

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E-XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f628t-20i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

PIC16F627A/628A/648A

NOTES:

2.0 PIC16F627A/628A/648A DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC16F627A/628A/648A Product Identification System, at the end of this data sheet. When placing orders, please use this page of the data sheet to specify the correct part number.

2.1 Flash Devices

Flash devices can be erased and re-programmed electrically. This allows the same device to be used for prototype development, pilot programs and production.

A further advantage of the electrically erasable Flash is that it can be erased and reprogrammed in-circuit, or by device programmers, such as Microchip's PICSTART[®] Plus or PRO MATE[®] II programmers.

2.2 Quick-Turnaround-Production (QTP) Devices

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who chose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are standard Flash devices, but with all program locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your Microchip Technology sales office for more details.

2.3 Serialized Quick-Turnaround-Production (SQTPSM) Devices

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number, which can serve as an entry-code, password or ID number.

FIGURE 5-5: BLO<u>CK DIA</u>GRAM OF THE RA5/MCLR/VPP PIN

BLOCK DIAGRAM OF RA6/OSC2/CLKOUT PIN

12.0 UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART) MODULE

The Universal Synchronous Asynchronous Receiver Transmitter (USART) is also known as a Serial Communications Interface (SCI). The USART can be configured as a full-duplex asynchronous system that can communicate with peripheral devices such as CRT terminals and personal computers, or it can be configured as a half-duplex synchronous system that can communicate with peripheral devices such as A/D or D/A integrated circuits, Serial EEPROMs, etc. The USART can be configured in the following modes:

- Asynchronous (full-duplex)
- Synchronous Master (half-duplex)
- Synchronous Slave (half-duplex)

Bit SPEN (RCSTA<7>) and bits TRISB<2:1> have to be set in order to configure pins RB2/TX/CK and RB1/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

Register 12-1 shows the Transmit Status and Control Register (TXSTA) and Register 12-2 shows the Receive Status and Control Register (RCSTA).

REGISTER 12-1: TXSTA – TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS: 98h)

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0				
	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D				
	bit 7							bit 0				
bit 7	CSRC: Clo	ock Source S	elect bit									
	Asynchron	ous mode										
	<u>Synchrono</u> 1 = Mas 0 = Slav	u <u>s mode</u> ter mode (C ve mode (Clo	lock genera ock from ext	ted internally ernal source	/ from BRG))							
bit 6	TX9 : 9-bit ⁻	Transmit En	able bit									
	1 = Selects 0 = Selects	s 9-bit transr s 8-bit transr	nission nission									
bit 5	TXEN: Tra	nsmit Enable	e bit ⁽¹⁾									
	1 = Transm 0 = Transm	nit enabled nit disabled										
bit 4	SYNC: USART Mode Select bit											
	1 = Synchr 0 = Asynch	ronous mode nronous mod	e le									
bit 3	Unimplem	ented: Read	d as '0'									
bit 2	BRGH: Hig	h Baud Rat	e Select bit									
	Asynchron 1 = High	ous mode speed										
	<u>Synchrono</u> Unused	us mode in this mode										
bit 1	TRMT: Tra	nsmit Shift F	Register Stat	us bit								
	1 = TSR er 0 = TSR fu	mpty III										
bit 0	TX9D : 9th	bit of transm	nit data. Can	be parity bi	t.							
	Note 1:	SREN/CRE	EN overrides	STXEN in S	YNC mode.							
	Logondy											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

12.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 12-1 shows the formula for computation of the baud rate for different USART modes, which only apply in Master mode (internal clock).

Given the desired baud rate and Fosc, the nearest integer value for the SPBRG register can be calculated using the formula in Table 12-1. From this, the error in baud rate can be determined.

