

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f628t-04-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 GENERAL DESCRIPTION

The PIC16F627A/628A/648A are 18-pin Flash-based members of the versatile PIC16F627A/628A/648A family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers.

All PIC[®] microcontrollers employ an advanced RISC architecture. The PIC16F627A/628A/648A have enhanced core features, an eight-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 14-bit wide instruction word with the separate 8-bit wide data. The two-stage instruction pipeline allows all instructions to execute in a single-cycle, except for program branches (which require two cycles). A total of 35 instructions (reduced instruction set) are available, complemented by a large register set.

PIC16F627A/628A/648A microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

PIC16F627A/628A/648A devices have integrated features to reduce external components, thus reducing system cost, enhancing system reliability and reducing power consumption.

The PIC16F627A/628A/648A has 8 oscillator configurations. The single-pin RC oscillator provides a low-cost solution. The LP oscillator minimizes power consumption, XT is a standard crystal, and INTOSC is a self-contained precision two-speed internal oscillator.

The HS mode is for High-Speed crystals. The EC mode is for an external clock source.

The Sleep (Power-down) mode offers power savings. Users can wake-up the chip from Sleep through several external interrupts, internal interrupts and Resets.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software lock-up.

Table 1-1 shows the features of the PIC16F627A/628A/ 648A mid-range microcontroller family.

A simplified block diagram of the PIC16F627A/628A/ 648A is shown in Figure 3-1.

The PIC16F627A/628A/648A series fits in applications ranging from battery chargers to low power remote sensors. The Flash technology makes customizing application programs (detection levels, pulse generation, timers, etc.) extremely fast and convenient. The small footprint packages makes this microcontroller series ideal for all applications with space limitations. Low cost, low power, high performance, ease of use and I/O flexibility make the PIC16F627A/628A/648A very versatile.

1.1 Development Support

The PIC16F627A/628A/648A family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a low cost in-circuit debugger, a low cost development programmer and a full-featured programmer. A Third Party "C" compiler support tool is also available.

		PIC16F627A	PIC16F628A	PIC16F648A	PIC16LF627A	PIC16LF628A	PIC16LF648A
Clock	Maximum Frequency of Operation (MHz)	20	20	20	20	20	20
	Flash Program Memory (words)	1024	2048	4096	1024	2048	4096
Memory	RAM Data Memory (bytes)	224	224	256	224	224	256
	EEPROM Data Memory (bytes)	128	128	256	128	128	256
	Timer module(s)	TMR0, TMR1, TMR2					
	Comparator(s)	2	2	2	2	2	2
Peripherals	Capture/Compare/ PWM modules	1	1	1	1	1	1
	Serial Communications	USART	USART	USART	USART	USART	USART
	Internal Voltage Reference	Yes	Yes	Yes	Yes	Yes	Yes
	Interrupt Sources	10	10	10	10	10	10
	I/O Pins	16	16	16	16	16	16
Features	Voltage Range (Volts)	3.0-5.5	3.0-5.5	3.0-5.5	2.0-5.5	2.0-5.5	2.0-5.5
	Brown-out Reset	Yes	Yes	Yes	Yes	Yes	Yes
	Packages	18-pin DIP, SOIC, 20-pin SSOP, 28-pin QFN					

TABLE 1-1: PIC16F627A/628A/648A FAMILY OF DEVICES

All PIC[®] family devices have Power-on Reset, selectable Watchdog Timer, selectable code-protect and high I/O current capability. All PIC16F627A/628A/648A family devices use serial programming with clock pin RB6 and data pin RB7.

FIGURE 4-2: DATA MEMORY MAP OF THE PIC16F627A AND PIC16F628A

direct addr.(1)	00h	Indirect addr. ⁽¹⁾	80h	Indirect addr. ⁽¹⁾	100h	Indirect addr. ⁽¹⁾
TMR0	01h	OPTION	81h	TMR0	101h	OPTION
PCL	02h	PCL	82h	PCL	102h	PCL
STATUS	03h	STATUS	83h	STATUS	103h	STATUS
FSR	04h	FSR	84h	FSR	104h	FSR
PORTA	05h	TRISA	85h		105h	
PORTB	06h	TRISB	86h	PORTB	106h	TRISB
	07h		87h		107h	
	08h		88h		108h	
	09h		89h		109h	
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON
PIR1	0Ch	PIE1	8Ch		10Ch	
	0Dh		8Dh		10Dh	
TMR1L	0Eh	PCON	8Eh		10Eh	
TMR1H	0Fh		8Fh		10Fh	
T1CON	10h		90h			
TMR2	11h		91h			
T2CON	12h	PR2	92h			
	13h		93h			
	14h		94h			
CCPR1L	15h		95h			
CCPR1H	16h		96h			
CCP1CON	17h		97h			
RCSTA	18h	TXSTA	98h			
TXREG	19h	SPBRG	99h			
RCREG	1Ah	EEDATA	9Ah			
	1Bh	EEADR	9Bh			
	1Ch	EECON1	9Ch			
	1Dh	EECON2 ⁽¹⁾	9Dh			
	1Eh		9Eh			
CMCON	1Fh	VRCON	9Fh		11Fh	
	20h		A0h	General Purpose	120h	
General		General		Register		
Purpose Register		Purpose Register		48 Bytes	14Fh	
•		80 Bytes			150h	
80 Bytes						
	6Fh		EFh		16Fh	
16 Bytes	70h	accesses	F0h	accesses	170h	accesses
IO Dyles		70h-7Fh		70h-7Fh		70h-7Fh
	7Fh		FFh		17Fh	
Bank 0		Bank 1		Bank 2		Bank 3
-	4 4	a memory locations, r		,		

