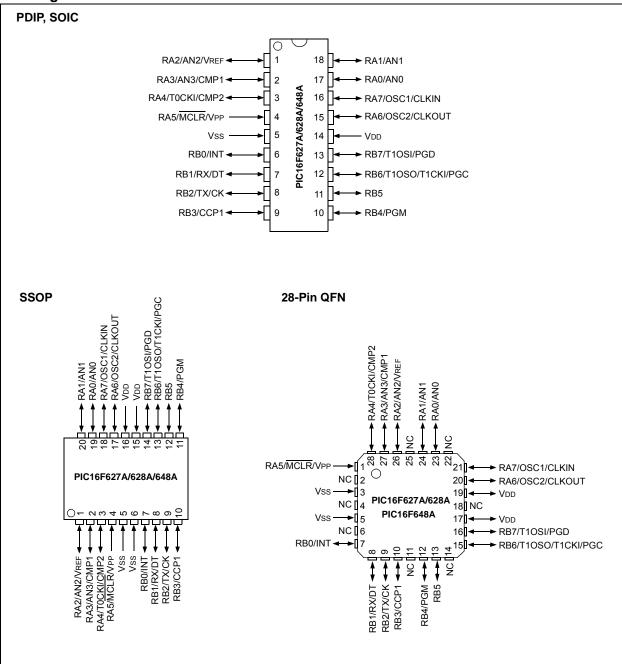


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f648a-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Table of Contents

1.0 General Description	7
2.0 PIC16F627A/628A/648A Device Varieties	9
3.0 Architectural Overview	. 11
4.0 Memory Organization	17
5.0 I/O Ports	
6.0 Timer0 Module	47
7.0 Timer1 Module	50
8.0 Timer2 Module	. 54
9.0 Capture/Compare/PWM (CCP) Module	. 57
10.0 Comparator Module	. 63
11.0 Voltage Reference Module	. 69
12.0 Universal Synchronous Asynchronous Receiver Transmitter (USART) Module	
13.0 Data EEPROM Memory	91
14.0 Special Features of the CPU	
15.0 Instruction Set Summary	117
16.0 Development Support	131
17.0 Electrical Specifications	135
18.0 DC and AC Characteristics Graphs and Tables	151
19.0 Packaging Information	163
Appendix A: Data Sheet Revision History	171
Appendix B: Device Differences	171
Appendix C: Device Migrations	172
Appendix D: Migrating from other PIC [®] Devices	172
The Microchip Web Site	173
Customer Change Notification Service	173
Customer Support	173
Reader Response	
Product Identification System	179

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

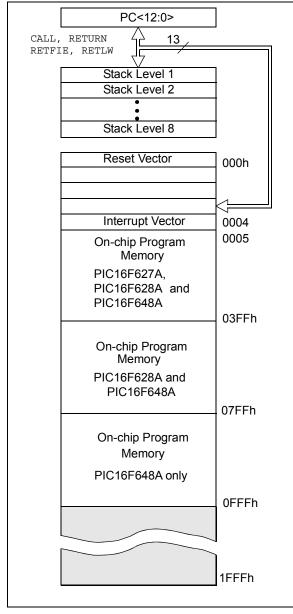
Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

- To determine if an errata sheet exists for a particular device, please check with one of the following:
- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System


Register on our web site at www.microchip.com to receive the most current information on all of our products.

4.0 MEMORY ORGANIZATION

4.1 Program Memory Organization

The PIC16F627A/628A/648A has a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 1K x 14 (0000h-03FFh) for the PIC16F627A, 2K x 14 (0000h-07FFh) for the PIC16F628A and 4K x 14 (0000h-0FFFh) for the PIC16F648A are physically implemented. Accessing a location above these boundaries will cause a wraparound within the first 1K x 14 space (PIC16F627A), 2K x 14 space (PIC16F628A) or 4K x 14 space (PIC16F648A). The Reset vector is at 0000h and the interrupt vector is at 0004h (Figure 4-1).

4.2 Data Memory Organization

The data memory (Figure 4-2 and Figure 4-3) is partitioned into four banks, which contain the General Purpose Registers (GPRs) and the Special Function Registers (SFRs). The SFRs are located in the first 32 locations of each bank. There are General Purpose Registers implemented as static RAM in each bank. Table 4-1 lists the General Purpose Register available in each of the four banks.

