

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f628t-20i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Octopus, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, PIC³² logo, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.

PIC16F627A/628A/648A

Pin Diagrams

4.2.2.1 Status Register

The Status register, shown in Register 4-1, contains the arithmetic status of the ALU; the Reset status and the bank select bits for data memory (SRAM).

The Status register can be the destination for any instruction, like any other register. If the Status register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are non-writable. Therefore, the result of an instruction with the Status register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the Status register as "000uu1uu" (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the Status register because these instructions do not affect any Status bit. For other instructions, not affecting any Status bits, see the "Instruction Set Summary".

Note:	The C and DC bits operate as a Borrow
	and Digit Borrow out bit, respectively, in
	subtraction. See the SUBLW and SUBWF
	instructions for examples.

REGISTER 4-1: STATUS – STATUS REGISTER (ADDRESS: 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x				
	IRP	RP1	RP0	TO	PD	Z	DC	С				
	bit 7							bit 0				
7	IRP : Regis 1 = Bank 2 0 = Bank 0	ter Bank Se 2, 3 (100h-1F 9, 1 (00h-FFt	lect bit (use ⁻ Fh) า)	d for indirec	t addressing)							
6-5	RP<1:0> : F 00 = Bank 01 = Bank 10 = Bank 11 = Bank	Register Bar 0 (00h-7Fh) 1 (80h-FFh) 2 (100h-17F 3 (180h-1FF	hk Select bit h) h)	ts (used for	direct addressir	ng)						
4	TO : Time C 1 = After po 0 = A WDT	TO: Time Out bit 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time out occurred PD: Power-down bit										
3	PD : Power 1 = After p 0 = By exe	 D = A WDT time out occurred PD: Power-down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction 										
2	 a = By execution of the SLEEP instruction Z: Zero bit 1 = The result of an arithmetic or logic operation is zero 0 = The result of an arithmetic or logic operation is not zero 											
1	DC : Digit C is reversed 1 = A carry 0 = No carr	arry/Borrow) -out from th	bit (ADDWF, e 4th low or be 4th low o	ADDLW, SU	BLW, SUBWF inst e result occurre	tructions) († d	for Borrow t	he polarity				
0	C: Carry/Be 1 = A carry 0 = No carr Note:	orrow bit (AI -out from th ry-out from t For Borrow, complemen loaded with	e Most Sigr he Most Sigr he Most Sig the polarity t of the sec either the h	W, SUBLW, S nificant bit of gnificant bit is reversed cond operar nigh or low c	TUBWF instruction the result occur of the result occur d. A subtraction ad. For rotate (F rder bit of the s	ons) nrred curred is execute RRF, RLF) i ource regis	ed by adding instructions ster.	g the two's , this bit is				
	Legend:]				
	R = Reada	ble bit	W = V	Vritable bit	U = Unimple	emented b	it, read as '	0'				
	-n = Value	at POR	'1' = E	Bit is set	'0' = Bit is c	leared	x = Bit is ur	hknown				

TABLE 0 0. 10							
Name	Function	Input Type	Output Type	Description			
RB0/INT	RB0	TTL	CMOS	Bidirectional I/O port. Can be software programmed for internal weak pull-up.			
	INT	ST	—	External interrupt			
RB1/RX/DT	RB1	TTL	CMOS	Bidirectional I/O port. Can be software programmed for internal weak pull-up.			
	RX	ST	_	USART Receive Pin			
	DT	ST	CMOS	Synchronous data I/O			
RB2/TX/CK	RB2	TTL	CMOS	Bidirectional I/O port			
	ТΧ	—	CMOS	USART Transmit Pin			
	СК	ST	CMOS	Synchronous Clock I/O. Can be software programmed for internal weak pull-up.			
RB3/CCP1	RB3	TTL	CMOS	DS Bidirectional I/O port. Can be software programmed internal weak pull-up.			
	CCP1	ST	CMOS	Capture/Compare/PWM/I/O			
RB4/PGM	RB4	TTL	CMOS	Bidirectional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.			
	PGM	ST	—	Low-voltage programming input pin. When low-voltage programming is enabled, the interrupt-on-pin change and weak pull-up resistor are disabled.			
RB5	RB5	TTL	CMOS	Bidirectional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.			
RB6/T1OSO/T1CKI/ PGC	RB6	TTL	CMOS	Bidirectional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.			
	T10S0	—	XTAL	Timer1 Oscillator Output			
	T1CKI	ST	_	Timer1 Clock Input			
	PGC	ST	_	ICSP [™] Programming Clock			
RB7/T1OSI/PGD	RB7	TTL	CMOS	Bidirectional I/O port. Interrupt-on-pin change. Can be software programmed for internal weak pull-up.			
	T1OSI	XTAL	_	Timer1 Oscillator Input			
	PGD	ST	CMOS	ICSP Data I/O			
Legend: O = Out	put	CM	OS = CMOS	S Output P = Power			
= Not	used	l	= Input	ST = Schmitt Trigger Input			
TTL = TTL	. Input	OD	= Open	Drain Output AN = Analog			