Example 12-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz Desired Baud Rate = 9600 BRGH = 0 SYNC = 0

EQUATION 12-1: CALCULATING BAUD RATE ERROR

$$Desired Baud Rate = \frac{Fosc}{64(x+1)}$$

$$9600 = \frac{16000000}{64(x+1)}$$

$$x = 25.042$$

$$Calculated Baud Rate = \frac{16000000}{64(25+1)} = 9615$$

$$Error = \frac{(Calculated Baud Rate - Desired Baud Rate)}{Desired Baud Rate}$$

$$= \frac{9615 - 9600}{9600} = 0.16\%$$

It may be advantageous to use the high baud rate (BRGH = 1) even for slower baud clocks. This is because the FOSC/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared) and ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

The data on the RB1/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

TABLE 12-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = Fosc/(64(X+1))	Baud Rate = Fosc/(16(X+1))
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	NA

Legend: X = value in SPBRG (0 to 255)

TABLE 12-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	SPEN RX9 SREN CREN ADEN FERR OERR RX9D							0000 000x	0000 000x
99h	SPBRG	Baud Ra	Baud Rate Generator Register								0000 0000

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for the BRG.

12.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 12-4. The data is received on the RB1/RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc.

When Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the Receive (serial) Shift Register (RSR). After sampling the Stop bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read-only bit, which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a

FIGURE 12-4:

double buffered register (i.e., it is a two-deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte begin shifting to the RSR register. On the detection of the Stop bit of the third byte, if the RCREG register is still full, then overrun error bit OERR (RCSTA<1>) will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited, so it is essential to clear error bit OERR if it is set. Framing error bit FERR (RCSTA<2>) is set if a Stop bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG, will load bits RX9D and FERR with new values, therefore it is essential for the user to read the RCSTA register before reading RCREG register in order not to lose the old FERR and RX9D information.

USART RECEIVE BLOCK DIAGRAM

12.3 USART Address Detect Function

12.3.1 USART 9-BIT RECEIVER WITH ADDRESS DETECT

When the RX9 bit is set in the RCSTA register, 9 bits are received and the ninth bit is placed in the RX9D bit of the RCSTA register. The USART module has a special provision for multiprocessor communication. Multiprocessor communication is enabled by setting the ADEN bit (RCSTA<3>) along with the RX9 bit. The port is now programmed such that when the last bit is received, the contents of the Receive Shift Register (RSR) are transferred to the receive buffer, the ninth bit of the RSR (RSR<8>) is transferred to RX9D, and the receive interrupt is set if and only if RSR<8> = 1. This feature can be used in a multiprocessor system as follows:

A master processor intends to transmit a block of data to one of many slaves. It must first send out an address byte that identifies the target slave. An address byte is identified by setting the ninth bit (RSR<8>) to a '1' (instead of a '0' for a data byte). If the ADEN and RX9 bits are set in the slave's RCSTA register, enabling multiprocessor communication, all data bytes will be ignored. However, if the ninth received bit is equal to a '1', indicating that the received byte is an address, the slave will be interrupted and the contents of the RSR register will be transferred into the receive buffer. This allows the slave to be interrupted only by addresses, so that the slave can examine the received byte to see if it is being addressed. The addressed slave will then clear its ADEN bit and prepare to receive data bytes from the master.

When ADEN is enabled (= 1), all data bytes are ignored. Following the Stop bit, the data will not be loaded into the receive buffer, and no interrupt will occur. If another byte is shifted into the RSR register, the previous data byte will be lost. The ADEN bit will only take effect when the receiver is configured in 9-bit mode (RX9 = 1). When ADEN is disabled (= 0), all data bytes are received and the 9th bit can be used as the parity bit.

The receive block diagram is shown in Figure 12-4.

Reception is enabled by setting bit CREN (RCSTA<4>).