4.2.2.1 Status Register

The Status register, shown in Register 4-1, contains the arithmetic status of the ALU; the Reset status and the bank select bits for data memory (SRAM).

The Status register can be the destination for any instruction, like any other register. If the Status register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are non-writable. Therefore, the result of an instruction with the Status register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the Status register as "000uu1uu" (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the Status register because these instructions do not affect any Status bit. For other instructions, not affecting any Status bits, see the "Instruction Set Summary".

Note:	The C and DC bits operate as a Borrow								
	and Digit Borrow out bit, respectively, in								
	subtraction. See the SUBLW and SUBWF								
	instructions for examples.								

REGISTER 4-1: STATUS – STATUS REGISTER (ADDRESS: 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x				
	IRP	RP1	RP0	TO	PD	Z	DC	С				
	bit 7 bit 0											
bit 7	1 = Bank 2	IRP: Register Bank Select bit (used for indirect addressing) 1 = Bank 2, 3 (100h-1FFh) 0 = Bank 0, 1 (00h-FFh)										
bit 6-5	RP<1:0> : 1 00 = Bank 01 = Bank 10 = Bank	RP<1:0> : Register Bank Select bits (used for direct addressing) 00 = Bank 0 (00h-7Fh) 01 = Bank 1 (80h-FFh) 10 = Bank 2 (100h-17Fh) 11 = Bank 3 (180h-1FFh)										
bit 4	1 = After p	TO: Time Out bit 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time out occurred										
bit 3	1 = After p	PD : Power-down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction										
bit 2		sult of an arit			on is zero on is not zero							
bit 1	is reversed 1 = A carry	1) /-out from the	e 4th low or	der bit of th			for Borrow t	he polarity				
bit 0	C : Carry/B 1 = A carry	 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result C: Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred Note: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register. 										
	Legend:											
	R = Reada		VV = V	Vritable bit	U = Unimple	emented b	oit, read as '	יכ				
	-n = Value	at POR	'1' = E	Bit is set	'0' = Bit is c	leared	x = Bit is ur	nknown				

4.2.2.6 PCON Register

The PCON register contains flag bits to differentiate between a Power-on Reset, an external MCLR Reset, WDT Reset or a Brown-out Reset.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if BOR is cleared, indicating a brown-out has occurred. The BOR Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BOREN bit in the Configuration Word).

REGISTER 4-6:

PCON – POWER CONTROL REGISTER (ADDRESS: 8Eh)

U-0	U-0	U-0	U-0	R/W-1	U-0	R/W-0	R/W-x
_	—	_	_	OSCF		POR	BOR
bit 7							bit 0

- bit 7-4 Unimplemented: Read as '0'
- bit 3 OSCF: INTOSC Oscillator Frequency bit
 - 1 = 4 MHz typical
 - 0 = 48 kHz typical
- bit 2 Unimplemented: Read as '0'
- bit 1 **POR**: Power-on Reset Status bit
 - 1 = No Power-on Reset occurred
 - 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
- bit 0 BOR: Brown-out Reset Status bit
 - 1 = No Brown-out Reset occurred
 - 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

7.0 TIMER1 MODULE

The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which are readable and writable. The TMR1 register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The Timer1 Interrupt, if enabled, is generated on overflow of the TMR1 register pair which latches the interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing the Timer1 interrupt enable bit TMR1IE (PIE1<0>).

Timer1 can operate in one of two modes:

- As a timer
- As a counter

The Operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

-n = Value at POR

In Timer mode, the TMR1 register pair value increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Timer1 also has an internal "Reset input". This Reset can be generated by the CCP module (Section 9.0 "Capture/Compare/PWM (CCP) Module"). Register 7-1 shows the Timer1 control register.