TABLE 4-1:	GENERAL PURPOSE STATIC
	RAM REGISTERS

	PIC16F627A/628A	PIC16F648A
Bank0	20-7Fh	20-7Fh
Bank1	A0h-FF	A0h-FF
Bank2	120h-14Fh, 170h-17Fh	120h-17Fh
Bank3	1F0h-1FFh	1F0h-1FFh

Addresses F0h-FFh, 170h-17Fh and 1F0h-1FFh are implemented as common RAM and mapped back to addresses 70h-7Fh.

Table 4-2 lists how to access the four banks of registers via the Status register bits RP1 and RP0.

TABLE 4-2: ACCESS TO BANKS OF REGISTERS

Bank	RP1	RP0
0	0	0
1	0	1
2	1	0
3	1	1

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 224×8 in the PIC16F627A/628A and 256×8 in the PIC16F648A. Each is accessed either directly or indirectly through the File Select Register (FSR), See **Section 4.4** "Indirect Addressing, INDF and FSR Registers".

4.2.2.3 INTCON Register

bit 7

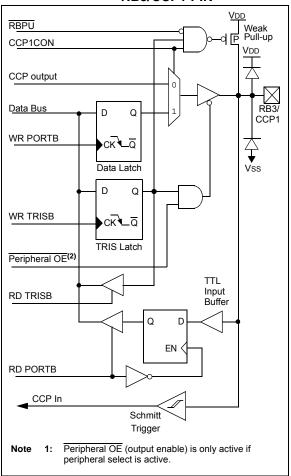
bit 6

bit 5

bit 2

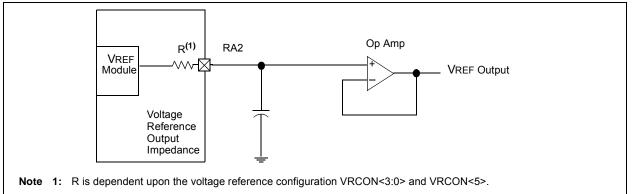
The INTCON register is a readable and writable register, which contains the various enable and flag bits for all interrupt sources except the comparator module. See Section 4.2.2.4 "PIE1 Register" and Section 4.2.2.5 "PIR1 Register" for a description of the comparator enable and flag bits.

Note: Interrupt flag bits get set when an interrupt condition occurs regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>).


REGISTER 4-3: INTCON – INTERRUPT CONTROL REGISTER (ADDRESS: 0Bh, 8Bh, 10Bh, 18Bh)

					L33. 0DI		ы, товп <u>ј</u>	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x	
GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	
bit 7							bit 0	
 GIE: Global Interrupt Enable bit 1 = Enables all un-masked interrupts 0 = Disables all interrupts PEIE: Peripheral Interrupt Enable bit 1 = Enables all un-masked peripheral interrupts 0 = Disables all peripheral interrupts TOIE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 interrupt 0 = Disables the TMR0 interrupt 								

bit 4	INTE: RB0/INT External Interrupt Enable bit
	1 = Enables the RB0/INT external interrupt
	0 = Disables the RB0/INT external interrupt
bit 3	RBIE: RB Port Change Interrupt Enable bit


- 1 = Enables the RB port change interrupt
 - 0 = Disables the RB port change interrupt
 - **T0IF**: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared in software)
 - 0 = TMR0 register did not overflow
- bit 1 INTF: RB0/INT External Interrupt Flag bit 1 = The RB0/INT external interrupt occurred (must be cleared in software) 0 = The RB0/INT external interrupt did not occur bit 0 RBIF: RB Port Change Interrupt Flag bit
 - 1 = When at least one of the RB<7:4> pins changes state (must be cleared in software)
 - 0 = None of the RB<7:4> pins have changed state

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

FIGURE 5-11: BLOCK DIAGRAM OF RB3/CCP1 PIN

FIGURE 11-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 11-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value On POR	Value On All Other Resets
9Fh	VRCON	VREN	VROE	VRR	—	VR3	VR2	VR1	VR0	000- 0000	000- 0000
1Fh	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

Legend: - = Unimplemented, read as '0'.

