

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f648a-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset ⁽¹⁾	Details on Page
Bank 2											
100h	INDF	Addressing	g this location	uses conter	nts of FSR t	o address d	ata memory	(not a physi	cal register)	xxxx xxxx	30
101h	TMR0	Timer0 Mo	dule's Registe	er						xxxx xxxx	47
102h	PCL	Program C	Counter's (PC)	Least Sign	ificant Byte					0000 0000	30
103h	STATUS	IRP	RP1	С	0001 1xxx	24					
104h	FSR	Indirect Da	ata Memory A	ddress Poin	ter					xxxx xxxx	30
105h	_	Unimpleme	ented							—	-
106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	38
107h	_	Unimpleme	ented	•	•	•		•		_	_
108h	_	Unimpleme	ented							_	_
109h	_	Unimpleme	ented							_	—
10Ah	PCLATH	_	_	_	Write	Buffer for u	pper 5 bits o	f Program C	Counter	0 0000	30
10Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	26
10Ch	—	Unimpleme	implemented								
10Dh	—	Unimpleme	ented							—	_
10Eh	_	Unimpleme	ented							_	
10Fh	_	Unimpleme	ented							_	
110h		Unimpleme	ented							_	
111h		Unimpleme	ented							—	—
112h		Unimpleme	ented							—	—
113h		Unimpleme	ented							—	—
114h	—	Unimpleme	ented							—	_
115h	—	Unimpleme	ented							_	_
116h	—	Unimpleme	ented							_	—
117h	_	Unimpleme	ented							_	
118h	_	Unimpleme	ented							_	
119h		Unimpleme								_	
11Ah		Unimpleme								—	—
11Bh	_	Unimpleme								—	—
11Ch	_	Unimpleme								_	—
11Dh	-	Unimpleme								—	—
11Eh	-	Unimpleme								—	—
11Fh	—	Unimpleme	ented							—	—

TABLE 4-5: SPECIAL FUNCTION REGISTERS SUMMARY BANK2

Legend:- = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented.Note1:For the initialization condition for registers tables, refer to Table 14-6 and Table 14-7.

4.2.2.1 Status Register

The Status register, shown in Register 4-1, contains the arithmetic status of the ALU; the Reset status and the bank select bits for data memory (SRAM).

The Status register can be the destination for any instruction, like any other register. If the Status register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are non-writable. Therefore, the result of an instruction with the Status register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the Status register as "000uu1uu" (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the Status register because these instructions do not affect any Status bit. For other instructions, not affecting any Status bits, see the "Instruction Set Summary".

Note:	The C and DC bits operate as a Borrow
	and Digit Borrow out bit, respectively, in
	subtraction. See the SUBLW and SUBWF
	instructions for examples.

REGISTER 4-1: STATUS – STATUS REGISTER (ADDRESS: 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x					
	IRP	RP1	RP0	TO	PD	Z	DC	С					
	bit 7							bit 0					
bit 7	1 = Bank 2	2, 3 (100h-1F	Fh)	d for indirec	t addressing)								
bit 6-5	RP<1:0> : 1 00 = Bank 01 = Bank 10 = Bank	 a = After power-up or by the CLRWDT instruction b = By execution of the SLEEP instruction 											
bit 4	1 = After p	TO : Time Out bit 1 = After power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time out occurred											
bit 3	 a WDT time out occurred PD: Power-down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction 												
bit 2		sult of an arit											
bit 1	is reversed 1 = A carry	d)	e 4th low or	der bit of th	BLW, SUBWF insi e result occurre		for Borrow t	he polarity					
bit 0	C : Carry/B 1 = A carry	orrow bit (AD -out from the ry-out from the For Borrow, complement	DWF, ADDL e Most Sigr he Most Sig the polarity t of the sec	W, SUBLW, S nificant bit of gnificant bit / is reversed cond operar	The result SUBWF instruction of the result occur of the result occur of the result occur of the result occur d. A subtraction and. For rotate (F order bit of the s	irred curred is execute RRF, RLF)	instructions						
	Legend:												
	R = Reada		VV = V	Vritable bit	U = Unimple	emented b	oit, read as '	יכ					
	-n = Value	at POR	'1' = E	Bit is set	'0' = Bit is c	leared	x = Bit is ur	nknown					

4.2.2.4 PIE1 Register

This register contains interrupt enable bits.