12.3.1.1 Setting up 9-bit mode with Address Detect

Follow these steps when setting up Asynchronous Reception with Address Detect Enabled:

- 1. TRISB<1> and TRISB<2> should both be set to '1' to configure the RB1/RX/DT and RB2/TX/CK pins as inputs. Output drive, when required, is controlled by the peripheral circuitry.
- 2. Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH.
- 3. Enable asynchronous communication by setting or clearing bit SYNC and setting bit SPEN.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. Set bit RX9 to enable 9-bit reception.
- 6. Set ADEN to enable address detect.
- 7. Enable the reception by setting enable bit CREN or SREN.
- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 9. Read the 8-bit received data by reading the RCREG register to determine if the device is being addressed.
- 10. If an OERR error occurred, clear the error by clearing enable bit CREN if it was already set.
- 11. If the device has been addressed (RSR<8> = 1 with address match enabled), clear the ADEN and RCIF bits to allow data bytes and address bytes to be read into the receive buffer and interrupt the CPU.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART	Receive	Data Reg	gister					0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	BRG Baud Rate Generator Register									0000 0000

TABLE 12-8: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART 1	Fransmit	Data Re	egister					0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	PBRG Baud Rate Generator Register									0000 0000

TABLE 12-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

FIGURE 12-8: SYNCHRONOUS TRANSMISSION

FIGURE 12-9: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

12.5.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical except in the case of the Sleep mode. Also, bit SREN is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during Sleep. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Follow these steps when setting up a Synchronous Slave Reception:

- 1. TRISB<1> and TRISB<2> should both be set to '1' to configure the RB1/RX/DT and RB2/TX/CK pins as inputs. Output drive, when required, is controlled by the peripheral circuitry.
- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. To enable reception, set enable bit CREN.
- Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If an OERR error occurred, clear the error by clearing bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART ⁻	Transmit	Data Re	egister					0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register								0000 0000	0000 0000

TABLE 12-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for synchronous slave transmission.

TABLE 12-12: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART F	Receive	Data Re	gister					0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Ra	Baud Rate Generator Register							0000 0000	0000 0000

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for synchronous slave reception.

13.0 DATA EEPROM MEMORY

The EEPROM data memory is readable and writable during normal operation (full VDD range). This memory is not directly mapped in the register file space. Instead it is indirectly addressed through the Special Function Registers (SFRs). There are four SFRs used to read and write this memory. These registers are:

- EECON1
- EECON2 (Not a physically implemented register)
- EEDATA
- EEADR

EEDATA holds the 8-bit data for read/write and EEADR holds the address of the EEPROM location being accessed. PIC16F627A/628A devices have 128 bytes of data EEPROM with an address range from 0h to 7Fh. The PIC16F648A device has 256 bytes of data EEPROM with an address range from 0h to FFh. The EEPROM data memory allows byte read and write. A byte write automatically erases the location and writes the new data (erase before write). The EEPROM data memory is rated for high erase/write cycles. The write time is controlled by an on-chip timer. The write time will vary with voltage and temperature, as well as from chip-to-chip. Please refer to AC specifications for exact limits.

When the device is code-protected, the CPU can continue to read and write the data EEPROM memory. A device programmer can no longer access this memory.

Additional information on the data EEPROM is available in the *PIC[®] Mid-Range Reference Manual* (DS33023).

REGISTER 13-1: EEDATA – EEPROM DATA REGISTER (ADDRESS: 9Ah)

| R/W-x |
|--------|--------|--------|--------|--------|--------|--------|--------|
| EEDAT7 | EEDAT6 | EEDAT5 | EEDAT4 | EEDAT3 | EEDAT2 | EEDAT1 | EEDAT0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 **EEDATn**: Byte value to Write to or Read from data EEPROM memory location.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 13-2: EEADR – EEPROM ADDRESS REGISTER (ADDRESS: 9Bh)

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EADR7 | EADR6 | EADR5 | EADR4 | EADR3 | EADR2 | EADR1 | EADR0 |
| bit 7 | | | | | | | bit 0 |

bit 7 PIC16F627A/628A

Unimplemented Address: Must be set to '0'

PIC16F648A

EEADR: Set to '1' specifies top 128 locations (128-255) of EEPROM Read/Write Operation **EEADR**: Specifies one of 128 locations of EEPROM Read/Write Operation