TABLE 5-3:PORTB FUNCTIONS

TABLE 5-4:SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other Resets
06h, 106h	PORTB	RB7	RB6	RB5	RB4 ⁽¹⁾	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h, 186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
81h, 181h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: u = unchanged, x = unknown. Shaded cells are not used for PORTB.

Note 1: LVP configuration bit sets RB4 functionality.

5.3 I/O Programming Considerations

5.3.1 BIDIRECTIONAL I/O PORTS

Any instruction that writes operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit 5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit 5 and PORTB is written to the output latches. If another bit of PORTB is used as a bidirectional I/O pin (e.g., bit 0) and is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit 0 is switched into Output mode later on, the content of the data latch may now be unknown.

Reading a port register reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-2 shows the effect of two sequential read-modify-write instructions (ex., ${\tt BCF}, {\tt BSF},$ etc.) on an I/O port

A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-OR", "wired-AND"). The resulting high output currents may damage the chip.

EXAMPLE 5-2: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings:PORTB<7:4> Inputs									
; PORTB<3:0> Outputs									
;PORTB<7:6> have external pull-up and are									
not connected to other circuitry									
;									
; PORT latchPORT Pins									
BCF STATUS, RPO ;									
BCF PORTB, 7 ;01pp pppp 11pp pppp									
BSF STATUS, RPO ;									
BCF TRISB, 7 ;10pp pppp 11pp pppp									
BCF TRISB, 6 ;10pp pppp 10pp pppp									
;									
Note that the user may have expected the									
;pin values to be 00pp pppp. The 2nd BCF									
;caused RB7 to be latched as the pin value									
;(High).									

5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-16). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

2: Data setup time = (0.25 TCY - TPD) where TCY = instruction cycle and TPD = propagation delay of Q1 cycle to output valid. Therefore, at higher clock frequencies, a write followed by a read may be problematic.

FIGURE 5-16: SUCCESSIVE I/O OPERATION

REGISTER 8-1:	T2CON	N – TIMER2	CONTRO	REGISTE	R (ADDRESS	S: 12h)							
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0					
	bit 7							bit 0					
bit 7	Unimplem	ented: Read	as '0'										
bit 6-3	TOUTPS<	OUTPS<3:0>: Timer2 Output Postscale Select bits											
	0000 = 1:1	0000 = 1:1 Postscale Value											
	0001 = 1:2	001 = 1:2 Postscale Value											
	•												
	•												
	1111 = 1 :1	6 Postscale											
bit 2	TMR2ON:	Timer2 On bi	t										
	1 = Timer2 0 = Timer2	is on is off											
bit 1-0	T2CKPS<1	I:0>: Timer2	Clock Presc	ale Select bit	S								
	00 = 1:1 Pr 01 = 1:4 Pr 1x = 1:16 F	rescaler Valu rescaler Valu Prescaler Val	e e ue										
	Legend:												
	R = Reada	ble bit	W = W	/ritable bit	U = Unimpl	emented bit	. read as '0'						

TABLE 8-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

-n = Value at POR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	1	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	1	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
11h	TMR2	Timer2 Mod	Timer2 Module's Register								0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer2 module.

11.0 VOLTAGE REFERENCE MODULE

The Voltage Reference module consists of a 16-tap resistor ladder network that provides a selectable voltage reference. The resistor ladder is segmented to provide two ranges of VREF values and has a power-down function to conserve power when the reference is not being used. The VRCON register controls the operation of the reference as shown in Figure 11-1. The block diagram is given in Figure 11-1.

11.1 Voltage Reference Configuration

bit

bit

bit

bit bit

The Voltage Reference module can output 16 distinct voltage levels for each range.