REGISTER 4-4:	PIE1 – PERIPHERAL INTERRUPT ENABLE REGISTER 1 (ADDRESS: 8Ch)												
	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0					
	EEIE	CMIE	RCIE	TXIE		CCP1IE	TMR2IE	TMR1IE					
	bit 7	bit 7 bit 0											
bit 7	EEIE: EE Write Complete Interrupt Enable Bit												
		s the EE wr es the EE wi											
bit 6	CMIE: Com	nparator Inte	errupt Enabl	e bit									
		 E = Enables the comparator interrupt D = Disables the comparator interrupt 											
bit 5	RCIE: USART Receive Interrupt Enable bit												
		 1 = Enables the USART receive interrupt 0 = Disables the USART receive interrupt 											
bit 4	TXIE: USART Transmit Interrupt Enable bit												
		s the USAR as the USAF											
bit 3	Unimplem	ented: Rea	d as '0'										
bit 2	CCP1IE: C	CCP1IE: CCP1 Interrupt Enable bit											
		s the CCP1 es the CCP1											
bit 1	TMR2IE: T	MR2 to PR2	2 Match Inte	errupt Enable	e bit								
				tch interrupt atch interrupt									
bit 0	TMR1IE: T	MR1 Overfle	ow Interrupt	Enable bit									
	 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt 												
	Legend:												
	R = Reada	ble bit	VV = V	Vritable bit	U = Unimpl	emented b	it, read as '()'					
	-n = Value	at POR	'1' = E	Bit is set	'0' = Bit is c	leared	x = Bit is ur	nknown					

REGISTER 4-4: PIE1 – PERIPHERAL INTERRUPT ENABLE REGISTER 1 (ADDRESS: 8Ch)

8.0 TIMER2 MODULE

Timer2 is an 8-bit timer with a prescaler and a postscaler. It can be used as the PWM time base for PWM mode of the CCP module. The TMR2 register is readable and writable, and is cleared on any device Reset.

The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS<1:0> (T2CON<1:0>).

The Timer2 module has an 8-bit period register PR2. The TMR2 register value increments from 00h until it matches the PR2 register value and then resets to 00h on the next increment cycle. The PR2 register is a readable and writable register. The PR2 register is initialized to FFh upon Reset.

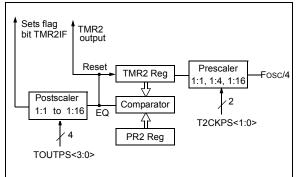
The match output of Timer2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a Timer2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

Timer2 can be shut off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

Register 8-1 shows the Timer2 control register.

8.1 Timer2 Prescaler and Postscaler

The prescaler and postscaler counters are cleared when any of the following occurs:


- a write to the TMR2 register
- · a write to the T2CON register
- any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out Reset)

The TMR2 register is not cleared when T2CON is written.

8.2 TMR2 Output

The TMR2 output (before the postscaler) is fed to the Synchronous Serial Port module which optionally uses it to generate shift clock.

FIGURE 8-1: TIMER2 BLOCK DIAGRAM

REGISTER 8-1:	T2CO	N – TIMER2	CONTRO	L REGISTE	R (ADDRES	S: 12h)								
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0						
	bit 7							bit 0						
bit 7	Unimplem	ented: Read	as '0'											
bit 6-3	-	TOUTPS<3:0>: Timer2 Output Postscale Select bits												
		0000 = 1:1 Postscale Value												
	0001 = 1:2	0001 = 1:2 Postscale Value												
	•													
	•	•												
	1111 = 1 :1	6 Postscale												
bit 2	TMR2ON:	Timer2 On bi	it											
	1 = Timer2 0 = Timer2													
bit 1-0		1:0>: Timer2	Clock Presc	ale Select bit	s									
		rescaler Valu			-									
	01 = 1:4 P	rescaler Valu	е											
	1x = 1:16	Prescaler Val	ue											
	Legend:													
	R = Reada	able bit	W = W	/ritable bit	U = Unimpl	emented bit	t, read as '0'							

TABLE 8-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

-n = Value at POR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	1	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
11h	TMR2 Timer2 Module's Register									0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

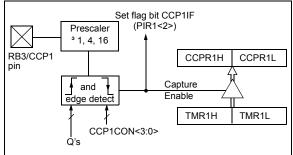
Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer2 module.