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 6-0

REGISTER 14-1: CONFIG – CONFIGURATION WORD REGISTER

CP					CPD	IVP	BOREN	MCLRE	FOSC2	PWRTE	WDTE	F0SC1	F0SC0
bit 13					01.5	201	BOILEI	MOLINE	10002	1 mail	WDIE	10001	bit 0
bit io													bit 0
bit 13:	CP: F (PIC1 (PIC1 (PIC1	CP: Flash Program Memory Code Protection bit ⁽²⁾ (PIC16F648A) 1 = Code protection off 0 = 0000h to 0FFFh code-protected (PIC16F628A) 1 = Code protection off 0 = 0000h to 07FFh code-protected (PIC16F627A) 1 = Code protection off 0 = 0000h to 03FFh code-protected											
bit 12-9:	Unim	plemented	l: Read as	'0'									
bit 8:	CPD : 1 = D 0 = D	CPD: Data Code Protection bit ⁽³⁾ 1 = Data memory code protection off 0 = Data memory code-protected											
bit 7:	LVP: 1 = R 0 = R	LVP : Low-Voltage Programming Enable bit 1 = RB4/PGM pin has PGM function. low-voltage programming enabled 0 = RB4/PGM is digital I/O, HV on MCLR must be used for programming											
bit 6:	BOR 1 = B 0 = B	EN: Brown- OR Reset o OR Reset o	out Reset enabled disabled	Enable bit ⁽	1)								
bit 5:	MCL 1 = R 0 = R	RE: <u>RA5/M</u> RA5/ <u>MCLR/</u> RA5/MCLR/	CLR/VPP F VPP pin fur VPP pin fur	Pin Function action is MC action is dig	n Select bit CLR ital Input, N	ICLR inter	mally tied to	Vdd					
bit 3:	PWR 1 = P 0 = P	TE: Power- WRT disab WRT enab	up Timer E led led	Enable bit ⁽¹)								
bit 2:	WDT 1 = V 0 = V	WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled											
bit 4, 1-0:	FOSC 111 = 110 = 101 = 100 = 011 = 010 = 000 =	FOSC<2:0>: Oscillator Selection bits ⁽⁴⁾ 111 = RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN 110 = RC oscillator: I/O function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN 101 = INTOSC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 100 = INTOSC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 111 = EC: I/O function on RA6/OSC2/CLKOUT pin, CLKIN on RA7/OSC1/CLKIN 112 = HS oscillator: High-speed crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 113 = XT oscillator: Crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 114 = CS oscillator: Crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN											
	Note	 Enabling Brown-out Reset does not automatically enable the Power-up Timer (PWRT) the way it does on the PIC16F627/628 devices. The code protection scheme has changed from the code protection scheme used on the PIC16F627/628 devices. The entire Flash program memory needs to be bulk erased to set the CP bit, turning the code protection off. See "PIC16F627A/628A/648A EEPROM Memory Programming Specification" (DS41196) for details. The entire data EEPROM needs to be bulk erased to set the CPD bit, turning the code protection off. See "PIC16F627A/628A/648A EEPROM Memory Programming Specification" (DS41196) for details. When MCLR is asserted in INTOSC mode, the internal clock oscillator is disabled. 											
	Lege	nd:											
	R = F	Readable bi	t	W = Wri	table bit		U = Ur	nimplement	ed bit, rea	d as '0'			
	-n = \	-n = Value at POR (1' = bit is set (0' = bit is cleared x = bit is unknown											

TABLE 14-5: SI	UMMARY OF REGISTERS ASSOCIATED WITH BROWN-OUT RESET
----------------	---

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other Resets ⁽¹⁾
03h, 83h, 103h, 183h	STATUS	IRP	RP1	RPO	TO	PD	Z	DC	С	0001 1xxx	000q quuu
8Eh	PCON	_	_	-	_	OSCF	-	POR	BOR	1-0x	u-uq

x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. Legend:

Shaded cells are not used by Brown-out Reset.