12.2 USART Asynchronous Mode

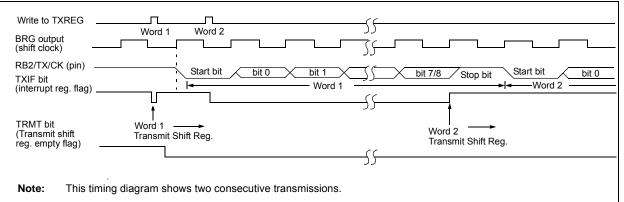
In this mode, the USART uses standard non-return-tozero (NRZ) format (one Start bit, eight or nine data bits and one Stop bit). The most common data format is 8-bit. A dedicated 8-bit baud rate generator is used to derive baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The USART's transmitter and receiver are functionally independent, but use the same data format and baud rate. The baud rate generator produces a clock either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during Sleep.

Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- · Asynchronous Receiver

12.2.1 USART ASYNCHRONOUS TRANSMITTER


The USART transmitter block diagram is shown in Figure 12-1. The heart of the transmitter is the Transmit (serial) Shift Register (TSR). The shift register obtains its data from the read/write transmit buffer, TXREG. The TXREG register is loaded with data in software. The TSR register is not loaded until the Stop bit has been transmitted from the previous load. As soon as the Stop bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register (occurs in one TCY), the TXREG register is empty and flag bit TXIF (PIR1<4>) is set. This interrupt can be enabled/ disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicated the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. Status bit TRMT is a read-only bit which is set when the TSR register is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.

- Note 1: The TSR register is not mapped in data memory so it is not available to the user.
 - 2: Flag bit TXIF is set when enable bit TXEN is set.

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data and the Baud Rate Generator (BRG) has produced a shift clock (Figure 12-1). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. Normally when transmission is first started, the TSR register is empty, so a transfer to the TXREG register will result in an immediate transfer to TSR resulting in an empty TXREG. A back-to-back transfer is thus possible (Figure 12-3). Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. As a result the RB2/TX/CK pin will revert to high-impedance.

In order to select 9-bit transmission, transmit bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). In such a case, an incorrect ninth data bit may be loaded in the TSR register.

FIGURE 12-3: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)

TABLE 12-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	x000 0000	0000 000x
19h	TXREG USART Transmit Data Register									0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG Baud Rate Generator Register									0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'.

Shaded cells are not used for Asynchronous Transmission.

13.8 Data EEPROM Operation During Code-Protect

When the device is code-protected, the CPU is able to read and write data to the data EEPROM.

TABLE 13-1: REGISTERS/BITS ASSOCIATED WITH DATA EEPROM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other Resets
9Ah	EEDATA	EEPRO	EEPROM Data Register								uuuu uuuu
9Bh	EEADR	EEPRO	EEPROM Address Register							xxxx xxxx	uuuu uuuu
9Ch	EECON1	_	_	—	—	WRERR	WREN	WR	RD	x000	q000
9Dh	EECON2 ⁽¹⁾	EEPROM Control Register 2									

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. Shaded cells are not used by data EEPROM.

Note 1: EECON2 is not a physical register.

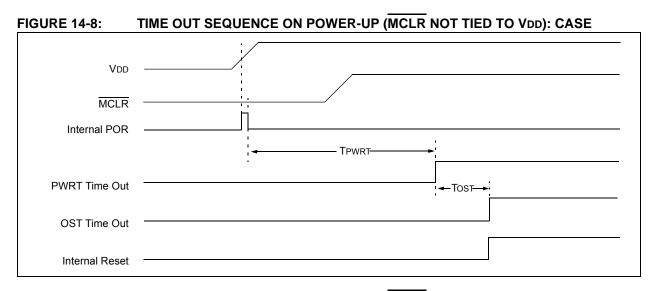
14.0 SPECIAL FEATURES OF THE CPU

Special circuits to deal with the needs of real-time applications are what sets a microcontroller apart from other processors. The PIC16F627A/628A/648A family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power-saving operating modes and offer code protection.

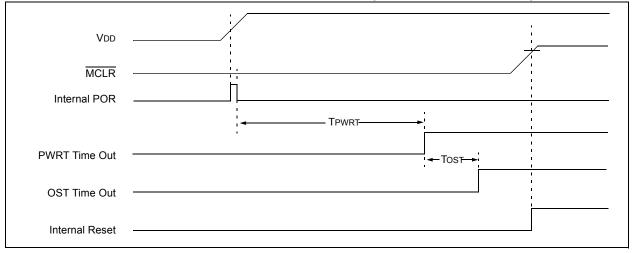
These are:

- 1. OSC selection
- 2. Reset
- 3. Power-on Reset (POR)
- 4. Power-up Timer (PWRT)
- 5. Oscillator Start-Up Timer (OST)
- 6. Brown-out Reset (BOR)
- 7. Interrupts
- 8. Watchdog Timer (WDT)
- 9. Sleep
- 10. Code protection
- 11. ID Locations
- 12. In-Circuit Serial Programming[™] (ICSP[™])

The PIC16F627A/628A/648A has a Watchdog Timer which is controlled by configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only, designed to keep the part in Reset while the power supply stabilizes. There is also circuitry to reset the device if a brown-out occurs. With these three functions on-chip, most applications need no external Reset circuitry.