NOTES:

9.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RB3/CCP1. An event is defined as:

- · Every falling edge
- Every rising edge
- · Every 4th rising edge
- Every 16th rising edge


An event is selected by control bits CCP1M<3:0> (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

9.1.1 CCP PIN CONFIGURATION

In Capture mode, the RB3/CCP1 pin should be configured as an input by setting the TRISB<3> bit.

Note:	If the RB3/CCP1 is configured as an
	output, a write to the port can cause a
	capture condition.

FIGURE 9-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

9.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

9.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF following any such change in Operating mode.

9.1.4 CCP PRESCALER

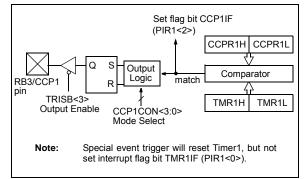
There are four prescaler settings, specified by bits CCP1M<3:0>. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any Reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 9-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 9-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		; the new prescaler
		; mode value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		; value

9.2 Compare Mode


In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RB3/CCP1 pin is:

- Driven high
- Driven low
- · Remains unchanged

The action on the pin is based on the value of control bits CCP1M<3:0> (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

FIGURE 9-2: C

COMPARE MODE OPERATION BLOCK DIAGRAM

11.0 VOLTAGE REFERENCE MODULE

The Voltage Reference module consists of a 16-tap resistor ladder network that provides a selectable voltage reference. The resistor ladder is segmented to provide two ranges of VREF values and has a power-down function to conserve power when the reference is not being used. The VRCON register controls the operation of the reference as shown in Figure 11-1. The block diagram is given in Figure 11-1.

11.1 Voltage Reference Configuration

bit

bit

bit

bit bit

The Voltage Reference module can output 16 distinct voltage levels for each range.

-n = Value at POR

The equations used to calculate the output of the Voltage Reference module are as follows:

if VRR = 1:

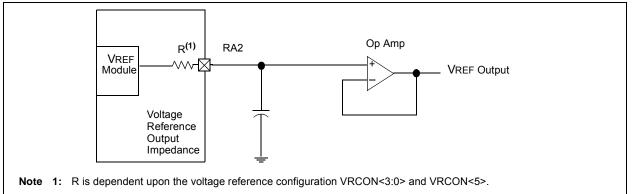
$$VREF = \frac{VR < 3:0}{24} \times VDD$$

if VRR = 0:

$$VREF = \left(VDD \times \frac{I}{4}\right) + \frac{VR < 3:0}{32} \times VDD$$

The setting time of the Voltage Reference module must be considered when changing the VREF output (Table 17-3). Example 11-1 demonstrates how voltage reference is configured for an output voltage of 1.25V with VDD = 5.0V.

REGISTER 11-1:	VRCON – VOLTAGE REFERENCE CONTROL REGISTER (ADDRESS: 9Fh)	