Note 1: Other (non Power-up) Resets include MCLR Reset, Brown-out Reset and Watchdog Timer Reset during normal operation.

INITIALIZATION CONDITION FOR SPECIAL REGISTERS TABLE 14-6:

Condition	Program Counter	Status Register	PCON Register
Power-on Reset	000h	0001 1xxx	1-0x
MCLR Reset during normal operation	000h	000u uuuu	1-uu
MCLR Reset during Sleep	000h	0001 0uuu	1-uu
WDT Reset	000h	0000 uuuu	1-uu
WDT Wake-up	PC + 1	uuu0 0uuu	u-uu
Brown-out Reset	000h	000x xuuu	1-u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	uuu1 0uuu	u-uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'. **Note 1:** When the wake-up is due to an interrupt and global enable bit, GIE is set, the PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

14.5.1 RB0/INT INTERRUPT

External interrupt on the RB0/INT pin is edge triggered; either rising if INTEDG bit (OPTION<6>) is set, or falling, if INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, the INTF bit (INTCON<1>) is set. This interrupt can be disabled by clearing the INTE control bit (INTCON<4>). The INTF bit must be cleared in software in the interrupt service routine before re-enabling this interrupt. The RB0/INT interrupt can wake-up the processor from Sleep, if the INTE bit was set prior to going into Sleep. The status of the GIE bit decides whether or not the processor branches to the interrupt vector following wake-up. See **Section 14.8 "Power-Down Mode (Sleep)"** for details on Sleep, and Figure 14-17 for timing of wake-up from Sleep through RB0/INT interrupt.

14.5.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set the T0IF (INTCON<2>) bit. The interrupt can be enabled/ disabled by setting/clearing T0IE (INTCON<5>) bit. For operation of the Timer0 module, see **Section 6.0 "Timer0 Module"**.

14.5.3 PORTB INTERRUPT

An input change on PORTB <7:4> sets the RBIF (INTCON<0>) bit. The interrupt can be enabled/disabled by setting/clearing the RBIE (INTCON<3>) bit. For operation of PORTB (Section 5.2 "PORTB and TRISB Registers").

Note:	If a change on the I/O pin should occur
	when the read operation is being executed
	(starts during the Q2 cycle and ends before
	the start of the Q3 cycle), then the RBIF
	interrupt flag may not get set.

14.5.4 COMPARATOR INTERRUPT

See **Section 10.6 "Comparator Interrupts"** for complete description of comparator interrupts.

FIGURE 14-15: INT PIN INTERRUPT TIMING

3: CLKOUT is available in RC and INTOSC oscillator mode.4: For minimum width of INT pulse, refer to AC specs.

5: INTF is enabled to be set anytime during the Q4-Q1 cycles.

PIC16F627A/628A/648A

AND Literal with W

ANDLW

ADDLW	Add Lite	ral and	w				
Syntax:	[label] ADDLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	$(W) + k \rightarrow (W)$						
Status Affected:	C, DC, Z						
Encoding:	11	111x	kkkk	kkkk			
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.						
Words:	1						
Cycles:	1						
Example	ADDLW	0x15					
	Before In: W After Instr W	structio = 0x1 ruction = 0x2	n 10 25				