For the PIC16F627A/628A/648A, when the Timer1 oscillator is enabled (T1OSCEN is set), the RB7/T1OSI/PGD and RB6/T1OSO/T1CKI/PGC pins become inputs. That is, the TRISB<7:6> value is ignored.

TER 7-1:	T1CON – TIMER1 CONTROL REGISTER (ADDRESS: 10h)											
	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N				
	bit 7							bit 0				
bit 7-6	Unimplement	ed: Read	d as 'o'									
bit 5-4	T1CKPS<1:0>	TICKPS<1:0>: Timer1 Input Clock Prescale Select bits										
	10 = 1:4 Preso 01 = 1:2 Preso	11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value										
bit 3	T1OSCEN: Tir	mer1 Oso	cillator Enat	ole Control bi	t							
		1 = Oscillator is enabled 0 = Oscillator is shut off ⁽¹⁾										
bit 2	T1SYNC: Time	er1 Exter	nal Clock Ir	nput Synchro	nization Contro	ol bit						
	<u>TMR1CS = 1</u> 1 = Do not syr 0 = Synchroniz <u>TMR1CS = 0</u> This bit is igno	ze exterr	al clock inp	out	ck when TMR1	CS = 0.						
bit 1	TMR1CS: Tim	er1 Cloc	k Source Se	elect bit								
	1 = External cl 0 = Internal clo			10SO/T1CKI	/PGC (on the r	ising edge)					
bit 0	TMR1ON: Tim	er1 On b	bit									
	1 = Enables T 0 = Stops Time											
	Note 1: Th	Note 1: The oscillator inverter and feedback resistor are turned off to eliminate power drain.										
	Legend:											
	R = Readable	bit	VV = V	Vritable bit	U = Unimple	emented bi	it, read as '() '				

'1' = Bit is set

'0' = Bit is cleared

REGISTER 7-1: T1CON – TIMER1 CONTROL REGISTER (ADDRESS: 10h)

x = Bit is unknown

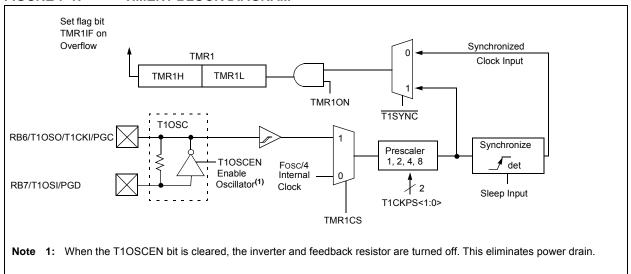
7.1 Timer1 Operation in Timer Mode

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is FOSC/4. The synchronize control bit T1SYNC (T1CON<2>) has no effect since the internal clock is always in sync.

7.2 Timer1 Operation in Synchronized Counter Mode

Counter mode is selected by setting bit TMR1CS. In this mode, the TMR1 register pair value increments on every rising edge of clock input on pin RB7/T1OSI/PGD when bit T1OSCEN is set or pin RB6/T1OSO/T1CKI/ PGC when bit T1OSCEN is cleared.

If $\overline{T1SYNC}$ is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple-counter.


In this configuration, during Sleep mode, the TMR1 register pair value will not increment even if the external clock is present, since the synchronization circuit is shut off. The prescaler however will continue to increment.

7.2.1 EXTERNAL CLOCK INPUT TIMING FOR SYNCHRONIZED COUNTER MODE

When an external clock input is used for Timer1 in Synchronized Counter mode, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of the TMR1 register pair value after synchronization.

When the prescaler is 1:1, the external clock input is the same as the prescaler output. The synchronization of T1CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T1CKI to be high for at least 2 Tosc (and a small RC delay of 20 ns) and low for at least 2 Tosc (and a small RC delay of 20 ns). Refer to Table 17-8 in the Electrical Specifications Section, timing parameters 45, 46 and 47.

When a prescaler other than 1:1 is used, the external clock input is divided by the asynchronous ripple-counter type prescaler so that the prescaler output is symmetrical. In order for the external clock to meet the sampling requirement, the ripple-counter must be taken into account. Therefore, it is necessary for T1CKI to have a period of at least 4 TOSC (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on T1CKI high and low time is that they do not violate the minimum pulse width requirements of 10 ns). Refer to the appropriate electrical specifications in Table 17-8, parameters 45, 46 and 47.

FIGURE 7-1: TIMER1 BLOCK DIAGRAM

7.3 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 7.3.2 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note:	In Asynchronous Counter mode, Timer1						
	cannot be used as a time base for capture						
	or compare operations.						

