

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	4MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f628t-04i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 PIC16F627A/628A/648A DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16F627A/628A/648A Product Identification System, at the end of this data sheet. When placing orders, please use this page of the data sheet to specify the correct part number.

2.1 Flash Devices

Flash devices can be erased and re-programmed electrically. This allows the same device to be used for prototype development, pilot programs and production.

A further advantage of the electrically erasable Flash is that it can be erased and reprogrammed in-circuit, or by device programmers, such as Microchip's PICSTART[®] Plus or PRO MATE[®] II programmers.

2.2 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who chose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are standard Flash devices, but with all program locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

2.3 Serialized Quick-Turnaround-Production (SQTPSM) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number, which can serve as an entry-code, password or ID number.

FIGURE 3-1: BLOCK DIAGRAM

4.2.2.5 PIR1 Register

bit 7

This register contains interrupt flag bits.

Note:	Interrupt flag bits get set when an interrupt										
	condition occurs regardless of the state of										
	its corresponding enable bit or the global										
	enable bit, GIE (INTCON<7>). User										
	software should ensure the appropriate										
	interrupt flag bits are clear prior to										
	enabling an interrupt.										

REGISTER 4-5: PIR1 – PERIPHERAL INTERRUPT REGISTER 1 (ADDRESS: 0Ch)

R/W-0	R/W-0	R-0	R-0	U-0	R/W-0	R/W-0	R/W-0				
EEIF	CMIF	RCIF	TXIF	—	CCP1IF	TMR2IF	TMR1IF				
bit 7							bit 0				
EEIF: EEPROM Write Operation Interrupt Flag bit											
1 = The write operation completed (must be cleared in software)											

0 = The write operation has not completed or has not been started bit 6 CMIF: Comparator Interrupt Flag bit 1 = Comparator output has changed 0 = Comparator output has not changed RCIF: USART Receive Interrupt Flag bit bit 5 1 = The USART receive buffer is full 0 = The USART receive buffer is empty bit 4 TXIF: USART Transmit Interrupt Flag bit 1 = The USART transmit buffer is empty 0 = The USART transmit buffer is full bit 3 Unimplemented: Read as '0' bit 2 CCP1IF: CCP1 Interrupt Flag bit Capture Mode 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred Compare Mode 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred PWM Mode Unused in this mode bit 1 TMR2IF: TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred bit 0 TMR1IF: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflowed (must be cleared in software) 0 = TMR1 register did not overflow . .

Legena:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.2.2.6 PCON Register

The PCON register contains flag bits to differentiate between a Power-on Reset, an external MCLR Reset, WDT Reset or a Brown-out Reset.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if BOR is cleared, indicating a brown-out has occurred. The BOR Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BOREN bit in the Configuration Word).

REGISTER 4-6:

PCON – POWER CONTROL REGISTER (ADDRESS: 8Eh)

U-0	U-0	U-0	U-0	R/W-1	U-0	R/W-0	R/W-x
_	—	_	_	OSCF		POR	BOR
bit 7							bit 0

- bit 7-4 Unimplemented: Read as '0'
- bit 3 OSCF: INTOSC Oscillator Frequency bit
 - 1 = 4 MHz typical
 - 0 = 48 kHz typical
- bit 2 Unimplemented: Read as '0'
- bit 1 **POR**: Power-on Reset Status bit
 - 1 = No Power-on Reset occurred
 - 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
- bit 0 BOR: Brown-out Reset Status bit
 - 1 = No Brown-out Reset occurred
 - 0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 5-5: BLO<u>CK DIA</u>GRAM OF THE RA5/MCLR/VPP PIN

BLOCK DIAGRAM OF RA6/OSC2/CLKOUT PIN

Follow these steps when setting up an Asynchronous Reception:

- 1. TRISB<1> and TRISB<2> should both be set to '1' to configure the RB1/RX/DT and RB2/TX/CK pins as inputs. Output drive, when required, is controlled by the peripheral circuitry.
- Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH. (Section 12.1 "USART Baud Rate Generator (BRG)").
- 3. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. Enable the reception by setting bit CREN.
- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If an OERR error occurred, clear the error by clearing enable bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR		n Value of all othe Resets	
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000	-000	0000	-000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000	000x	0000	000x
1Ah	RCREG	USART R	eceive D	Data Regi	ster					0000	0000	0000	0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000	-000	0000	-000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000	-010	0000	-010
99h	SPBRG	Baud Rate	0000	0000	0000	0000							

TABLE 12-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

14.0 SPECIAL FEATURES OF THE CPU

Special circuits to deal with the needs of real-time applications are what sets a microcontroller apart from other processors. The PIC16F627A/628A/648A family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power-saving operating modes and offer code protection.

These are:

- 1. OSC selection
- 2. Reset
- 3. Power-on Reset (POR)
- 4. Power-up Timer (PWRT)
- 5. Oscillator Start-Up Timer (OST)
- 6. Brown-out Reset (BOR)
- 7. Interrupts
- 8. Watchdog Timer (WDT)
- 9. Sleep
- 10. Code protection
- 11. ID Locations
- 12. In-Circuit Serial Programming[™] (ICSP[™])

The PIC16F627A/628A/648A has a Watchdog Timer which is controlled by configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in Reset while the power supply stabilizes. There is also circuitry to reset the device if a brown-out occurs. With these three functions on-chip, most applications need no external Reset circuitry.

The Sleep mode is designed to offer a very low current Power-down mode. The user can wake-up from Sleep through external Reset, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

14.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special configuration memory space (2000h-3FFFh), which can be accessed only during programming. See *"PIC16F627A/628A/648A EEPROM Memory*"

Programming Specification" (DS41196) for additional information.

REGISTER 14-1: CONFIG – CONFIGURATION WORD REGISTER

CP		_		CPD	LVP	BOREN	MCLRE	FOSC2	PWRTE	WDTE	F0SC1	F0SC0		
bit 13												bit 0		
bit 13:	(PIC16F648A 1 = Coc 0 = 000 (PIC16F628A 1 = Coc 0 = 000 (PIC16F627A 1 = Coc	de protection c 10h to 0FFFh c <u>0</u> de protection c 10h to 07FFh c	ff ode-protec ff ode-protec ff	sted	2)									
bit 12-9:	Unimplemen	ted: Read as	ʻ0'											
bit 8:	1 = Data men	ode Protectior nory code prot nory code-prot	ection off											
bit 7:	1 = RB4/PGM	VP : Low-Voltage Programming Enable bit = RB4/PGM pin has PGM function, low-voltage programming enabled = RB4/PGM is digital I/O, HV on MCLR must be used for programming												
bit 6:	1 = BOR Res	BOREN: Brown-out Reset Enable bit ⁽¹⁾ 1 = BOR Reset enabled 0 = BOR Reset disabled												
bit 5:	1 = RA5/MCL	5/MCLR/VPP P <u>_R/</u> VPP pin fun _R/VPP pin fun	ction is MC	LR	ICLR inter	nally tied to	Vdd							
bit 3:	PWRTE : Pow 1 = PWRT dis 0 = PWRT en		nable bit ⁽¹)										
bit 2:	WDTE: Watch 1 = WDT ena 0 = WDT disa		able bit											
bit 4, 1-0:	111 = RC os 110 = RC os 101 = INTOS 100 = INTOS 011 = EC: I/0 010 = HS os 001 = XT os	FOSC<2:0>: Oscillator Selection bits ⁽⁴⁾ 111 = RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN 100 = RC oscillator: I/O function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN 101 = INTOSC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 100 = INTOSC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 101 = EC: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 102 = HS oscillator: High-speed crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 103 = XT oscillator: Crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 104 = LP oscillator: Low-power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN												
	Note 1: 2: 3: 4:	 PIC16F627/628 devices. 2: The code protection scheme has changed from the code protection scheme used on the PIC16F627/628 devices. The entire Flash program memory needs to be bulk erased to set the CP bit, turning the code protection off. See <i>"PIC16F627A/628A/648A EEPROM Memory Programming Specification"</i> (DS41196) for details. 3: The entire data EEPROM needs to be bulk erased to set the CPD bit, turning the code protection off. See <i>"PIC16F627A/628A/648A EEPROM Nemory Programming Specification"</i> (DS41196) for details. 												
	Legend:													
	R = Readable	e bit	W = Wri	table bit		U = Ur	nimplement	ted bit, read	d as '0'					
	-n = Value at	POR	'1' = bit	is set		'0' = bi	it is cleared	l	x =	bit is unkn	own			