The Sleep mode is designed to offer a very low current Power-down mode. The user can wake-up from Sleep through external Reset, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

14.1 Configuration Bits


The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space. In fact, it belongs to the special configuration memory space (2000h-3FFFh), which can be accessed only during programming. See *"PIC16F627A/628A/648A EEPROM Memory*"

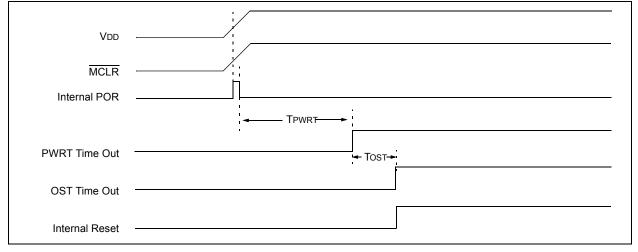

Programming Specification" (DS41196) for additional information.

FIGURE 14-10: TIME OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

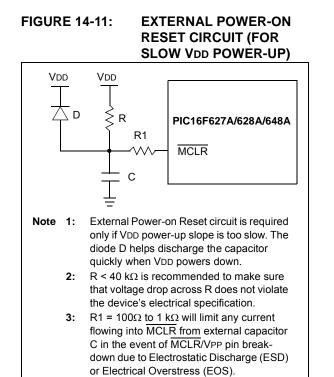
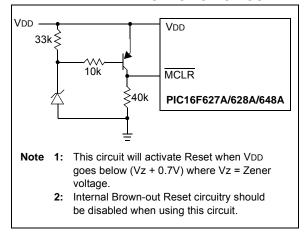
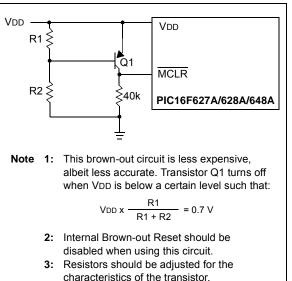




FIGURE 14-12: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 14-13: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

15.0 INSTRUCTION SET SUMMARY

Each PIC16F627A/628A/648A instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16F627A/628A/648A instruction set summary in Table 15-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 15-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

15.1 Read-Modify-Write Operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

For example, a "clrf PORTB" instruction will read PORTB, clear all the data bits, then write the result back to PORTB. This example would have the unintended result that the condition that sets the RBIF flag would be cleared for pins configured as inputs and using the PORTB interrupt-on-change feature.

TABLE 15-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
то	Time-out bit
PD	Power-down bit

The instruction set is highly orthogonal and is grouped into three basic categories:

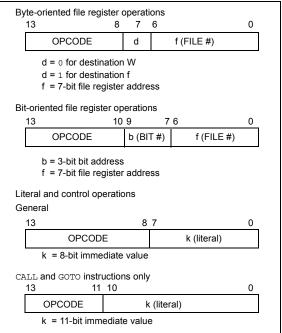
- Byte-oriented operations
- Bit-oriented operations
- · Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s.

Table 15-2 lists the instructions recognized by the MPASM[™] assembler.

Figure 15-1 shows the three general formats that the instructions can have.

Note 1:	Any unused opcode is reserved. Use of
	any reserved opcode may cause unex-
	pected operation.


2: To maintain upward compatibility with future PIC MCU products, <u>do not use</u> the OPTION and TRIS instructions.

All examples use the following format to represent a hexadecimal number:

0xhh

where 'h' signifies a hexadecimal digit.