15.2 Instruction	Descriptions
------------------	--------------

Oymax.	
Operands:	$0 \le k \le 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Encoding:	11 1001 kkkk kkkk
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example	ANDLW 0x5F
	Before Instruction
	W = 0xA3
	W = 0x03
ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f.d
e yman.	[
Operands:	0 ≤ f ≤ 127
Operands:	$0 \le f \le 127$ $d \in [0,1]$ (A) AND (f) (dept)
Operands: Operation:	$0 \le f \le 127$ d \equiv [0,1] (W) .AND. (f) \rightarrow (dest)
Operation: Status Affected:	$0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest) Z
Operands: Operation: Status Affected: Encoding:	$0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest) Z 00 0101 dfff ffff
Operands: Operation: Status Affected: Encoding: Description:	$\begin{array}{c} 0 \leq f \leq 127 \\ d \in [0,1] \\ (W) .AND. (f) \rightarrow (dest) \\ \hline Z \\ \hline 00 \\ Olo1 \\ dfff \\ ffff \\ \hline AND the W register with register \\ f'. If 'd' is '0', the result is stored \\ in the W register. If 'd' is '1', the \\ result is stored back in register \\ f'. \end{array}$
Operands: Operation: Status Affected: Encoding: Description: Words:	$0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest) Z 00 0101 dfff ffff AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'. 1
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles:	$0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest) Z 00 0101 dfff ffff AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'. 1 1 1
Operands: Operation: Status Affected: Encoding: Description: Words: Cycles: Example	$0 \le f \le 127$ $d \in [0,1]$ (W) .AND. (f) \rightarrow (dest) Z 00 0101 dfff ffff AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'. 1 1 ANDWF REG1, 1

ADDWF	Add W and f						
Syntax:	[<i>label</i>] ADDWF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	$(W) + (f) \rightarrow (dest)$						
Status Affected:	C, DC, Z						
Encoding:	00 0111 dfff ffff						
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.						
Words:	1						
Cycles:	1						
Example	ADDWF REG1, 0						
	Before Instruction W = 0x17 REG1 = 0xC2 After Instruction W = 0xD9 REG1 = 0xC2 Z = 0 C = 0 DC = 0						

17.3 DC Characteristics: PIC16F627A/628A/648A (Extended)

DC CHAR	ACTERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le Ta \le +125^{\circ}C$ for extended								
Param	Doving Characteristics	Mint	Turn	Max	Units	Conditions				
No.	Device Characteristics		тур			Vdd	Note			
Supply V	oltage (VDD)									
D001	—	3.0	_	5.5	V	—				
Power-down Base Current (IPD)										
	—		0.01	4	μA	3.0	WDT, BOR, Comparators, VREF and			
DUZUE		—	0.02	8	μA	5.0	T1OSC: disabled			
Peripher	al Module Current (∆Iмод) ⁽	1)								
D021E	—		2	9	μA	3.0	WDT Current			
DUZIL		—	9	20	μA	5.0				
	—	_	29	52	μA	4.5	BOR Current			
DUZZE		—	30	55	μA	5.0				
	—	_	22	37	μA	3.0	Comparator Current			
DUZJE		—	44	68	μA	5.0	(Both comparators enabled)			
	—		50	75	μA	3.0	VREF Current			
D024L		—	83	110	μA	5.0				
	—	_	1.3	4	μA	3.0	T1OSC Current			
DUZJE		—	1.8	6	μA	5.0				
Supply C	Current (IDD)									
	—	_	15	28	μA	3.0	Fosc = 32 kHz			
DOTOL		—	28	54	μA	5.0	LP Oscillator Mode			
	—	_	175	340	μA	3.0	Fosc = 1 MHz			
DONE		—	320	520	μA	5.0	XT Oscillator Mode			
D012E	_	_	450	650	μA	3.0	Fosc = 4 MHz			
DUIZE		—	0.710	1.1	mA	5.0	XT Oscillator Mode			
	—	_	565	785	μA	3.0	Fosc = 4 MHz			
DUIZAL			0.895	1.3	mA	5.0	INTOSC			
D013E	—		2.5	2.9	mA	4.5	Fosc = 20 MHz			
DUISE		_	2.75	3.5	mA	5.0	HS Oscillator Mode			

Note 1: The "△" current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement. Max values should be used when calculating total current consumption.