7.3.1 EXTERNAL CLOCK INPUT TIMING WITH UNSYNCHRONIZED CLOCK

If control bit $\overline{\text{T1SYNC}}$ is set, the timer will increment completely asynchronously. The input clock must meet certain minimum high and low time requirements. Refer to Table 17-8 in the Electrical Specifications Section, timing parameters 45, 46 and 47.

7.3.2 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading the TMR1H or TMR1L register, while the timer is running from an external asynchronous clock, will produce a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself poses certain problems since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Example 7-1 is an example routine to read the 16-bit timer value. This is useful if the timer cannot be stopped.

EXAMPLE 7-1: READING A 16-BIT FREE-RUNNING TIMER

	All inte	rrupts are d	lisabled
,	MOVF	TMR1H, W	
	MOVWF		, kedd high byte
	MOVF	,	;Read low byte
	MOVWF	TMPL	;
	MOVF	TMR1H, W	;Read high byte
	SUBWF	TMPH, W	;Sub 1st read with
			;2nd read
	BTFSC	STATUS, Z	;Is result = 0
	GOTO	CONTINUE	;Good 16-bit read
;			
;	TMR1L ma	v have rolle	ed over between the
;		-	l low bytes. Reading
'		5	
;	5	and low byc	es now will read a good
;	value.		
;			
	MOVF	TMR1H, W	;Read high byte
	MOVWF	TMPH	;
	MOVF	TMR1L, W	;Read low byte
	MOVWF	TMPL	i
;	Re-enabl	e the Intern	rupts (if required)
	ONTINUE		;Continue with your
			; code
			, coue

9.2.1 CCP PIN CONFIGURATION

The user must configure the RB3/CCP1 pin as an output by clearing the TRISB<3> bit.

Note:	Clearing the CCP1CON register will force
	the RB3/CCP1 compare output latch to
	the default low level. This is not the data
	latch.

9.2.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

9.2.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen the CCP1 pin is not affected. Only a CCP interrupt is generated (if enabled).

9.2.4 SPECIAL EVENT TRIGGER

In this mode (CCP1M<3:0>=1011), an internal hardware trigger is generated, which may be used to initiate an action. See Register 9-1.

The special event trigger output of the CCP occurs immediately upon a match between the TMR1H, TMR1L register pair and CCPR1H, CCPR1L register pair. The TMR1H, TMR1L register pair is not reset until the next rising edge of the TMR1 clock. This allows the CCPR1 register pair to effectively be a 16-bit programmable period register for Timer1. The special event trigger output also starts an A/D conversion provided that the A/D module is enabled.

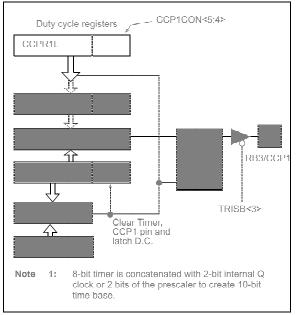
Note: Removing the match condition by changing the contents of the CCPR1H, CCPR1L register pair between the clock edge that generates the special event trigger and the clock edge that generates the TMR1 Reset will preclude the Reset from occuring.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR		all of	
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000	-000	0000	-000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000	-000	0000	-000
86h, 186h	TRISB	PORTI	B Data	Direction R	egister					1111	1111	1111	1111
0Eh	TMR1L	Holding	g Regis	ster for the l	_east Signif	icant Byte o	f the 16-bit	TMR1 Re	gister	xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding	g Regis	ster for the I	Most Signifi	cant Byte of	the 16-bit	TMR1 Reg	lister	xxxx	xxxx	uuuu	uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T10SCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu
15h	CCPR1L	Captur	re/Com	pare/PWM	Register1 (I	_SB)				xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Captur	e/Com	pare/PWM	Register1 (I	MSB)				xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	-	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000

TABLE 9-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.

9.3 PWM Mode


In Pulse Width Modulation (PWM) mode, the CCP1 pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTB data latch, the TRISB<3> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the CCP1 PWM output latch to the default
	low level. This is not the PORTB I/O data latch.

Figure 9-3 shows a simplified block diagram of the CCP module in PWM mode.

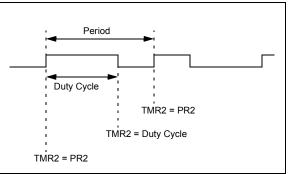
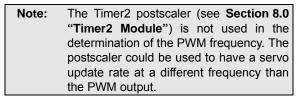

For a step by step procedure on how to set up the CCP module for PWM operation, see **Section 9.3.3** "**Set-Up for PWM Operation**".

FIGURE 9-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 9-4) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (frequency = 1/period).