14.4.5 TIME OUT SEQUENCE

On power-up, the time out sequence is as follows: First PWRT time-out is invoked after POR has expired. Then OST is activated. The total time out will vary based on oscillator configuration and <u>PWRTE</u> bit Status. For example, in RC mode with <u>PWRTE</u> bit set (PWRT disabled), there will be no time out at all. Figure 14-8, Figure 14-11 and Figure 14-12 depict time out sequences.

Since the time outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 14-11). This is useful for testing purposes or to synchronize more than one PIC16F627A/628A/ 648A device operating in parallel.

Table 14-6 shows the Reset conditions for some special registers, while Table 14-7 shows the Reset conditions for all the registers.

14.4.6 POWER CONTROL (PCON) STATUS REGISTER

The PCON/Status register, PCON (address 8Eh), has two bits.

Bit 0 is $\overline{\text{BOR}}$ (Brown-out Reset). $\overline{\text{BOR}}$ is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if $\overline{\text{BOR}} = 0$ indicating that a brown-out has occurred. The $\overline{\text{BOR}}$ Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (by setting BOREN bit = 0 in the Configuration Word).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset if POR is '0', it will indicate that a Power-on Reset must have occurred (VDD may have gone too low).

Ossillator Configuration	Power-u	ıp Timer	Brown-o	Wake-up from	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	Sleep
XT, HS, LP	72 ms + 1024•Tosc	1024•Tosc	72 ms + 1024•Tosc	1024•Tosc	1024•Tosc
RC, EC	72 ms	—	72 ms	_	—
INTOSC	72 ms	—	72 ms	—	6 μs

TABLE 14-3: TIME OUT IN VARIOUS SITUATIONS

TABLE 14-4: STATUS/PCON BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Condition
0	Х	1	1	Power-on Reset
0	Х	0	Х	Illegal, TO is set on POR
0	Х	Х	0	Illegal, PD is set on POR
1	0	Х	Х	Brown-out Reset
1	1	0	u	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during Sleep

Legend: u = unchanged, x = unknown

NOTES:

REG1, 7

REG1 = 0x0A

REG1 = 0x8A

Before Instruction

After Instruction

BSF

BCF	Bit Cle	ar f			BTFSC	Bit Tes	st f, Skip i	f Clear				
Syntax:	[label]	BCF 1	f,b		Syntax:	[label]	BTFSC	f,b				
Operands:	$0 \le f \le f$ $0 \le b \le f$				Operands:		$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$					
Operation:	$0 \rightarrow (f \leq$	b>)			Operation:	skip if ((f) = 0					
Status Affected:	None				Status Affected	I: None						
Encoding:	01	00bb	bfff	ffff	Encoding:	01	10bb	bfff	ffff			
Description:	Bit 'b' ir	n register	f' is clea	ared.	Description:		in register					
Words:	1						struction is					
Cycles:	1						If bit 'b' is '0', then the next instruction fetched during the					
Example	BCF	REG1,	7				instructio					
		Instructio					led, and a L making t					
	-	REG1 : struction	= 0xC7				instead, making this a two-cycle instruction.					
			= 0x47		Words:	1	1					
					Cycles:	1(2)						
BSF	Bit Set	f			Example	HERE FALSE	BTFSC GOTO	REG1 PROCES	S_CODE			
Syntax:	[label]	BSF f,	b			TRUE	•					
Operands:	$0 \le f \le f$						•					
	0 ≤ b ≤						Instruction	-				
Operation:	$1 \rightarrow (f <$	b>)					PC = add	dress HE	RE			
Status Affected:	None						After Instruction if REG<1> = 0.					
Encoding:	01	01bb	bfff	ffff			PC = address TR					
Description:	Bit 'b' ir	n register	ʻʻf' is set.				f REG<1>					
Words:	1					ł	PC = ade	uress FA	LSE			
Cycles:	1											