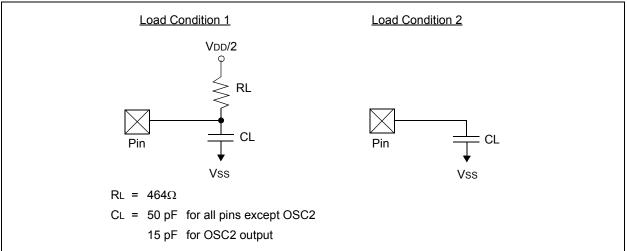
FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS

CLRW	Clear W				
Syntax:	[label] CLRW				
Operands:	None				
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$				
Status Affected:	Z				
Encoding:	00 0001 0000 0011				
Description:	W register is cleared. Zero bit (Z) is set.				
Words:	1				
Cycles:	1				
Example	CLRW				
	Before Instruction W = 0x5A After Instruction W = 0x00 Z = 1				

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (dest)$
Status Affected:	Z
Encoding:	00 1001 dfff ffff
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example	COMF REG1, 0
	Before Instruction REG1 = 0x13 After Instruction REG1 = 0x13 W = 0xEC

CLRWDT	Clear W	latchdo	g Timer	
Syntax:	[label]	CLRW	DT	
Operands:	None			
Operation:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$			
Status Affected:	TO, PD			
Encoding:	00	0000	0110	0100
Description:	Watchd the pres	og Timei	ion resets r. It also r the WDT. are set.	esets
Words:	1			
Cycles:	1			
Example	CLRWDT			
	After Ins	struction WDT cou	unter = ?	

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (dest)
Status Affected:	Z
Encoding:	00 0011 dfff ffff
Description:	Decrement register 'f'. If 'd' is '0'. the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example	DECF CNT, 1
	Before Instruction CNT = 0x01 Z = 0 After Instruction CNT = 0x00 Z = 1


17.5 Timing Parameter Symbology

The timing parameter symbols have been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

Z. TPPS				
т				
F	Frequency	Т	Time	
Lowercas	se subscripts (pp) and their meanings:			
рр				
ck	CLKOUT	OSC	OSC1	
io	I/O port	tO	TOCKI	
mc	MCLR			
Uppercas	se letters and their meanings:			
S				
F	Fall	Р	Period	
Н	High	R	Rise	
I	Invalid (High-impedance)	V	Valid	
L	Low	Z	High-Impedance	

FIGURE 17-3: LOAD CONDITIONS

TABLE 17-8: TIMERO AND TIMER1 EXTERNAL CLOCK REQUIREMENTS										
Param No.	Sym		Characterist	ic	Min	Тур†	Мах	Units	Conditions	
40	T⊤0H	T0CKI High	Pulse Width	No Prescaler	0.5Tcy + 20*	_	_	ns		
				With Prescaler	10*	_	—	ns		
41	TT0L	T0CKI Low F	Pulse Width	No Prescaler	0.5Tcy + 20*	_	_	ns		
				With Prescaler	10*	—	_	ns		
42	TT0P	T0CKI Perio	d		Greater of: 20 or <u>Tcy + 40*</u> N			ns	N = prescale value (2, 4, , 256)	
45	T⊤1H		Synchronous,	No Prescaler	0.5Tcy + 20*	—	—	ns		
		Time	Synchronous,	PIC16F62XA	15*	—	—	ns		
			with Prescaler	PIC16LF62XA	25*	—	_	ns		
			Asynchronous	PIC16F62XA	30*	_	—	ns		
				PIC16LF62XA	50*	—	—	ns		
46	T⊤1L	Time	Synchronous,	No Prescaler	0.5Tcy + 20*	—	—	ns		
			Synchronous, with Prescaler Asynchronous	PIC16F62XA	15*		—	ns		
				PIC16LF62XA	25*	—	—	ns		
				PIC16F62XA	30*		—	ns		
				PIC16LF62XA	50*		—	ns		
47	T⊤1P	TT1P T1CKI inpu period		Synchronous	PIC16F62XA	Greater of: 20 or <u>Tcy + 40*</u> N	_		ns	N = prescale value (1, 2, 4, 8)
				PIC16LF62XA	Greater of: 20 or <u>Tcy + 40*</u> N	_		—		
			Asynchronous PIC1 PIC1	PIC16F62XA	60*	_		ns		
				PIC16LF62XA	100*	_	—	ns		
	F⊤1		lator input frequency range nabled by setting bit		—	32.7 ⁽¹⁾	—	kHz		
48	TCKEZTMR1	Delay from external clock edge to timer increment			2Tosc		7Tosc	_		

TABLE 17-8: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This oscillator is intended to work only with 32.768 kHz watch crystals and their manufactured tolerances. Higher value crystal frequencies may not be compatible with this crystal driver.