-n = Value at POR

The equations used to calculate the output of the Voltage Reference module are as follows:

if VRR = 1:

$$VREF = \frac{VR < 3:0}{24} \times VDD$$

if VRR = 0:

$$VREF = \left(VDD \times \frac{I}{4}\right) + \frac{VR < 3:0}{32} \times VDD$$

The setting time of the Voltage Reference module must be considered when changing the VREF output (Table 17-3). Example 11-1 demonstrates how voltage reference is configured for an output voltage of 1.25V with VDD = 5.0V.

REGISTER 11-1:	VRCON – VOLTAGE REFERENCE CONTROL REGISTER (ADDRESS: 9Fh)	

						(,				
	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
	VREN	VROE	VRR		VR3	VR2	VR1	VR0				
	bit 7							bit 0				
7	VREN: Vre	∃F Enable bi	t									
	1 = VREF ci 0 = VREF ci	ircuit powere	∋d on ∋d down, na	o IDD drain		R/W-0 R/W-0 R/W-0 VR3 VR2 VR1 VR0 bit 0 > ≤ 15 2) * VDD						
6	VROE: VREF Output Enable bit											
	1 = VREF is output on RA2 pin 0 = VREF is disconnected from RA2 pin VREP: VREF Banga Salaction bit											
5	VRR: VREF	Range Sele	ection bit									
	1 = Low rai 0 = High ra	nge ange										
4	Unimplem	ented: Rea	d as '0'									
3-0	VR<3:0>: \	VR<3:0>: VREF Value Selection bits $0 \le VR < 3:0 > \le 15$										
	When VRR	≀ = 1: VREF =	= (VR<3:0>	/ 24) * VDD								
	VRENVROEVRR–VR3VR2VR1VR0bit 7bit 7bit 0VREN: VREF Enable bit1 = VREF circuit powered on 0 = VREF circuit powered down, no IDD drainVROE: VREF Output Enable bit 1 = VREF is output on RA2 pin 0 = VREF is disconnected from RA2 pinVRR: VREF Range Selection bit 1 = Low range 0 = High rangeUnimplemented: Read as '0'VR<3:0>: VREF Value Selection bits 0 ≤ VR <3:0> ≤ 15 When VRR = 1: VREF = (VR<3:0>/24) * VDDLegend:											
	Legend:											
	$1 = VREF \text{ is output on RA2 pin}$ $0 = VREF \text{ is disconnected from RA2 pin}$ $VRR: VREF \text{ Range Selection bit}$ $1 = Low \text{ range}$ $0 = \text{ High range}$ $Unimplemented: \text{ Read as '0'}$ $VR<3:0>: VREF \text{ Value Selection bits } 0 \le VR <3:0> \le 15$ $When VRR = 1: VREF = (VR<3:0>/24) * VDD$ $When VRR = 0: VREF = 1/4 * VDD + (VR<3:0>/32) * VDD$ $Legend:$ $R = \text{ Readable bit} \qquad W = \text{ Writable bit} \qquad U = \text{ Unimplemented bit, read as '0'}$											

'0' = Bit is cleared

'1' = Bit is set

x = Bit is unknown

PIC16F627A/628A/648A

BAUD	Fosc = 20 MHz		SPBRG	16 MHz		SPBRG	10 MHz		SPBRG
RATE (K)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9.615	+0.16%	129	9.615	+0.16%	103	9.615	+0.16%	64
19200	19.230	+0.16%	64	19.230	+0.16%	51	18.939	-1.36%	32
38400	37.878	-1.36%	32	38.461	+0.16%	25	39.062	+1.7%	15
57600	56.818	-1.36%	21	58.823	+2.12%	16	56.818	-1.36%	10
115200	113.636	-1.36%	10	111.111	-3.55%	8	125	+8.51%	4
250000	250	0	4	250	0	3	NA	_	—
625000	625	0	1	NA	_	—	625	0	0
1250000	1250	0	0	NA	—	_	NA	—	—