FIGURE 9-4: PWM OUTPUT

9.3.1 PWM PERIOD


The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

$$PWM \ period = [(PR2) + 1] \cdot 4 \cdot Tosc \cdot TMR2 \ prescale \\ value$$

PWM frequency is defined as 1/[PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

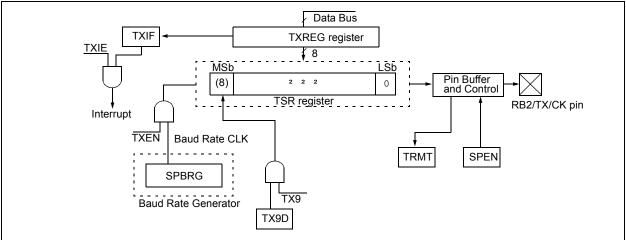

BAUD	Fosc = 20 N	lHz	SPBRG	16 MHz		SPBRG	10 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9.615	+0.16%	129	9.615	+0.16%	103	9.615	+0.16%	64
19200	19.230	+0.16%	64	19.230	+0.16%	51	18.939	-1.36%	32
38400	37.878	-1.36%	32	38.461	+0.16%	25	39.062	+1.7%	15
57600	56.818	-1.36%	21	58.823	+2.12%	16	56.818	-1.36%	10
115200	113.636	-1.36%	10	111.111	-3.55%	8	125	+8.51%	4
250000	250	0	4	250	0	3	NA		
625000	625	0	1	NA	_	_	625	0	0
1250000	1250	0	0	NA	_	_	NA	_	

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD	Fosc = 7.16	MHz	SPBRG	5.068 MHz		SPBRG	4 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9.520	-0.83%	46	9598.485	0.016%	32	9615.385	0.160%	25
19200	19.454	+1.32%	22	18632.35	-2.956%	16	19230.77	0.160%	12
38400	37.286	-2.90%	11	39593.75	3.109%	7	35714.29	-6.994%	6
57600	55.930	-2.90%	7	52791.67	-8.348%	5	62500	8.507%	3
115200	111.860	-2.90%	3	105583.3	-8.348%	2	125000	8.507%	1
250000	NA			316750	26.700%	0	250000	0.000%	0
625000	NA	_		NA	_	_	NA	_	_
1250000	NA	_		NA	_	_	NA	_	_

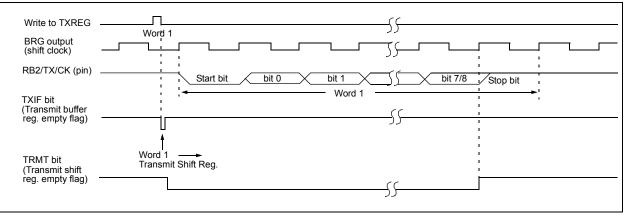
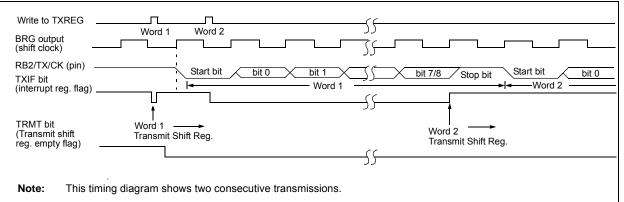

BAUD	Fosc = 3.57	9 MHz	SPBRG	1 MHz		SPBRG	32.768 kHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9725.543	1.308%	22	8.928	-6.994%	6	NA	NA	NA
19200	18640.63	-2.913%	11	20833.3	8.507%	2	NA	NA	NA
38400	37281.25	-2.913%	5	31250	-18.620%	1	NA	NA	NA
57600	55921.88	-2.913%	3	62500	+8.507	0	NA	NA	NA
115200	111243.8	-2.913%	1	NA	_	_	NA	NA	NA
250000	223687.5	-10.525%	0	NA	_	_	NA	NA	NA
625000	NA	_	_	NA	_	_	NA	NA	NA
1250000	NA	_	_	NA	_	_	NA	NA	NA

FIGURE 12-1: USART TRANSMIT BLOCK DIAGRAM


Follow these steps when setting up an Asynchronous Transmission:

- TRISB<1> and TRISB<2> should both be set to '1' to configure the RB1/RX/DT and RB2/TX/CK pins as inputs. Output drive, when required, is controlled by the peripheral circuitry.
- Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH. (Section 12.1 "USART Baud Rate Generator (BRG)").
- 3. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 4. If interrupts are desired, then set enable bit TXIE.
- 5. If 9-bit transmission is desired, then set transmit bit TX9.
- 6. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 8. Load data to the TXREG register (starts transmission).

FIGURE 12-2: ASYNCHRONOUS TRANSMISSION

FIGURE 12-3: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)

TABLE 12-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	x000 0000	0000 000x
19h	TXREG	REG USART Transmit Data Register								0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generato	r Register	r					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'.

Shaded cells are not used for Asynchronous Transmission.