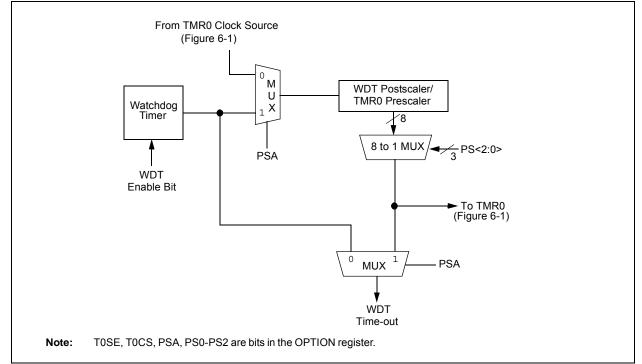

VICON -	in - Voltage Reference Control Register (ADDRess. 9Fil)												
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0						
VREN	VROE	VRR	_	VR3	VR2	VR1	VR0						
bit 7	· · · · · · · · · · · · · · · · · · ·						bit 0						
VREN: VR	EF Enable bit	t											
1 = VREF circuit powered on 0 = VREF circuit powered down, no IDD drain VROF: VREF Output Enable bit													
1 = Vref i	VROE: VREF Output Enable bit 1 = VREF is output on RA2 pin 0 = VREF is disconnected from RA2 pin												
 0 = VREF is disconnected from RA2 pin VRR: VREF Range Selection bit 1 = Low range 0 = High range 													
Unimplen	nented: Read	d as '0'											
Unimplemented : Read as '0' VR<3:0> : VREF Value Selection bits $0 \le VR < 3:0> \le 15$ When VRR = 1: VREF = (VR<3:0>/ 24) * VDD When VRR = 0: VREF = 1/4 * VDD + (VR<3:0>/ 32) * VDD													
Legend:													
R = Reada	able bit	VV = V	Vritable bit	U = Unimpl	emented b	it, read as '(0'						

'0' = Bit is cleared

'1' = Bit is set

x = Bit is unknown

FIGURE 11-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE


TABLE 11-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value On POR	Value On All Other Resets
9Fh	VRCON	VREN	VROE	VRR	—	VR3	VR2	VR1	VR0	000- 0000	000- 0000
1Fh	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

Legend: - = Unimplemented, read as '0'.

TER 12-2:	RCSTA – RECEIVE STATUS AND CONTROL REGISTER (ADDRESS: 18h)										
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x			
	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D			
	bit 7	•		1		•	•	bit 0			
bit 7	SPEN : Serial Port Enable bit (Configures RB1/RX/DT and RB2/TX/CK pins as serial port pins when bits TRISB<2:1> are set)										
		port enabled port disabled									
bit 6	RX9: 9-bit Receive Enable bit										
		s 9-bit recep s 8-bit recep									
bit 5	SREN: Sin	gle Receive	Enable bit								
	Asynchronous mode:										
	Don't ca Synchrono	ire i <u>us mode - n</u>	naetor:								
	0 = Disa	 1 = Enables single receive 0 = Disables single receive 									
	This bit is cleared after reception is complete. Synchronous mode - slave:										
		in this mode									
bit 4	CREN: Continuous Receive Enable bit										
	Asynchronous mode:										
	1 = Enables continuous receive										
	0 = Disables continuous receive										
	Synchronous mode: 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)										
		ables continu						0 01 (211)			
bit 3	ADEN: Address Detect Enable bit										
	Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, enable interrupt and load of the receive buffer when RSR<8> is set										
	0 = Disables address detection, all bytes are received, and ninth bit can be used as parity bit										
	Asynchronous mode 8-bit (RX9 = 0): Unused in this mode										
		in this mode									
bit 2	FERR: Framing Error bit										
	1 = Framin 0 = No frar		n be update	d by reading	RCREG regis	ter and rec	eive next va	ilid byte)			
bit 1	OERR: Overrun Error bit										
	 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error 										
bit 0	RX9D : 9th	bit of receiv	ed data (Ca	an be parity l	oit)						
	Legend:]			
	R = Reada	able bit	VV = V	Vritable bit	U = Unimp	lemented b	it, read as '	D'			
	-n = Value	at POR	'1' = E	Bit is set	'0' = Bit is	cleared	x = Bit is u	ıknown			
	,										

FIGURE 14-16: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 14-9 :	SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset	Value on all other Resets
2007h	CONFIG	LVP	BOREN	MCLRE	FOSC2	PWRTE	WDTE	FOSC1	FOSC0	uuuu uuuu	uuuu uuuu
81h, 181h	OPTION	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends upon condition. **Note:** Shaded cells are not used by the Watchdog Timer.

14.8 Power-Down Mode (Sleep)

The Power-down mode is entered by executing a SLEEP instruction.

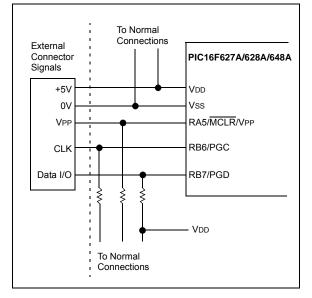
If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit in the Status register is cleared, the TO bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before SLEEP was executed (driving high, low or high-impedance).