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD	Fosc = 7.16 MHz		SPBRG	5.068 MHz	5.068 MHz		4 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9.520	-0.83%	46	9598.485	0.016%	32	9615.385	0.160%	25
19200	19.454	+1.32%	22	18632.35	-2.956%	16	19230.77	0.160%	12
38400	37.286	-2.90%	11	39593.75	3.109%	7	35714.29	-6.994%	6
57600	55.930	-2.90%	7	52791.67	-8.348%	5	62500	8.507%	3
115200	111.860	-2.90%	3	105583.3	-8.348%	2	125000	8.507%	1
250000	NA	_	_	316750	26.700%	0	250000	0.000%	0
625000	NA	_	_	NA	_	_	NA	_	_
1250000	NA	_	_	NA	_	_	NA	_	_

BAUD	Fosc = 3.57	9 MHz	SPBRG	1 MHz		SPBRG	32.768 kHz		SPBRG
RATE (K)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)
9600	9725.543	1.308%	22	8.928	-6.994%	6	NA	NA	NA
19200	18640.63	-2.913%	11	20833.3	8.507%	2	NA	NA	NA
38400	37281.25	-2.913%	5	31250	-18.620%	1	NA	NA	NA
57600	55921.88	-2.913%	3	62500	+8.507	0	NA	NA	NA
115200	111243.8	-2.913%	1	NA	_	_	NA	NA	NA
250000	223687.5	-10.525%	0	NA	_	_	NA	NA	NA
625000	NA	_	_	NA	_	_	NA	NA	NA
1250000	NA	—	—	NA	—	—	NA	NA	NA

12.3 USART Address Detect Function

12.3.1 USART 9-BIT RECEIVER WITH ADDRESS DETECT

When the RX9 bit is set in the RCSTA register, 9 bits are received and the ninth bit is placed in the RX9D bit of the RCSTA register. The USART module has a special provision for multiprocessor communication. Multiprocessor communication is enabled by setting the ADEN bit (RCSTA<3>) along with the RX9 bit. The port is now programmed such that when the last bit is received, the contents of the Receive Shift Register (RSR) are transferred to the receive buffer, the ninth bit of the RSR (RSR<8>) is transferred to RX9D, and the receive interrupt is set if and only if RSR<8> = 1. This feature can be used in a multiprocessor system as follows:

A master processor intends to transmit a block of data to one of many slaves. It must first send out an address byte that identifies the target slave. An address byte is identified by setting the ninth bit (RSR<8>) to a '1' (instead of a '0' for a data byte). If the ADEN and RX9 bits are set in the slave's RCSTA register, enabling multiprocessor communication, all data bytes will be ignored. However, if the ninth received bit is equal to a '1', indicating that the received byte is an address, the slave will be interrupted and the contents of the RSR register will be transferred into the receive buffer. This allows the slave to be interrupted only by addresses, so that the slave can examine the received byte to see if it is being addressed. The addressed slave will then clear its ADEN bit and prepare to receive data bytes from the master.

When ADEN is enabled (= 1), all data bytes are ignored. Following the Stop bit, the data will not be loaded into the receive buffer, and no interrupt will occur. If another byte is shifted into the RSR register, the previous data byte will be lost. The ADEN bit will only take effect when the receiver is configured in 9-bit mode (RX9 = 1). When ADEN is disabled (= 0), all data bytes are received and the 9th bit can be used as the parity bit.

The receive block diagram is shown in Figure 12-4.

Reception is enabled by setting bit CREN (RCSTA<4>).

12.3.1.1 Setting up 9-bit mode with Address Detect

Follow these steps when setting up Asynchronous Reception with Address Detect Enabled:

- 1. TRISB<1> and TRISB<2> should both be set to '1' to configure the RB1/RX/DT and RB2/TX/CK pins as inputs. Output drive, when required, is controlled by the peripheral circuitry.
- 2. Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH.
- 3. Enable asynchronous communication by setting or clearing bit SYNC and setting bit SPEN.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. Set bit RX9 to enable 9-bit reception.
- 6. Set ADEN to enable address detect.
- 7. Enable the reception by setting enable bit CREN or SREN.
- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 9. Read the 8-bit received data by reading the RCREG register to determine if the device is being addressed.
- 10. If an OERR error occurred, clear the error by clearing enable bit CREN if it was already set.
- 11. If the device has been addressed (RSR<8> = 1 with address match enabled), clear the ADEN and RCIF bits to allow data bytes and address bytes to be read into the receive buffer and interrupt the CPU.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART	Receive	Data Reg	gister					0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG Baud Rate Generator Register									0000 0000	0000 0000

TABLE 12-8: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

12.4.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>) or enable bit CREN (RCSTA<4>). Data is sampled on the RB1/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read-only bit which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a twodeep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The 9th receive bit is buffered the same way as the receive data. Reading the RCREG register, will load bit RX9D with a new value, therefore it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old RX9D information.