12.4.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>) or enable bit CREN (RCSTA<4>). Data is sampled on the RB1/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read-only bit which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a twodeep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The 9th receive bit is buffered the same way as the receive data. Reading the RCREG register, will load bit RX9D with a new value, therefore it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old RX9D information.

Follow these steps when setting up a Synchronous Master Reception:

- 1. TRISB<1> and TRISB<2> should both be set to '1' to configure the RB1/RX/DT and RB2/TX/CK pins as inputs. Output drive, when required, is controlled by the peripheral circuitry.
- Initialize the SPBRG register for the appropriate baud rate. (Section 12.1 "USART Baud Rate Generator (BRG)").
- 3. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 4. Ensure bits CREN and SREN are clear.
- 5. If interrupts are desired, then set enable bit RCIE.
- 6. If 9-bit reception is desired, then set bit RX9.
- 7. If a single reception is required, set bit SREN. For continuous reception, set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCREG register.
- 11. If an OERR error occurred, clear the error by clearing bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR	Value on all other Resets
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART F	USART Receive Data Register							0000 0000	0000 0000
8Ch	PIE1	EPIE	CMIE	RCIE	TXIE	-	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Ra	Baud Rate Generator Register						0000 0000	0000 0000	

TABLE 12-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for synchronous master reception.

13.8 Data EEPROM Operation During Code-Protect

When the device is code-protected, the CPU is able to read and write data to the data EEPROM.

TABLE 13-1: REGISTERS/BITS ASSOCIATED WITH DATA EEPROM

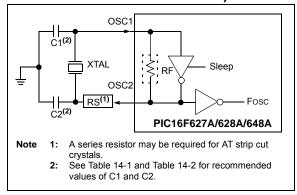
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other Resets
9Ah	EEDATA	EEPRO	EPROM Data Register							xxxx xxxx	uuuu uuuu
9Bh	EEADR	EEPRO	EEPROM Address Register							xxxx xxxx	uuuu uuuu
9Ch	EECON1	_	_	—	—	WRERR	WREN	WR	RD	x000	q000
9Dh	EECON2 ⁽¹⁾	EEPRO	EPROM Control Register 2								

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. Shaded cells are not used by data EEPROM.

Note 1: EECON2 is not a physical register.

14.2 Oscillator Configurations

14.2.1 OSCILLATOR TYPES


The PIC16F627A/628A/648A can be operated in eight different oscillator options. The user can program three configuration bits (FOSC2 through FOSC0) to select one of these eight modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC External Resistor/Capacitor (2 modes)
- INTOSC Internal Precision Oscillator (2 modes)
- EC External Clock In

14.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT, LP or HS modes a crystal or ceramic resonator is connected to the OSC1 and OSC2 pins to establish oscillation (Figure 14-1). The PIC16F627A/628A/648A oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source to drive the OSC1 pin (Figure 14-4).

FIGURE 14-1: CRYSTAL OPERATION (OR CERAMIC RESONATOR) (HS, XT OR LP OSC CONFIGURATION)

TABLE 14-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

Mode	Freq	OSC1(C1)	OSC2(C2)
XT	455 kHz	22-100 pF	22-100 pF
	2.0 MHz	15-68 pF	15-68 pF
	4.0 MHz	15-68 pF	15-68 pF
HS	8.0 MHz	10-68 pF	10-68 pF
	16.0 MHz	10-22 pF	10-22 pF

Note: Higher capacitance increases the stability of the oscillator, but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

TABLE 14-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Mode	Freq	OSC1(C1)	OSC2(C2)
LP	32 kHz	15-30 pF	15-30 pF
	200 kHz	0-15 pF	0-15 pF
XT	100 kHz	68-150 pF	150-200 pF
	2 MHz	15-30 pF	15-30 pF
	4 MHz	15-30 pF	15-30 pF
HS	8 MHz	15-30 pF	15-30 pF
	10 MHz	15-30 pF	15-30 pF
	20 MHz	15-30 pF	15-30 pF

Note: Higher capacitance increases the stability of the oscillator, but also increases the start-up time. These values are for design guidance only. A series resistor (RS) may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

14.4.5 TIME OUT SEQUENCE

On power-up, the time out sequence is as follows: First PWRT time-out is invoked after POR has expired. Then OST is activated. The total time out will vary based on oscillator configuration and <u>PWRTE</u> bit Status. For example, in RC mode with <u>PWRTE</u> bit set (PWRT disabled), there will be no time out at all. Figure 14-8, Figure 14-11 and Figure 14-12 depict time out sequences.

Since the time outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 14-11). This is useful for testing purposes or to synchronize more than one PIC16F627A/628A/ 648A device operating in parallel.

