applications where a clock is already available elsewhere, users may directly drive the PIC16F627A/ 628A/648A provided that this external clock source meets the AC/DC timing requirements listed in **Section 17.6 "Timing Diagrams and Specifications"**. Figure 14-4 below shows how an external clock circuit should be configured.

FIGURE 14-4:

EXTERNAL CLOCK INPUT OPERATION (EC, HS, XT OR LP OSC CONFIGURATION)

14.4.5 TIME OUT SEQUENCE

On power-up, the time out sequence is as follows: First PWRT time-out is invoked after POR has expired. Then OST is activated. The total time out will vary based on oscillator configuration and <u>PWRTE</u> bit Status. For example, in RC mode with <u>PWRTE</u> bit set (PWRT disabled), there will be no time out at all. Figure 14-8, Figure 14-11 and Figure 14-12 depict time out sequences.

Since the time outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 14-11). This is useful for testing purposes or to synchronize more than one PIC16F627A/628A/ 648A device operating in parallel.

Table 14-6 shows the Reset conditions for some special registers, while Table 14-7 shows the Reset conditions for all the registers.

14.4.6 POWER CONTROL (PCON) STATUS REGISTER

The PCON/Status register, PCON (address 8Eh), has two bits.

Bit 0 is $\overline{\text{BOR}}$ (Brown-out Reset). $\overline{\text{BOR}}$ is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if $\overline{\text{BOR}} = 0$ indicating that a brown-out has occurred. The $\overline{\text{BOR}}$ Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (by setting BOREN bit = 0 in the Configuration Word).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset if POR is '0', it will indicate that a Power-on Reset must have occurred (VDD may have gone too low).

Oscillator Configuration	Power-up Timer		Brown-o	Wake-up from	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	Sleep
XT, HS, LP	72 ms + 1024•Tosc	1024•Tosc	72 ms + 1024•Tosc	1024•Tosc	1024•Tosc
RC, EC	72 ms	—	72 ms	_	—
INTOSC	72 ms	—	72 ms	—	6 μs

TABLE 14-3. THE OUT IN VARIOUS SITUATIONS	TABLE 14-3:	TIME OUT IN VARIOUS SITUATIONS
---	-------------	--------------------------------

TABLE 14-4: STATUS/PCON BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Condition
0	Х	1	1	Power-on Reset
0	Х	0	Х	Illegal, TO is set on POR
0	Х	Х	0	Illegal, PD is set on POR
1	0	Х	Х	Brown-out Reset
1	1	0	u	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during Sleep

Legend: u = unchanged, x = unknown

TABLE 14-5: SUMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT RESET	
--	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other Resets ⁽¹⁾
03h, 83h, 103h, 183h	STATUS	IRP	RP1	RPO	TO	PD	Z	DC	С	0001 1xxx	000q quuu
8Eh	PCON	_	-			OSCF		POR	BOR	1-0x	u-uq

x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. Legend:

Shaded cells are not used by Brown-out Reset.

Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal operation.

INITIALIZATION CONDITION FOR SPECIAL REGISTERS TABLE 14-6:

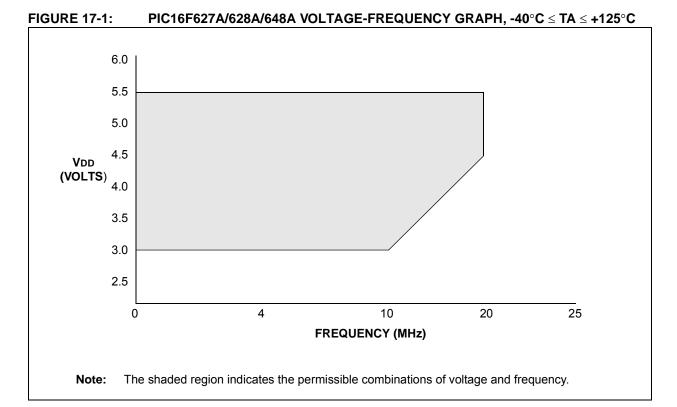
Condition	Program Counter	Status Register	PCON Register
Power-on Reset	000h	0001 1xxx	1-0x
MCLR Reset during normal operation	000h	000u uuuu	1-uu
MCLR Reset during Sleep	000h	0001 0uuu	1-uu
WDT Reset	000h	0000 uuuu	1-uu
WDT Wake-up	PC + 1	uuu0 0uuu	u-uu
Brown-out Reset	000h	000x xuuu	1-u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	uuul Ouuu	u-uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'. **Note 1:** When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