Follow these steps when setting up a Synchronous Master Reception:

- 1. TRISB<1> and TRISB<2> should both be set to '1' to configure the RB1/RX/DT and RB2/TX/CK pins as inputs. Output drive, when required, is controlled by the peripheral circuitry.
- Initialize the SPBRG register for the appropriate baud rate. (Section 12.1 "USART Baud Rate Generator (BRG)").
- 3. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 4. Ensure bits CREN and SREN are clear.
- 5. If interrupts are desired, then set enable bit RCIE.
- 6. If 9-bit reception is desired, then set bit RX9.
- 7. If a single reception is required, set bit SREN. For continuous reception, set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 9. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCREG register.
- 11. If an OERR error occurred, clear the error by clearing bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR	Value on all other Resets
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART I	USART Receive Data Register							0000 0000	0000 0000
8Ch	PIE1	EPIE	CMIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	G Baud Rate Generator Register							0000 0000	0000 0000	

TABLE 12-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for synchronous master reception.

14.4.5 TIME OUT SEQUENCE

On power-up, the time out sequence is as follows: First PWRT time-out is invoked after POR has expired. Then OST is activated. The total time out will vary based on oscillator configuration and <u>PWRTE</u> bit Status. For example, in RC mode with <u>PWRTE</u> bit set (PWRT disabled), there will be no time out at all. Figure 14-8, Figure 14-11 and Figure 14-12 depict time out sequences.

Since the time outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 14-11). This is useful for testing purposes or to synchronize more than one PIC16F627A/628A/ 648A device operating in parallel.

Table 14-6 shows the Reset conditions for some special registers, while Table 14-7 shows the Reset conditions for all the registers.

14.4.6 POWER CONTROL (PCON) STATUS REGISTER

The PCON/Status register, PCON (address 8Eh), has two bits.

Bit 0 is $\overline{\text{BOR}}$ (Brown-out Reset). $\overline{\text{BOR}}$ is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if $\overline{\text{BOR}} = 0$ indicating that a brown-out has occurred. The $\overline{\text{BOR}}$ Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (by setting BOREN bit = 0 in the Configuration Word).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset if POR is '0', it will indicate that a Power-on Reset must have occurred (VDD may have gone too low).

Occillator Configuration	Power-u	ıp Timer	Brown-o	Wake-up from	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	Sleep
XT, HS, LP	72 ms + 1024•Tosc	1024•Tosc	72 ms + 1024•Tosc	1024•Tosc	1024•Tosc
RC, EC	72 ms	—	72 ms	—	—
INTOSC	72 ms	—	72 ms	—	6 μs

TABLE 14-3: TIME OUT IN VARIOUS SITUATIONS

TABLE 14-4: STATUS/PCON BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Condition			
0	Х	1	1	Power-on Reset			
0	Х	0	Х	Illegal, TO is set on POR			
0	Х	Х	0	Illegal, PD is set on POR			
1	0	Х	Х	Brown-out Reset			
1	1	0	u	WDT Reset			
1	1	0	0	WDT Wake-up			
1	1	u	u	MCLR Reset during normal operation			
1	1	1	0	MCLR Reset during Sleep			

Legend: u = unchanged, x = unknown

FIGURE 14-10: TIME OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

14.8.1 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin
- 2. Watchdog Timer wake-up (if WDT was enabled)
- 3. Interrupt from RB0/INT pin, RB port change, or any peripheral interrupt, which is active in Sleep.

The first event will cause a device Reset. The two latter events are considered <u>a</u> continuation of program execution. The TO and PD bits in the Status register can be used to determine the cause of device Reset. PD bit, which is set on power-up, is cleared when Sleep is invoked. TO bit is cleared if WDT wake-up occurred. When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have an NOP after the SLEEP instruction.