For lowest current consumption in this mode, all I/O pins should be either at VDD or VSs with no external circuitry drawing current from the I/O pin and the comparators, and VREF should be disabled. I/O pins that are high-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSs for lowest current consumption. The contribution from on chip pull-ups on PORTB should be considered.

The MCLR pin must be at a logic high level (VIHMC).

Note:	It should be noted that a Reset generated by a WDT time-out does not drive MCLR
	pin low.

14.11 In-Circuit Serial Programming[™] (ICSP[™])


The PIC16F627A/628A/648A microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or custom firmware to be programmed.

The device is placed into a Program/Verify mode by holding the RB6 and RB7 pins low while raising the MCLR (VPP) pin from VIL to VIHH. See "*PIC16F627A/628A/648A EEPROM Memory Programming Specification*" (DS41196) for details. RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

After Reset, to place the device into Programming/Verify mode, the Program Counter (PC) is at location 00h. A 6-bit command is then supplied to the device. Depending on the command, 14 bits of program data are then supplied to or from the device, depending if the command was a load or a read. For complete details of serial programming, please refer to "*PIC16F627A/628A/648A EEPROM Memory Programming Specification*" (DS41196).

A typical In-Circuit Serial Programming connection is shown in Figure 14-18.

FIGURE 14-18: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING CONNECTION

14.12 Low-Voltage Programming

The LVP bit of the Configuration Word, enables the lowvoltage programming. This mode allows the microcontroller to be programmed via ICSP using only a 5V source. This mode removes the requirement of VIHH to be placed on the MCLR pin. The LVP bit is normally erased to '1' which enables the low-voltage programming. In this mode, the RB4/PGM pin is dedicated to the programming function and ceases to be a general purpose I/O pin. The device will enter Programming mode when a '1' is placed on the RB4/ PGM pin. The High-Voltage Programming mode is still available by placing VIHH on the MCLR pin.

- Note 1: While in this mode, the RB4 pin can no longer be used as a general purpose I/O pin.
 - 2: VDD must be 5.0V <u>+</u>10% during erase operations.

If Low-Voltage Programming mode is not used, the LVP bit should be programmed to a '0' so that RB4/ PGM becomes a digital I/O pin. To program the device, VIHH must be placed onto MCLR during programming. The LVP bit may only be programmed when programming is entered with VIHH on MCLR. The LVP bit cannot be programmed when programming is entered with RB4/PGM.

It should be noted, that once the LVP bit is programmed to '0', only High-Voltage Programming mode can be used to program the device.

NOTES:

AND Literal with W

ANDLW

ADDLW	Add Literal and W						
Syntax:	[<i>label</i>] ADDLW k						
Operands:	$0 \leq k \leq 255$						
Operation:	$(W) + k \to (W)$						
Status Affected:	C, DC, Z						
Encoding:	11 111x kkkk kkkk						
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.						
Words:	1						
Cycles:	1						
Example	ADDLW 0x15						
	Before Instruction W = 0x10 After Instruction W = 0x25						