Table 14-6 shows the Reset conditions for some special registers, while Table 14-7 shows the Reset conditions for all the registers.

14.4.6 POWER CONTROL (PCON) STATUS REGISTER

The PCON/Status register, PCON (address 8Eh), has two bits.

Bit 0 is $\overline{\text{BOR}}$ (Brown-out Reset). $\overline{\text{BOR}}$ is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if $\overline{\text{BOR}} = 0$ indicating that a brown-out has occurred. The $\overline{\text{BOR}}$ Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (by setting BOREN bit = 0 in the Configuration Word).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset if POR is '0', it will indicate that a Power-on Reset must have occurred (VDD may have gone too low).

Oscillator Configuration	Power-u	ıp Timer	Brown-o	Wake-up from	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	Sleep
XT, HS, LP	72 ms + 1024•Tosc	1024•Tosc	72 ms + 1024•Tosc	1024•Tosc	1024•Tosc
RC, EC	72 ms	—	72 ms	_	—
INTOSC	72 ms	—	72 ms	—	6 μs

TABLE 14-3. THE OUT IN VARIOUS SITUATIONS	TABLE 14-3:	TIME OUT IN VARIOUS SITUATIONS
---	-------------	--------------------------------

TABLE 14-4: STATUS/PCON BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Condition
0	Х	1	1	Power-on Reset
0	Х	0	Х	Illegal, TO is set on POR
0	Х	Х	0	Illegal, PD is set on POR
1	0	Х	Х	Brown-out Reset
1	1	0	u	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during Sleep

Legend: u = unchanged, x = unknown

INCF	Increme	nt f				INCFSZ	Increm	ent f, Sk	tip if 0	
Syntax:	[<i>label</i>] INCF f,d			I	Syntax:	[label] INCFSZ f,d				
Operands:	$0 \le f \le 127$ d $\in [0,1]$				Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(f) + 1 →	(dest)				Operation:	(f) + 1 \rightarrow (dest), skip if result = 0			
Status Affected:	Z					Status Affected:	None			
Encoding:	00	1010	dfff	ffff		Encoding:	00	1111	dfff	ffff
Description: Words: Cycles:	The cont incremer result is p If 'd' is '1 back in r 1	nted. If ' placed in .', the re	d' is 'o', t n the W re sult is pla	he egister.		Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '0', the next instruction, which is already fetched, is discarded. A NOP is executed instead making it a two-cycle instruction.			
Example	INCF Before Ir	REG1,								
		EG1 =				Words:	1			
	Z		0			Cycles:	1(2)			
	After Insi RE Z	EG1 =	0x00 1			Example	HERE	INCF GOTO UE • •		EG1, 1 DOP
							Before	Instructio	on	

PC = address HERE After Instruction REG1 = REG1 + 1 if CNT = 0, PC = address CONTINUE if REG1≠ 0, PC = address HERE +1

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
From	n: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appli	ication (optional):	
Wou	ld you like a reply?YN	
Devi	ce: PIC16F627A/628A/648A	Literature Number: DS40044G
Ques	stions:	
1. V	What are the best features of this do	cument?
2. H	How does this document meet your l	hardware and software development needs?
_		
_		
3. E	Do you find the organization of this d	locument easy to follow? If not, why?
_		
_		
4. V	What additions to the document do y	you think would enhance the structure and subject?
_		
-		
5. V	What deletions from the document c	ould be made without affecting the overall usefulness?
-		· · · · · · · · · · · · · · · · · · ·
6. I	s there any incorrect or misleading i	nformation (what and where)?
_		
- 7 '	low would you improve this desures	ant?
7. F	low would you improve this docume	
_		
-		

INDEX

1	
^	۰.

A/D	
Special Event Trigger (CCP)	59
Absolute Maximum Ratings	135
ADDLW Instruction	119
ADDWF Instruction	
ANDLW Instruction	
ANDWF Instruction	
Architectural Overview	11
Assembler	
MPASM Assembler	132
В	
Baud Rate Error	75
Baud Rate Formula	75
BCF Instruction	120
Block Diagrams	
Comparator	
I/O Operating Modes	
Modified Comparator Output	66
I/O Ports	
RB0/INT Pin	
RB1/RX/DT Pin	
RB2/TX/CK Pin	
RB3/CCP1 Pin	
RB4/PGM Pin	
RB5 Pin	
RB6/T1OSO/T1CKI Pin	
RB7/T10SI Pin	
RC Oscillator Mode	
USART Receive	
USART Transmit	
BRGH bit	
Brown-Out Reset (BOR)	
BSF Instruction	
BTFSC Instruction	
BTFSS Instruction	121