17.6 **Timing Diagrams and Specifications**

FIGURE 17-4: EXTERNAL CLOCK TIMING

ΤΔRI F 17-4·	FXTERNAL	CLOCK	TIMING	REQUIREMENTS
IADLL II = 4.		CLOCK		

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency ⁽¹⁾	DC	_	4	MHz	XT and RC Osc mode, VDD = 5.0 V
			DC		20	MHz	HS, EC Osc mode
			DC		200	kHz	LP Osc mode
		Oscillator Frequency ⁽¹⁾	—		4	MHz	RC Osc mode, VDD = 5.0V
			0.1		4	MHz	XT Osc mode
			1	—	20	MHz	HS Osc mode
			—		200	kHz	LP Osc mode
			—	4	—	MHz	INTOSC mode (fast)
				48	—	kHz	INTOSC mode (slow)
1	Tosc	External CLKIN Period ⁽¹⁾	250		—	ns	XT and RC Osc mode
			50	_	_	ns	HS, EC Osc mode
			5		—	μS	LP Osc mode
		Oscillator Period ⁽¹⁾	250	_	—	ns	RC Osc mode
			250		10,000	ns	XT Osc mode
			50	_	1,000	ns	HS Osc mode
			5	_	_	μS	LP Osc mode
			_	250	_	ns	INTOSC mode (fast)
				21	—	μS	INTOSC mode (slow)
2	Тсү	Instruction Cycle Time	200	Тсү	DC	ns	Tcy = 4/Fosc
3	TosL, TosH	External CLKIN (OSC1) High External CLKIN Low	100*		—	ns	XT oscillator, Tosc L/H duty cycle
4	RC	External Biased RC Frequency	10 kHz*		4 MHz		VDD = 5.0V
* т	bass nor	amotora are oberactorized but a	at tastad				

These parameters are characterized but not tested.

t Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-based period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Max" cycle time limit is "DC" (no clock) for all devices.

PIC16F627A/628A/648A

Param No.	Sym		Characterist	ic		Min	Тур†	Max	Units	Conditions						
40	T⊤0H	T0CKI High	Pulse Width	No Prescaler	0.5	Tcy + 20*	_	_	ns							
				With Prescaler		10*	—	_	ns							
41	TT0L	T0CKI Low F	Pulse Width	No Prescaler	0.5	Tcy + 20*	_		ns							
				With Prescaler		10*	_	_	ns							
42	Tt0P	T0CKI Perio	d		20 or	Greater of: $\frac{T_{CY} + 40^{*}}{N}$	_	_	ns	N = prescale value (2, 4, , 256)						
45	T⊤1H	T1CKI High	Synchronous,	No Prescaler	0.5	Tcy + 20*	_	_	ns							
		Time	Synchronous,	PIC16F62XA		15*	_	—	ns							
			with Prescaler	PIC16LF62XA		25*	—	_	ns							
			Asynchronous	PIC16F62XA		30*	—	_	ns							
				PIC16LF62XA		50*	_	—	ns							
46	T⊤1L	T1CKI Low Time	Synchronous,	No Prescaler	0.5	Tcy + 20*	—	_	ns							
			Synchronous, with Prescaler	PIC16F62XA		15*	_	—	ns							
				PIC16LF62XA		25*	—		ns							
			Asynchronous	PIC16F62XA		30*	—	—	ns							
				PIC16LF62XA		50*	_	—	ns							
47	TT1P	T⊤1P T1CKI input period	TT1P	T⊤1P	T⊤1P	TT1P	T⊤1P	T1CKI input period	Synchronous	PIC16F62XA	20 or	Greater of: <u>TCY + 40*</u> N	_		ns	N = prescale value (1, 2, 4, 8)
				PIC16LF62XA	20 or	Greater of: <u>TCY + 40*</u> N	_		—							
			Asynchronous F	PIC16F62XA		60*	—		ns							
				PIC16LF62XA		100*	_	_	ns							
	F⊤1	Timer1 oscill (oscillator er T1OSCEN)	ator input frequabled by settin	uency range g bit		_	32.7 ⁽¹⁾	—	kHz							
48	TCKEZTMR1	Delay from e increment	external clock e	dge to timer		2Tosc		7Tosc	—							

TABLE 17-8: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This oscillator is intended to work only with 32.768 kHz watch crystals and their manufactured tolerances. Higher value crystal frequencies may not be compatible with this crystal driver.