Example

INCF	Increme	nt f				INCFSZ	Increm	ent f, Sk	tip if 0			
Syntax:	[label]	INCF	f,d		I	Syntax:	[label]	INCFS	SZ f,d			
Operands:	$0 \le f \le 12$ $d \in [0,1]$					Operands:	$0 \le f \le 127$ d $\in [0,1]$					
Operation:	(f) + 1 →	(dest)				Operation:	(f) + 1 –	→ (dest),	skip if re	sult = 0		
Status Affected:	Z					Status Affected:	None					
Encoding:	00	1010	dfff	ffff		Encoding:	00	1111	dfff	ffff		
Description: Words: Cycles:	The cont incremer result is p If 'd' is '1 back in r 1	nted. If ' placed in .', the re	d' is 'o', t n the W re sult is pla	he egister.		Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '0', the next instruction, which is already					
Example	INCF Before Ir	REG1,					execute	,	rded. A d making ction.			
		EG1 =				Words:	1					
	Z		0			Cycles:	1(2)					
	After Instruction REG1 = 0x00 Z = 1					Example	HERE	INCF GOTO UE • •		EG1, 1 DOP		
							Before	Instructio	on			

PC = address HERE After Instruction REG1 = REG1 + 1 if CNT = 0, PC = address CONTINUE if REG1≠ 0, PC = address HERE +1

RETLW	Return with Literal in W	RLF	Rotate Left f through Carry			
Syntax:	[<i>label</i>] RETLW k	Syntax:	[<i>label</i>] RLF f,d			
Operands:	$0 \le k \le 255$	Operands:	$0 \leq f \leq 127$			
Operation:	$k \rightarrow (W);$		d ∈ [0,1]			
	$TOS \rightarrow PC$	Operation:	See description below			
Status Affected:	None	Status Affected:	С			
Encoding:	11 01xx kkkk kkkk	Encoding:	00 1101 dfff ffff			
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.			
Words:	1					
Cycles:	2	\\/ordo:	1			
Example	CALL TABLE;W contains table	Words: Cycles:	1			
	;offset value • ;W now has table value	Example	RLF REG1, 0			
TABLE	<pre>ADDWF PC;W = offset RETLW k1;Begin table RETLW k2; RETLW kn; End of table Before Instruction W = 0x07 After Instruction W = value of k8</pre>	<u></u>	Before Instruction REG1=1110 $C = 0$ After Instruction REG1=1110 $W = 1100$ $C = 1$			
RETURN Syntax:	Return from Subroutine [label] RETURN					

Syntax:	[label]	RETU	RN		
Operands:	None	11210			
Operation:	$TOS\toPC$				
Status Affected:	None				
Encoding:	00	0000	0000	1000	
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.				
Words:	1				
Cycles:	2				
Example	RETURN				
	After Interrupt PC = TOS				

16.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

16.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

17.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings(†)

5.(1)	
Ambient temperature under bias	40 to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3 to +6.5V
Voltage on MCLR and RA4 with respect to Vss	0.3 to +14V
Voltage on all other pins with respect to Vss	0.3V to VDD + 0.3V
Total power dissipation ⁽¹⁾	800 mW
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, liк (Vi < 0 or Vi > VDD)	± 20 mA
Output clamp current, loк (Vo < 0 or Vo >VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA and PORTB (Combined)	200 mA
Maximum current sourced by PORTA and PORTB (Combined)	200 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\Sigma$ IOH} + Σ {(VDD $-V$	он) x Iон} + ∑(Vol x Io∟)

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}}$ pin rather than pulling this pin directly to Vss.