С

C Compilers	
MPLAB C18	132
CALL Instruction	121
Capture (CCP Module)	58
Block Diagram	58
CCP Pin Configuration	58
CCPR1H:CCPR1L Registers	58
Changing Between Capture Prescalers	58
Prescaler	58
Software Interrupt	58
Timer1 Mode Selection	58
Capture/Compare/PWM (CCP)	57
Capture Mode. See Capture	
CCP1	57
CCPR1H Register	57
CCPR1L Register	57
CCP2	57
Compare Mode. See Compare	
PWM Mode. See PWM	
Timer Resources	57
CCP1CON Register	57
CCP1M Bits	57
CCP1X:CCP1Y Bits	57
CCP2CON Register	
CCP2M<3:2> Bits	57

CCP2X:CCP2Y Bits	57
Clocking Scheme/Instruction Cycle	
CLRF Instruction	
CLRW Instruction	
CLRWDT Instruction	122
CMCON Register	
Code Examples	
Data EEPROM Refresh Routine	94
Code Protection	113
COMF Instruction	122
Comparator	
Block Diagrams	
I/O Operating Modes	64
Modified Comparator Output	66
Comparator Module	63
Configuration	64
Interrupts	67
Operation	65
Reference	65
Compare (CCP Module)	58
Block Diagram	
CCP Pin Configuration	59
CCPR1H:CCPR1L Registers	58
Software Interrupt	59
Special Event Trigger	59
Timer1 Mode Selection	59
CONFIG Register	98
Configuration Bits	97
Crystal Operation	99
Customer Change Notification Service	173
Customer Notification Service	
Customer Support	173

D

Data EEPROM Memory	
EECON1 Register	
EECON2 Register	
Operation During Code Protection	95
Reading	93
Spurious Write Protection	93
Using	
Write Verify	93
Writing to	93
Data Memory Organization	17
DECF Instruction	122
DECFSZ Instruction	123
Development Support	131
Device Differences	171
Device Migrations	172
Dual-speed Oscillator Modes	101

Ε

EECON1 Register	
EECON1 register	
EECON2 register	
Errata	
External Crystal Oscillator Circuit	

F

Fuses. See Configuration Bits

G

General-Purpose Register File 17	,
GOTO Instruction	3

Q

Q-Clock Quick-Turnaround-Production (QTP) Devices	
R	
RC Oscillator	101
RC Oscillator Mode	
Block Diagram	101
Reader Response	174
Registers	
CCP1CON (CCP Operation)	57
CMCON (Comparator Configuration)	63
CONFIG (Configuration Word)	
EECON1 (EEPROM Control Register 1)	
INTCON (Interrupt Control)	
Maps	
PIC16F627A	18, 19
PIC16F628A	18, 19
OPTION REG (Option)	25
PCON (Power Control)	29
PIE1 (Peripheral Interrupt Enable 1)	
PIR1 (Peripheral Interrupt Register 1)	28
Status	
T1CON Timer1 Control)	50
T2CON Timer2 Control)	55
Reset	
RETFIE Instruction	126
RETLW Instruction	127
RETURN Instruction	127
Revision History	171
RLF Instruction	
RRF Instruction	128

S

Serial Communication Interface (SCI) Module, See USART	
Serialized Quick-Turnaround-Production (SQTP) Devices 9	9
SLEEP Instruction 122	8
Software Simulator (MPLAB SIM) 133	3
Special Event Trigger. See Compare	
Special Features of the CPU9	7
Special Function Registers20	0
Status Register	4
SUBLW Instruction	8
SUBWF Instruction 129	9
SWAPF Instruction	9

Т

T1CKPS0 bit	50
T1CKPS1 bit	50
T1CON Register	50
T1OSCEN bit	50
T2CKPS0 bit	55
T2CKPS1 bit	55
T2CON Register	55
Timer0	
Block Diagrams	
Timer0/WDT	48
External Clock Input	47
Interrupt	
Prescaler	
Switching Prescaler Assignment	
Timer0 Module	
Timer1	
Asynchronous Counter Mode	52
Capacitor Selection	53

51
52
53
51, 53
53
53
59
51
51
52
52
54
54
54
54, 61
54
54
60
147
147
83
80
83
89
87
144
110
50
50
55
55
55
55
55
129
33

U

Universal Synchronous Asynchronous Receiver Transmitter (USART)
Setting Up Reception
Address Detect
Block Diagram
USART
Asynchronous Mode79
Asynchronous Receiver
Asynchronous Reception
Asynchronous Transmission 80
Asynchronous Transmitter 79
Baud Rate Generator (BRG) 75
Block Diagrams
Transmit 80
USART Receive 82
BRGH bit 75
Sampling
Synchronous Master Mode 86
Synchronous Master Reception 88
Synchronous Master Transmission
Synchronous Slave Mode 89
Synchronous Slave Reception