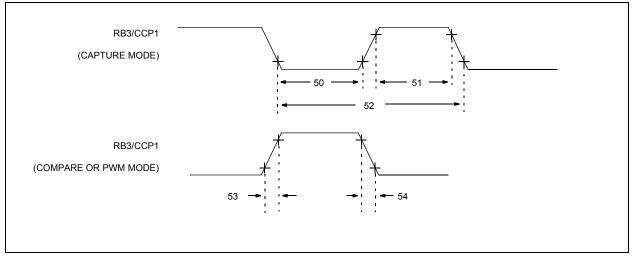
Curstand						
Syntax:	[<i>label</i>] ANDLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	(W) .AND. (k) \rightarrow (W)					
Status Affected:	Z					
Encoding:	11 1001 kkkk kkkk					
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.					
Words:	1					
Cycles:	1					
Example	ANDLW 0x5F					
	Before Instruction W = 0xA3 After Instruction					
	W = 0x03					
ANDWF	AND W with f					
Syntax:	[label] ANDWF f,d					
Operands:	$0 \le f \le 127$					
	$d \in [0,1]$					
Operation:	d ∈ [0,1] (W) .AND. (f) → (dest)					
Operation: Status Affected:						
•	(W) .AND. (f) \rightarrow (dest)					
Status Affected:	(W) .AND. (f) \rightarrow (dest) Z					
Status Affected: Encoding:	(W) .AND. (f) \rightarrow (dest) Z 00 0101 dfff ffff AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register					
Status Affected: Encoding: Description:	$\begin{array}{c c} (W) \ . AND. \ (f) \rightarrow (dest) \\ \hline Z \\ \hline 00 & 0101 & dfff & ffff \\ \hline AND \ the \ W \ register \ with \ register \\ \ 'f'. \ If \ 'd' \ is \ '0', \ the \ result \ is \ stored \\ in \ the \ W \ register. \ If \ 'd' \ is \ '1', \ the \\ result \ is \ stored \ back \ in \ register \\ \ 'f'. \end{array}$					
Status Affected: Encoding: Description: Words:	(W) .AND. (f) \rightarrow (dest) Z 00 0101 dfff ffff AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'. 1					

ADDWF	Add W and f				
Syntax:	[label] ADDWF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(W) + (f) \rightarrow (dest)				
Status Affected:	C, DC, Z				
Encoding:	00 0111 dfff ffff				
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example	ADDWF REG1, 0				
	Before Instruction W = 0x17 REG1 = 0xC2 After Instruction W = 0xD9 REG1 = 0xC2 Z = 0 C = 0 DC = 0				

SUBWF	Subtract W from f
Syntax:	[<i>label</i>] SUBWF f,d
Operands:	$0 \le f \le 127$
o "	$d \in [0,1]$
Operation:	$(f) - (W) \rightarrow (dest)$
Status Affected:	C, DC, Z
Encoding:	00 0010 dfff fff
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example 1:	SUBWF REG1, 1
	Before Instruction
	REG1 = 3 W = 2 C = ?
	After Instruction
	$\begin{array}{rcl} REG1 = & 1 \\ W & = & 2 \\ C & = & 1; \text{ result is positive} \\ DC & = & 1 \\ Z & = & 0 \end{array}$
Example 2:	Before Instruction
	REG1 = 2 W = 2
	C = ?
	After Instruction
	REG1 = 0 W = 2 C = 1; result is zero Z = DC = 1
Example 3:	Before Instruction
	REG1 = 1 W = 2 C = ?
	After Instruction
	REG1 = 0xFF $W = 2$ $C = 0; result is negative$ $Z = DC = 0$

Swap Nibbles in f						
[<i>label</i>] SWAPF f,d						
$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
(f<3:0>) → (dest<7:4>), (f<7:4>) → (dest<3:0>)						
None						
00 1110 dfff ffff						
The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W register. If 'd' is '1', the result is placed in register 'f'.						
1						
1						
SWAPF REG1, 0						
Before Instruction						
REG1 = 0xA5						
After Instruction						
REG1 = 0xA5 $W = 0x5A$						
Load TRIS Register						
[<i>label</i>] TRIS f						
$5 \leq f \leq 7$						
(W) \rightarrow TRIS register f;						
None						
00 0000 0110 Offf						
The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them.						
1						
1						
To maintain upward compatibil- ity with future PIC [®] MCU products, do not use this instruction.						