18-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimensio	n Limits	MIN	NOM	MAX
Number of Pins	Ν	18		
Pitch	е		1.27 BSC	
Overall Height	А	_	-	2.65
Molded Package Thickness	A2	2.05	-	
Standoff §	A1	0.10	-	0.30
Overall Width	E		10.30 BSC	
Molded Package Width	E1		7.50 BSC	
Overall Length	D	11.55 BSC		
Chamfer (optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1		1.40 REF	
Foot Angle	ø	0°	-	8°
Lead Thickness	С	0.20	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	_	15°
Mold Draft Angle Bottom	β	5°	_	15°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-051B

PIC16F627A/628A/648A

INDEX

1	
•	۰.

A/D	
Special Event Trigger (CCP)	59
Absolute Maximum Ratings 1	35
ADDLW Instruction 1	19
ADDWF Instruction1	19
ANDLW Instruction1	19
ANDWF Instruction 1	19
Architectural Overview	11
Assembler	
MPASM Assembler1	32
В	
Baud Rate Error	75
Baud Rate Formula	75
BCF Instruction1	20
Block Diagrams	
Comparator	
I/O Operating Modes	64
Modified Comparator Output	66
I/O Ports	
RB0/INT Pin	38
RB1/RX/DT Pin	39
RB2/TX/CK Pin	39
RB3/CCP1 Pin	40
RB4/PGM Pin	41
RB5 Pin	42
RB6/T10S0/T1CKI Pin	43
RB7/T1OSI Pin	44
RC Oscillator Mode 1	01
USART Receive	82
USART Transmit	80
BRGH bit	75
Brown-Out Reset (BOR) 1	03
BSF Instruction	20
BIFSC Instruction	20
BIESS Instruction1	21

С

C Compilers	
MPLAB C18	132
CALL Instruction	121
Capture (CCP Module)	58
Block Diagram	58
CCP Pin Configuration	58
CCPR1H:CCPR1L Registers	58
Changing Between Capture Prescalers	58
Prescaler	58
Software Interrupt	58
Timer1 Mode Selection	58
Capture/Compare/PWM (CCP)	57
Capture Mode. See Capture	
CCP1	57
CCPR1H Register	57
CCPR1L Register	57
CCP2	57
Compare Mode. See Compare	
PWM Mode. See PWM	
Timer Resources	57
CCP1CON Register	57
CCP1M Bits	57
CCP1X:CCP1Y Bits	57
CCP2CON Register	
CCP2M<3:2> Bits	57

CCP2X CCP2Y Bits	57
Clocking Scheme/Instruction Cycle	15
CI RF Instruction	121
CLRW Instruction	
CLRWDT Instruction	
CMCON Register	
Code Examples	
Data EEPROM Refresh Routine	
Code Protection	113
COMF Instruction	122
Comparator	
, Block Diagrams	
I/O Operating Modes	64
Modified Comparator Output	66
Comparator Module	63
Configuration	64
Interrupts	67
Operation	65
Reference	65
Compare (CCP Module)	58
Block Diagram	58
CCP Pin Configuration	59
CCPR1H:CCPR1L Registers	58
Software Interrupt	59
Special Event Trigger	59
Timer1 Mode Selection	59
CONFIG Register	98
Configuration Bits	97
Crystal Operation	99
Customer Change Notification Service	173
Customer Notification Service	173
Customer Support	173

D

Data EEPROM Memory	
EECONZ Register	
Operation During Code Protection	95
Reading	93
Spurious Write Protection	93
Using	94
Write Verify	93
Writing to	93
Data Memory Organization	17
DECF Instruction	122
DECFSZ Instruction	123
Development Support	131
Device Differences	171
Device Migrations	172
Dual-speed Oscillator Modes	101

Ε

EECON1 Register	
EECON1 register	
EECON2 register	
Errata	5
External Crystal Oscillator Circuit	

F

Fuses. See Configuration Bits

G

General-Purpose Register File	17
GOTO Instruction	123