Note: If the global interrupts are disabled (GIE is cleared), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will not enter Sleep. The SLEEP instruction is executed as a NOP instruction.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

FIGURE 14-17: WAKE-UP FROM SLEEP THROUGH INTERRUPT

OSC1	; Q1 Q2 Q3 Q4; '/~_/~_/	Q1 Q2 Q3 Q4	Q1	Q1	Q2 Q3 Q4 ~_/~_/~_	Q1 Q2 Q3 Q4 /	; q1 q2 q3 q4; /~/	Q1 Q2 Q3 Q4 ~
CLKOUT ⁽⁴⁾	1		Tos	T(1,2)		\/	<u>ب</u> ۲	<u>_</u>
INT pin	1 1 1 1 1 1	1 1 1		1 1 1		1 1 1	1 1 1 1 1 1	1 1 1
INTCON<1>	ı ı)⊢────┼		<u></u>	Inte	errupt Latend	у	·	
	'i i i i			I	(Note 2)	I I		1
(INTCON<7>)	I		1		·	<u> </u> 	
Instruction F	low	, ,		1		1	, , , , , , , , , , , , , , , , , , ,	I I
PC	X PC X	PC + 1	PC + 2	<u> </u>	PC + 2	X PC + 2	<u>χ 0004h⁽³⁾ χ</u>	0005h
Instruction { Fetched {	Inst(PC) = Sleep	Inst(PC + 1)		In	st(PC + 2)	1 1 1	Inst(0004h)	Inst(0005h)
Instruction { Executed {	Inst(PC - 1)	Sleep		In	st(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)
Note 1: > 2: 1	(T, HS or LP Oscilla ost = 1024 Tosc (ator mode assur drawing not to s	ned. cale). Approxima	itely 1 μs	delay will b	e there for RC O	scillator mode.	

3: GIE = 1 assumed. In this case, after wake-up the processor jumps to the interrupt routine. If GIE = 0, execution will continue in-line.

4: CLKOUT is not available in these Oscillator modes, but shown here for timing reference.

14.9 Code Protection

With the Code-Protect bit is cleared (Code-Protect enabled), the contents of the program memory locations are read out as '0'. See "*PIC16F627A/628A/648A EEPROM Memory Programming Specification*" (DS41196) for details.

Note:	Only a Bulk Erase function can set the \overline{CP}							
	and CPD bits by turning off the code							
	protection. The entire data EEPROM and							
	Flash program memory will be erased to							
	turn the code protection off.							

14.10 User ID Locations

Four memory locations (2000h-2003h) are designated as user ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during Program/Verify. Only the Least Significant 4 bits of the user ID locations are used for checksum calculations although each location has 14 bits.

PIC16F627A/628A/648A

SUBWF	Subtract W from f								
Syntax:	[label] SUBWF f,d								
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$								
Operation:	(f) - (W) \rightarrow (dest)								
Status Affected:	C, DC, Z								
Encoding:	00 0010 dfff ffff								
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.								
Words:	1								
Cycles:	1								
Example 1:	SUBWF REG1, 1								
	Before Instruction								
	REG1 = 3 W = 2 C = ?								
	After Instruction								
	REG1 = 1 W = 2 C = 1; result is positive DC = 1 Z = 0								
Example 2:	Before Instruction								
	REG1 = 2 W = 2 C = ?								
	After Instruction								
	REG1 = 0 W = 2 C = 1; result is zero Z = DC = 1								
Example 3:	Before Instruction								
	REG1 = 1 W = 2 C = ?								
	After Instruction								
	REG1 = 0xFF $W = 2$ $C = 0; result is negative$ $Z = DC = 0$								

SWAPF	Swap Ni	bbles in	f				
Syntax:	[label]	SWAPI	f,d				
Operands:	$0 \le f \le 12$ $d \in [0,1]$	27					
Operation:	(f<3:0>) → (dest<7:4>), (f<7:4>) → (dest<3:0>)						
Status Affected:	None						
Encoding:	00	1110	dfff	ffff			
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W register. If 'd' is '1', the result is placed in register 'f'.						
Words:	1						
Cycles:	1						
Example	SWAPF	REG1,	0				
	Before In	struction					
	RE	EG1 = 0	xA5				
	After Inst	truction					
	RE	EG1 = 0	xA5				
	W	= 0	x5A				
TRIC							
I RIS Svintovi			er				
Operands:	$\begin{bmatrix} abel \end{bmatrix}$						
Operation:	$(W) \rightarrow TE$	2IS reaist	er f				
Status Affected	None	tio regist	or i,				
Encoding:	00	0000 0	0110 0	Offf			
Description:	The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly						
Words.	1	nem.					
Cycles:	1						
Example							
	To mainta ity with for products	ain upwa uture PIC , do not	ard comp C [®] MCU use this	patibil-			