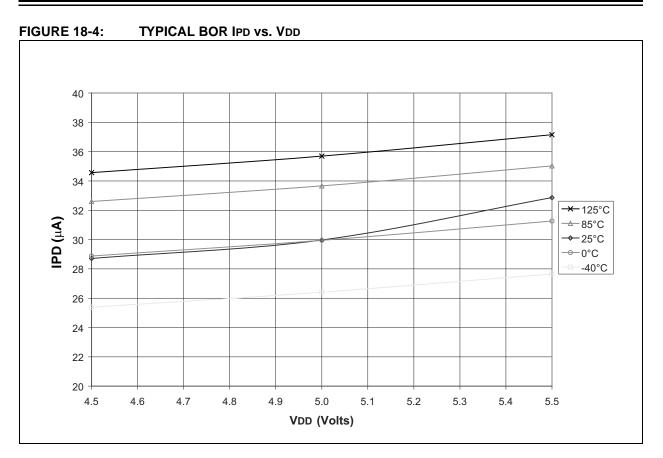
TABLE	<u> </u>			ERNAL CLU	CK REQUIREME	113			
Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions	
40	T⊤0H			No Prescaler	0.5Tcy + 20*	_	_	ns	
				With Prescaler	10*	_	—	ns	
41	TT0L	T0CKI Low F	Pulse Width	No Prescaler	0.5Tcy + 20*	_	_	ns	
				With Prescaler	10*	—	_	ns	
42	TT0P	T0CKI Period			Greater of: 20 or <u>Tcy + 40*</u> N	_		ns	N = prescale value (2, 4, , 256)
45	T⊤1H		Synchronous,	No Prescaler	0.5Tcy + 20*	—	—	ns	
		Time	Synchronous,	PIC16F62XA	15*	—	—	ns	
			with Prescaler	PIC16LF62XA	25*	—	_	ns	
			Asynchronous	PIC16F62XA	30*	_	—	ns	
					50*	—	—	ns	
46	T⊤1L		Synchronous,	No Prescaler	0.5Tcy + 20*	—	—	ns	
	Time	Synchronous,	PIC16F62XA	15*		—	ns		
			with Prescaler	PIC16LF62XA	25*	—	—	ns	
			Asynchronous	PIC16F62XA	30*		—	ns	
				PIC16LF62XA	50*		—	ns	
47	T⊤1P	T1CKI input period	Synchronous	PIC16F62XA	Greater of: 20 or <u>Tcy + 40*</u> N	_		ns	N = prescale value (1, 2, 4, 8)
				PIC16LF62XA	Greater of: 20 or <u>Tcy + 40*</u> N	_		—	
			Asynchronous	PIC16F62XA	60*	_		ns	
				PIC16LF62XA	100*	_	—	ns	
	F⊤1	Timer1 oscillator input frequency range (oscillator enabled by setting bit T1OSCEN)			—	32.7 ⁽¹⁾	—	kHz	
48	TCKEZTMR1	Delay from e increment	xternal clock e	2Tosc		7Tosc	_		

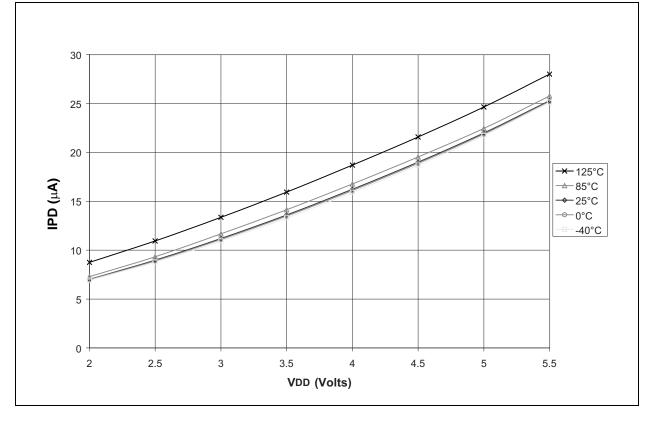

TABLE 17-8: TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This oscillator is intended to work only with 32.768 kHz watch crystals and their manufactured tolerances. Higher value crystal frequencies may not be compatible with this crystal driver.




Param No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50	TCCL	CCP input low time	No Prescaler		0.5Tcy + 20*	—	—	ns	
				PIC16F62XA	10*	_	—	ns	
			With Prescaler	PIC16LF62XA	20*	—	—	ns	
51	ТссН	CCP input high time	No Prescaler		0.5Tcy + 20*	-	—	ns	
				PIC16F62XA	10*	—	_	ns	
			With Prescaler	PIC16LF62XA	20*	—	_	ns	
52	TCCP	CCP input period			<u>3Tcy + 40*</u> N	-	—	ns	N = prescale value (1,4 or 16)
53	TccR	CCP output rise time		PIC16F62XA		10	25*	ns	
				PIC16LF62XA		25	45*	ns	
54	TccF	CCP output fall time		PIC16F62XA		10	25*	ns	
				PIC16LF62XA		25	45*	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