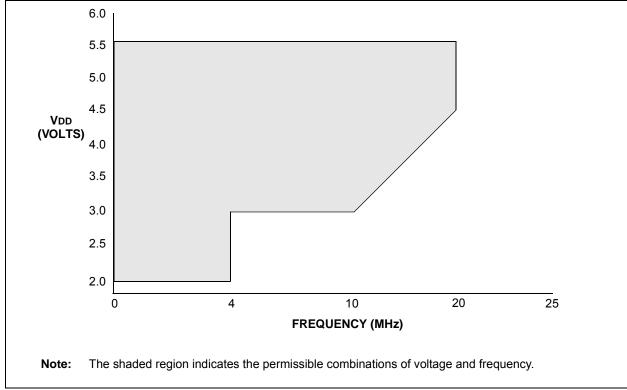
PIC16F627A/628A/648A

NOTES:

Mnem	onic,	Description	Cycles		14-Bit	Opcode	Status	N	
Operands		Description		MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE F	REGISTER OPER	RATION	IS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1, 2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1, 2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	_	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1, 2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1, 2
DECFSZ	f, d	Decrement f, Skip if 0	1 ⁽²⁾	00	1011	dfff	ffff		1, 2, 3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1, 2
INCFSZ	f, d	Increment f, Skip if 0	1 ⁽²⁾	00	1111	dfff	ffff		1, 2, 3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1, 2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1, 2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	—	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1, 2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1, 2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1, 2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1, 2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1, 2
		BIT-ORIENTED FILE R	EGISTER OPER	ATIONS	3				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1, 2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1, 2
BTFSC	f, b	Bit Test f, Skip if Clear	1 ⁽²⁾	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 ⁽²⁾	01	11bb	bfff	ffff		3
		LITERAL AND CON	TROL OPERATIO	ONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	_	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	_	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	_	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	_	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	

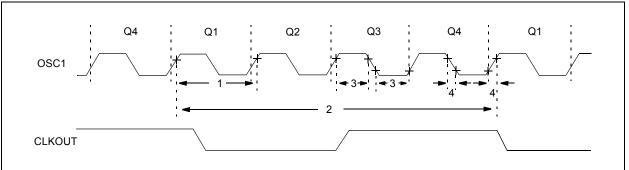

TABLE 15-2: PIC16F627A/628A/648A INSTRUCTION SET

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.


2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 Module.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

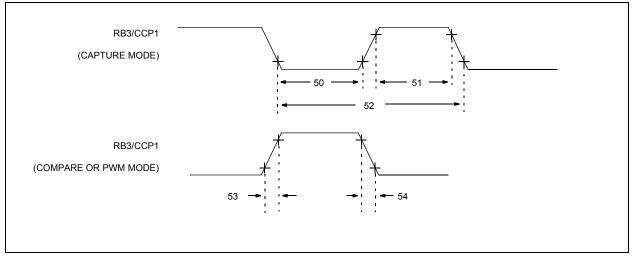
PIC16F627A/628A/648A



17.6 **Timing Diagrams and Specifications**

FIGURE 17-4: EXTERNAL CLOCK TIMING

TABLE 17-4:	EXTERNAL CLOCK TIMING REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency ⁽¹⁾	DC	—	4	MHz	XT and RC Osc mode, VDD = 5.0 V
			DC		20	MHz	HS, EC Osc mode
			DC		200	kHz	LP Osc mode
		Oscillator Frequency ⁽¹⁾	—		4	MHz	RC Osc mode, VDD = 5.0V
			0.1	_	4	MHz	XT Osc mode
			1		20	MHz	HS Osc mode
					200	kHz	LP Osc mode
				4	—	MHz	INTOSC mode (fast)
				48		kHz	INTOSC mode (slow)
1	Tosc	External CLKIN Period ⁽¹⁾	250			ns	XT and RC Osc mode
			50	_	_	ns	HS, EC Osc mode
			5	—	—	μS	LP Osc mode
		Oscillator Period ⁽¹⁾	250	—	—	ns	RC Osc mode
			250	_	10,000	ns	XT Osc mode
			50		1,000	ns	HS Osc mode
			5	_	—	μS	LP Osc mode
			_	250	—	ns	INTOSC mode (fast)
			_	21	_	μS	INTOSC mode (slow)
2	TCY	Instruction Cycle Time	200	TCY	DC	ns	Tcy = 4/Fosc
3	TosL, TosH	External CLKIN (OSC1) High External CLKIN Low	100*	—	—	ns	XT oscillator, Tosc L/H duty cycle
4	RC	External Biased RC Frequency	10 kHz*	_	4 MHz	—	VDD = 5.0V

These parameters are characterized but not tested.

t Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-based period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Max" cycle time limit is "DC" (no clock) for all devices.