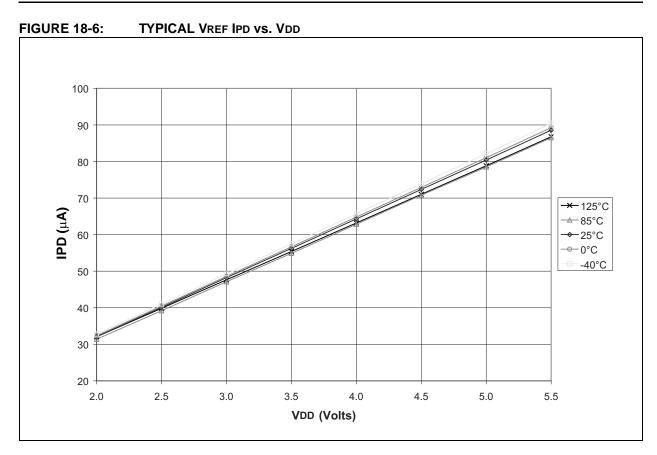
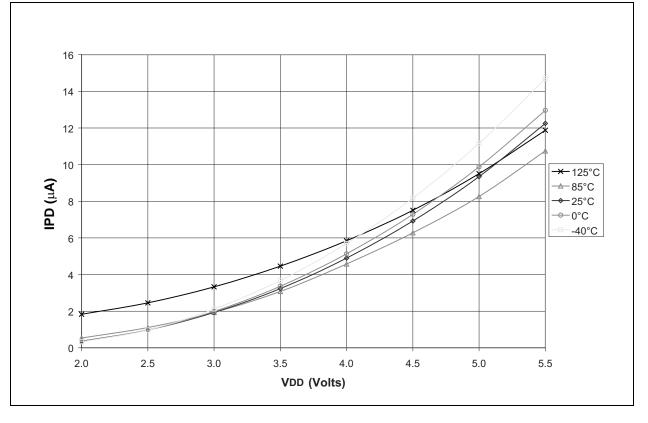
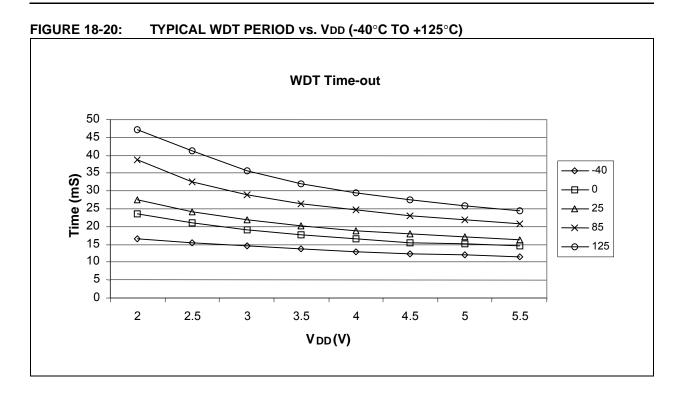
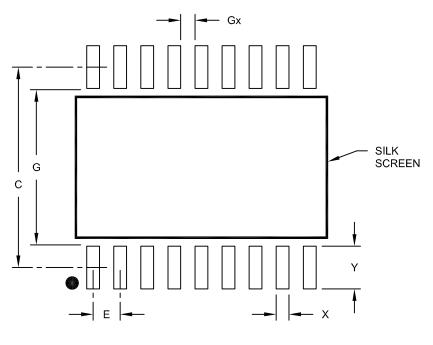





FIGURE 18-7: TYPICAL WDT IPD vs. VDD

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

RECOMMENDED LAND PATTERN

	N	ILLIMETER	S	
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	Е		1.27 BSC	
Contact Pad Spacing	С		9.40	
Contact Pad Width	Х			0.60
Contact Pad Length	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2051A

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
From	n: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appli	ication (optional):	
Wou	ld you like a reply?YN	
Devi	ce: PIC16F627A/628A/648A	Literature Number: DS40044G
Ques	stions:	
1. V	What are the best features of this do	cument?
2. H	How does this document meet your l	hardware and software development needs?
_		
_		
3. E	Do you find the organization of this d	locument easy to follow? If not, why?
_		
_		
4. V	What additions to the document do y	ou think would enhance the structure and subject?
_		
-		
5. V	What deletions from the document c	ould be made without affecting the overall usefulness?
-		
6. I	s there any incorrect or misleading i	nformation (what and where)?
_		
- 7 '	low would you improve this desures	ant?
7. F	low would you improve this docume	ant (
_		
-		