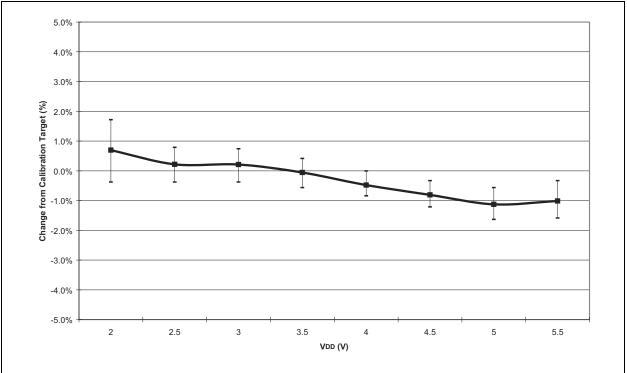
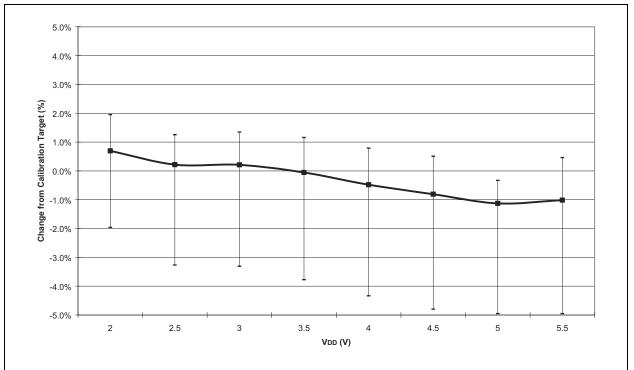



FIGURE 18-13: TYPICAL INTERNAL OSCILLATOR FREQUENCY vs. VDD TEMPERATURE = -40°C TO 85°C

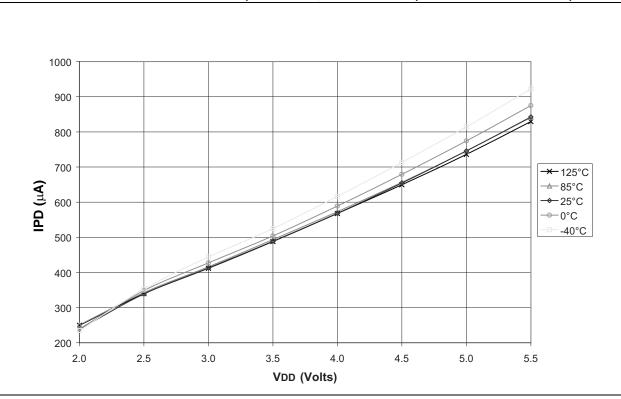


FIGURE 18-19: SUPPLY CURRENT (IDD) vs. VDD, FOSC = 20 MHz (HS OSCILLATOR MODE)

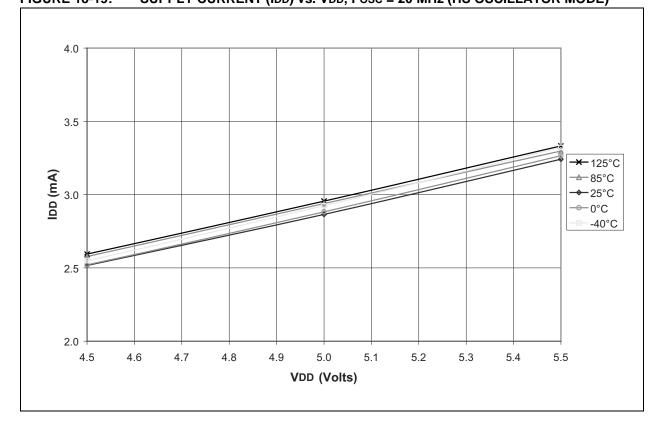


FIGURE 18-18: SUPPLY CURRENT (IDD vs. VDD, Fosc = 4 MHz (XT OSCILLATOR MODE)