Param No.	Sym		Characteristic	;	Min	Тур†	Max	Units	Conditions
50	TCCL	CCP input low time	No Prescaler		0.5Tcy + 20*	—	—	ns	
				PIC16F62XA	10*	_	—	ns	
			With Prescaler	PIC16LF62XA	20*	—	—	ns	
51	ТссН	CCP input high time	No Prescaler		0.5Tcy + 20*	-	—	ns	
				PIC16F62XA	10*	—	_	ns	
			With Prescaler	PIC16LF62XA	20*	—	_	ns	
52	TccP	CCP input period			<u>3Tcy + 40*</u> N	_	—	ns	N = prescale value (1,4 or 16)
53	TccR	CCP output rise time		PIC16F62XA		10	25*	ns	
				PIC16LF62XA		25	45*	ns	
54	TccF	CCP output fall f	time	PIC16F62XA		10	25*	ns	
				PIC16LF62XA		25	45*	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16F627A/628A/648A

I

I/O Ports	
Bidirectional	46
Block Diagrams	
RB0/INT Pin	
RB1/RX/DT Pin	
RB2/TX/CK Pin	
RB3/CCP1 Pin	
RB4/PGM Pin	
RB5 Pin	
RB6/T1OSO/T1CKI Pin	
RB7/T1OSI Pin	
PORTA	
PORTB	
Programming Considerations	
Successive Operations TRISA	
TRISA TRISB	
ID Locations	
INCF Instruction	
INCFSZ Instruction	
In-Circuit Serial Programming™	
Indirect Addressing, INDF and FSR Registers	
Instruction Flow/Pipelining	
Instruction Set	
ADDLW	119
ADDWF	
ANDLW	
ANDWF	
BCF	
BSF	
BTFSC	
BTFSS	121
CALL	121
CLRF	121
CLRW	122
CLRWDT	122
COMF	122
DECF	122
DECFSZ	123
GOTO	123
INCF	124
INCFSZ	
IORLW	
IORWF	
MOVF	
MOVLW	
MOVWF	
NOP	
OPTION	
RETFIE	
RETLW	
RETURN	
RLF	
RRF	
SLEEP	
SUBLW	
SUBWF SWAPF	
TRIS	
XORLW	
XORWF	
Instruction Set Summary	
INT Interrupt	
INTCON Register	

Internet Address	173
Interrupt Sources	
Capture Complete (CCP)	58
Compare Complete (CCP)	59
TMR2 to PR2 Match (PWM)	
Interrupts	109
Interrupts, Enable Bits	
CCP1 Enable (CCP1IE Bit)	58
Interrupts, Flag Bits	
CCP1 Flag (CCP1IF Bit)	58
IORLW Instruction	125
IORWF Instruction	125

Μ

1, 93, 95
173
172
125
125
126
132
are 131
134
133
132

Ν

NOP	Instruction	12	6
-----	-------------	----	---

0

OPTION Instruction	126
OPTION Register	
OPTION_REG Register	
Oscillator Configurations	
Oscillator Start-up Timer (OST)	

Ρ

Package Marking Information	163
Packaging Information	163
PCL and PCLATH	
Stack	30
PCON Register	29
PIE1 Register	
Pin Functions	
RC6/TX/CK	73–89
RC7/RX/DT	73–89
PIR1 Register	
PORTA	33
PORTB	38
PORTB Interrupt	
Power Control/Status Register (PCON)	104
Power-Down Mode (Sleep)	
Power-On Reset (POR)	103
Power-up Timer (PWRT)	103
PR2 Register	
Program Memory Organization	17
PWM (CCP Module)	60
Block Diagram	60
Simplified PWM	60
CCPR1H:CCPR1L Registers	60
Duty Cycle	61
Example Frequencies/Resolutions	61
Period	60
Set-Up for PWM Operation	61
TMR2 to PR2 Match	60

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	x <u>/xx xxx</u>	Examples:
Device	Temperature RangePackage Pattern RangePIC16F627A/628A/648A:Standard VDD range 3.0V to 5.5VPIC16F627A/628A/648AT:VDD range 3.0V to 5.5V (Tape and Reel)PIC16LF627A/628A/648A:VDD range 2.0V to 5.5V PIC16LF627A/628A/648AT:VDD range 2.0V to 5.5V (Tape and Reel)	 a) PIC16F627A - E/P 301 = Extended Temp., PDIP package, 20 MHz, normal VDD lim- its, QTP pattern #301. b) PIC16LF627A - I/SO = Industrial Temp., SOIC package, 20 MHz, extended VDD limits.
Temperature Range:	$I = -40^{\circ}C$ to $+85^{\circ}C$ $E = -40^{\circ}C$ to $+125^{\circ}C$	
Package:	P = PDIP SO = SOIC (Gull Wing, 7.50 mm body) SS = SSOP (5.30 mm ML = QFN (28 Lead)	