17.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings(†)

Ambient temperature under bias	40 to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3 to +6.5V
Voltage on MCLR and RA4 with respect to Vss	0.3 to +14V
Voltage on all other pins with respect to Vss	0.3V to VDD + 0.3V
Total power dissipation ⁽¹⁾	800 mW
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	± 20 mA
Output clamp current, loк (Vo < 0 or Vo >Vɒɒ)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA and PORTB (Combined)	200 mA
Maximum current sourced by PORTA and PORTB (Combined)	200 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\Sigma$ IOH} + Σ {(VDD $-\Sigma$	VOH) x IOH} + Σ (VOI x IOL)

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}}$ pin rather than pulling this pin directly to Vss.

17.2 DC Characteristics: PIC16F627A/628A/648A (Industrial) PIC16LF627A/628A/648A (Industrial)

DC CHAF	RACTERISTICS	Standard Operating Conditions (u Operating temperature $-40^{\circ}C \le T_{e}$					ss otherwise stated) +85°C for industrial			
Param	LF and F Device	Mint	Turn	Max	Unito		Conditions			
No.	Characteristics	wiinŢ	тур	wax	Units	VDD	Note			
Supply Voltage (VDD)										
D001	LF	2.0	—	5.5	V	_				
DUUT	LF/F	3.0	—	5.5	V					
Power-c	down Base Current (IPD)	•	•							
	LF	—	0.01	0.80	μA	2.0	WDT, BOR, Comparators, VREF and			
D020	LF/F	—	0.01	0.85	μΑ	3.0	T1OSC: disabled			
			0.02	2.7	μA	5.0				
Periphe	ral Module Current (∆lмод) ⁽	1)								
	LF	—	1	2.0	μA	2.0	WDT Current			
D021	LF/F	—	2	3.4	μA	3.0				
		_	9	17.0	μA	5.0				
D000	LF/F	_	29	52	μA	4.5	BOR Current			
DUZZ		_	30	55	μA	5.0				
	LF	_	15	22	μA	2.0	Comparator Current			
D023	LF/F	_	22	37	μA	3.0	(Both comparators enabled)			
		_	44	68	μA	5.0				
	LF	_	34	55	μA	2.0	VREF Current			
D024	LF/F	_	50	75	μA	3.0				
		_	80	110	μA	5.0				
	LF	_	1.2	2.0	μA	2.0	T1Osc Current			
D025	LF/F	_	1.3	2.2	μA	3.0				
		_	1.8	2.9	μA	5.0				
Supply	Current (IDD)									
	LF	—	10	15	μA	2.0	Fosc = 32 kHz			
D010	LF/F	_	15	25	μA	3.0	LP Oscillator Mode			
		_	28	48	μA	5.0	-			
	LF	_	125	190	μA	2.0	Fosc = 1 MHz			
D011	LF/F	_	175	340	μA	3.0	XT Oscillator Mode			
		_	320	520	μA	5.0				
	LF	_	250	350	μA	2.0	Fosc = 4 MHz			
D012	LF/F	_	450	600	μA	3.0	XT Oscillator Mode			
		_	710	995	μA	5.0	1			
	LF	_	395	465	μA	2.0	Fosc = 4 MHz			
D012A	LF/F	_	565	785	μA	3.0	INTOSC			
		_	0.895	1.3	mA	5.0	1			
	LF/F	_	2.5	2.9	mA	4.5	Fosc = 20 MHz			
D013		_	2.75	3.3	mA	5.0	HS Oscillator Mode			

Note 1: The "∆" current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement. Max values should be used when calculating total current consumption.