17.2 DC Characteristics: PIC16F627A/628A/648A (Industrial) PIC16LF627A/628A/648A (Industrial)

DC CHARACTERISTICSStandard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le Ta \le +85^{\circ}C$ for industrial								
Param LF and F Device No. Characteristics		Min†	Тур	Max	Units	Conditions		
						Vdd	Note	
Supply Vo	Itage (VDD)						-	
D001	LF	2.0	—	5.5	V			
LF/F		3.0	—	5.5	V	—		
Power-dov	wn Base Current (IPD)							
	LF		0.01	0.80	μA	2.0	WDT, BOR, Comparators, VREF and	
D020	LF/F		0.01	0.85	μA	3.0	T1OSC: disabled	
		—	0.02	2.7	μA	5.0		
Peripheral	Module Current (AIMOD) ⁽¹⁾						
	LF		1	2.0	μA	2.0	WDT Current	
D021	LF/F		2	3.4	μA	3.0		
		_	9	17.0	μA	5.0		
D022	LF/F		29	52	μA	4.5	BOR Current	
			30	55	μA	5.0		
	LF	_	15	22	μA	2.0	Comparator Current	
D023 LF/F	LF/F	_	22	37	μA	3.0	(Both comparators enabled)	
		_	44	68	μA	5.0		
	LF	- I	34	55	μA	2.0	VREF Current	
D024	LF/F	_	50	75	μA	3.0	1	
		_	80	110	μA	5.0	1	
	LF	_	1.2	2.0	μA	2.0	T1Osc Current	
D025	LF/F	_	1.3	2.2	μA	3.0		
			1.8	2.9	μA	5.0		
Supply Cu	Irrent (IDD)						•	
	LF		10	15	μA	2.0	Fosc = 32 kHz	
D010	LF/F		15	25	μA	3.0	LP Oscillator Mode	
			28	48	μΑ	5.0	1	
	LF		125	190	μΑ	2.0	Fosc = 1 MHz	
D011	LF/F		175	340	μA	3.0	XT Oscillator Mode	
-			320	520	μΑ	5.0	1	
	LF	<u> </u>	250	350	μΑ	2.0	Fosc = 4 MHz	
D012	LF/F		450	600	μΑ	3.0	XT Oscillator Mode	
		_	710	995	μA	5.0	1	
	LF	—	395	465	μΑ	2.0	Fosc = 4 MHz	
D012A	LF/F	<u> </u>	565	785	μA	3.0	INTOSC	
		_	0.895	1.3	mA	5.0	1	
	LF/F		2.5	2.9	mA	4.5	Fosc = 20 MHz	
D013		<u> </u>	2.75	3.3	mA	5.0	HS Oscillator Mode	

Note 1: The "∆" current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement. Max values should be used when calculating total current consumption.

FIGURE 18-7: TYPICAL WDT IPD vs. VDD

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A

This is a new data sheet.

Revision B

Revised 28-Pin QFN Pin Diagram Revised Figure 5-4 Block Diagram Revised Register 7-1 TMR1ON Revised Example 13-4 Data EEPROM Refresh Routine Revised Instruction Set SUBWF, Example 1 Revised DC Characteristics 17-2 and 17-3 Revised Tables 17-4 and 17-6 Corrected Table and Figure numbering in Section 17.0

Revision C

General revisions throughout. Revisions to Section 14.0 – Special Features of the CPU. Section 18, modified graphs.

Revision D

Revise Example 13-2, Data EEPROM Write Revise Sections 17.2, Param No. D020 and 17.3, Param No. D020E Revise Section 18.0 graphs

Revision E

Section 19.0 Packaging Information: Replaced package drawings and added note.

Revision F (03/2007)

Replaced Package Drawings (Rev. AM); Replaced Development Support Section; Revised Product ID System.

Revision G (10/2009)

Corrected 28-lead QFN Package in Section 19.1.

APPENDIX B: DEVICE DIFFERENCES

The differences between the PIC16F627A/628A/648A devices listed in this data sheet are shown in Table B-1.

TABLE B-1: DEVICE DIFFERENCES

	Memory					
Device	Flash Program	RAM Data	EEPROM Data			
PIC16F627A	1024 x 14	224 x 8	128 x 8			
PIC16F628A	2048 x 14	224 x 8	128 x 8			
PIC16F648A	4096 x 14	256 x 8	256 x 8			