17.3 DC Characteristics: PIC16F627A/628A/648A (Extended)

DC CHAR	ACTERISTICS	Standa Operat	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le Ta \le +125^{\circ}C$ for extended						
Param	Doving Characteristics	Mint	Tun	Moy	Unito		Conditions		
No.	Device Characteristics		тур	IVIAX	Units	Vdd	Note		
Supply V	oltage (VDD)								
D001	—	3.0	_	5.5	V	—			
Power-de	own Base Current (IPD)								
	—		0.01	4	μA	3.0	WDT, BOR, Comparators, VREF and		
DUZUE		—	0.02	8	μA	5.0	T1OSC: disabled		
Peripher	al Module Current (∆Iмод) ⁽	1)							
D021E	—	_	2	9	μA	3.0	WDT Current		
DUZIL		—	9	20	μA	5.0			
D022E	—	_	29	52	μA	4.5	BOR Current		
		—	30	55	μA	5.0			
	—	_	22	37	μA	3.0	Comparator Current		
DUZJE		—	44	68	μA	5.0	(Both comparators enabled)		
	—		50	75	μA	3.0	VREF Current		
D024L		—	83	110	μA	5.0			
	—	_	1.3	4	μA	3.0	T1OSC Current		
DUZJE		—	1.8	6	μA	5.0			
Supply C	Current (IDD)								
	—		15	28	μA	3.0	Fosc = 32 kHz		
DOTOL		—	28	54	μA	5.0	LP Oscillator Mode		
	—	_	175	340	μA	3.0	Fosc = 1 MHz		
DONE		—	320	520	μA	5.0	XT Oscillator Mode		
D012E	_	_	450	650	μA	3.0	Fosc = 4 MHz		
DUIZE		—	0.710	1.1	mA	5.0	XT Oscillator Mode		
	—		565	785	μA	3.0	Fosc = 4 MHz		
DUIZAL			0.895	1.3	mA	5.0	INTOSC		
D013E	—		2.5	2.9	mA	4.5	Fosc = 20 MHz		
D013E		_	2.75	3.5	mA	5.0	HS Oscillator Mode		

Note 1: The "△" current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement. Max values should be used when calculating total current consumption.

Parameter No.	Sym	Characteristic	Min	Тур	Max	Units	Conditions
F10	Fiosc	Oscillator Center frequency	—	4	_	MHz	
F13	∆losc	Oscillator Accuracy	3.96	4	4.04	MHz	Vdd = 3.5 V, 25°C
			3.92	4	4.08	MHz	$\begin{array}{l} 2.0V \leq V \text{DD} \leq 5.5V \\ 0^\circ \text{C} \leq \text{Ta} \leq +85^\circ \text{C} \end{array}$
			3.80	4	4.20	MHz	$2.0V \le VDD \le 5.5V$ -40°C \le TA \le +85°C (IND) -40°C \le TA \le +125°C (EXT)
F14 [*]	TIOSCST	Oscillator Wake-up from Sleep start-up time	_	6	8	μS	VDD = 2.0V, -40°C to +85°C
				4	6	μS	VDD = 3.0V, -40°C to +85°C
			—	3	5	μS	VDD = 5.0V, -40°C to +85°C

TABLE 17-5: PRECISION INTERNAL OSCILLATOR PARAMETERS

Legend: TBD = To Be Determined.

* Characterized but not tested.

FIGURE 17-5: CLKOUT AND I/O TIMING

PIC16F627A/628A/648A

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units
10	TosH2ckL	OSC1↑ to CLKOUT↓	PIC16F62XA		75	200*	ns
10A			PIC16LF62XA	—	_	400*	ns
11	TosH2ckH	OSC1↑ to CLKOUT↑	PIC16F62XA	—	75	200*	ns
11A			PIC16LF62XA	—	_	400*	ns
12	TcĸR	CLKOUT rise time	PIC16F62XA	—	35	100*	ns
12A			PIC16LF62XA	—		200*	ns
13	ТскF	CLKOUT fall time	PIC16F62XA	—	35	100*	ns
13A			PIC16LF62XA	—	_	200*	ns
14	TckL2IoV	CLKOUT \downarrow to Port out valid		—	_	20*	ns
15	TIOV2CKH	Port in valid before CLKOUT \uparrow	PIC16F62XA	Tosc+200 ns*	_	_	ns
			PIC16LF62XA	Tosc+400 ns*	_	_	ns
16	TckH2iol	Port in hold after CLKOUT \uparrow		0		-	ns
17	TosH2IoV	OSC1↑ (Q1 cycle) to	PIC16F62XA	—	50	150*	ns
		Port out valid	PIC16LF62XA	—		300*	ns
18	TosH2ıol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)		100* 200*		_	ns

TABLE 17-6: CLKOUT AND I/O TIMING REQUIREMENTS

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	Limits	MIN	NOM	MAX	
Contact Pitch	Е		1.27 BSC		
Contact Pad Spacing	С		9.40		
Contact Pad Width	Х			0.60	
Contact Pad Length	Y			2.00	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.40			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2051A