

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

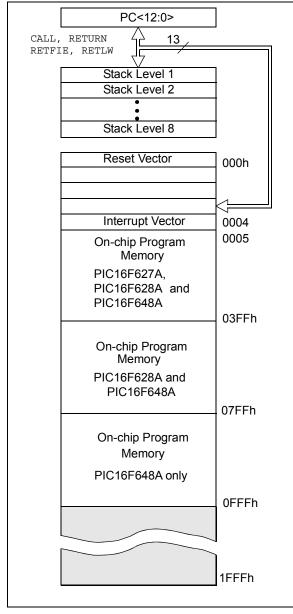
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f648at-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

Name	Function	Input Type	Output Type	Description			
RA0/AN0	RA0	ST	CMOS	Bidirectional I/O port			
	AN0	AN	—	Analog comparator input			
RA1/AN1	RA1	ST	CMOS	Bidirectional I/O port			
	AN1	AN	_	Analog comparator input			
RA2/AN2/VREF	RA2	ST	CMOS	Bidirectional I/O port			
	AN2	AN		Analog comparator input			
	VREF	—	AN	VREF output			
RA3/AN3/CMP1	RA3	ST	CMOS	Bidirectional I/O port			
	AN3	AN		Analog comparator input			
	CMP1	—	CMOS	Comparator 1 output			
RA4/T0CKI/CMP2	RA4	ST	OD	Bidirectional I/O port			
	TOCKI	ST	_	Timer0 clock input			
	CMP2	_	OD	Comparator 2 output			
RA5/MCLR/VPP	RA5	ST	_	Input port			
	MCLR	ST	_	Master clear. When configured as MCLR, th pin is an active low Reset to the device. Voltage on MCLR/VPP must not exceed VDr during normal device operation.			
	VPP	—	—	Programming voltage input			
RA6/OSC2/CLKOUT	RA6	ST	CMOS	Bidirectional I/O port			
	OSC2	—	XTAL	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.			
	CLKOUT		CMOS	In RC/INTOSC mode, OSC2 pin can output CLKOUT, which has 1/4 the frequency of OSC1.			
RA7/OSC1/CLKIN	RA7	ST	CMOS	Bidirectional I/O port			
	OSC1	XTAL	—	Oscillator crystal input			
	CLKIN	ST	—	External clock source input. RC biasing pin.			
RB0/INT	RB0	TTL	CMOS	Bidirectional I/O port. Can be software programmed for internal weak pull-up.			
	INT	ST	—	External interrupt			
RB1/RX/DT	RB1	TTL	CMOS	Bidirectional I/O port. Can be software programmed for internal weak pull-up.			
	RX	ST	—	USART receive pin			
	DT	ST	CMOS	Synchronous data I/O			
RB2/TX/CK	RB2	TTL	CMOS	Bidirectional I/O port. Can be software programmed for internal weak pull-up.			
	ТХ		CMOS	USART transmit pin			
	CK	ST	CMOS	Synchronous clock I/O			
RB3/CCP1	RB3	TTL	CMOS	Bidirectional I/O port. Can be software programmed for internal weak pull-up.			
	CCP1	ST	CMOS	Capture/Compare/PWM I/O			
Legend: O = Output — = Not used TTL = TTL Input		I = Ir	MOS Output	P = Power ST = Schmitt Trigger Input AN = Analog			


TABLE 3-2: PIC16F627A/628A/648A PINOUT DESCRIPTION

4.0 MEMORY ORGANIZATION

4.1 Program Memory Organization

The PIC16F627A/628A/648A has a 13-bit program counter capable of addressing an 8K x 14 program memory space. Only the first 1K x 14 (0000h-03FFh) for the PIC16F627A, 2K x 14 (0000h-07FFh) for the PIC16F628A and 4K x 14 (0000h-0FFFh) for the PIC16F648A are physically implemented. Accessing a location above these boundaries will cause a wraparound within the first 1K x 14 space (PIC16F627A), 2K x 14 space (PIC16F628A) or 4K x 14 space (PIC16F648A). The Reset vector is at 0000h and the interrupt vector is at 0004h (Figure 4-1).

4.2 Data Memory Organization

The data memory (Figure 4-2 and Figure 4-3) is partitioned into four banks, which contain the General Purpose Registers (GPRs) and the Special Function Registers (SFRs). The SFRs are located in the first 32 locations of each bank. There are General Purpose Registers implemented as static RAM in each bank. Table 4-1 lists the General Purpose Register available in each of the four banks.

TABLE 4-1:	GENERAL PURPOSE STATIC
	RAM REGISTERS

	PIC16F627A/628A	PIC16F648A
Bank0	20-7Fh	20-7Fh
Bank1	A0h-FF	A0h-FF
Bank2	120h-14Fh, 170h-17Fh	120h-17Fh
Bank3	1F0h-1FFh	1F0h-1FFh

Addresses F0h-FFh, 170h-17Fh and 1F0h-1FFh are implemented as common RAM and mapped back to addresses 70h-7Fh.

Table 4-2 lists how to access the four banks of registers via the Status register bits RP1 and RP0.

TABLE 4-2: ACCESS TO BANKS OF REGISTERS

Bank	RP1	RP0
0	0	0
1	0	1
2	1	0
3	1	1

4.2.1 GENERAL PURPOSE REGISTER FILE

The register file is organized as 224×8 in the PIC16F627A/628A and 256×8 in the PIC16F648A. Each is accessed either directly or indirectly through the File Select Register (FSR), See **Section 4.4** "Indirect Addressing, INDF and FSR Registers".

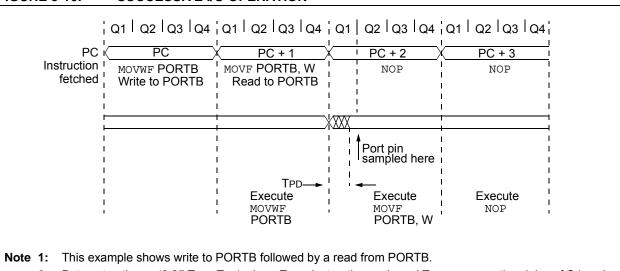
5.3 I/O Programming Considerations

5.3.1 BIDIRECTIONAL I/O PORTS

Any instruction that writes operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit 5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit 5 and PORTB is written to the output latches. If another bit of PORTB is used as a bidirectional I/O pin (e.g., bit 0) and is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit 0 is switched into Output mode later on, the content of the data latch may now be unknown.

Reading a port register reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-2 shows the effect of two sequential read-modify-write instructions (ex., ${\tt BCF}, {\tt BSF},$ etc.) on an I/O port


A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-OR", "wired-AND"). The resulting high output currents may damage the chip.

EXAMPLE 5-2: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings:	:PORTB<7:4> Inputs
;	PORTB<3:0> Outputs
;PORTB<7:6> have extern	nal pull-up and are
;not connected to other	c circuitry
;	
;	PORT latchPORT Pins
BCF STATUS, RPO	;
BCF PORTB, 7	;01pp pppp 11pp pppp
BSF STATUS, RPO	;
	;10pp pppp 11pp pppp
BCF TRISB, 6	;10pp pppp 10pp pppp
;	, the sets - set fore
, Note that the user may	v have expected the
; pin values to be 00pp	-
; caused RB7 to be latch	
; (High).	ica ab che più value
, (111911).	

5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-16). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

2: Data setup time = (0.25 TCY - TPD) where TCY = instruction cycle and TPD = propagation delay of Q1 cycle to output valid. Therefore, at higher clock frequencies, a write followed by a read may be problematic.

FIGURE 5-16: SUCCESSIVE I/O OPERATION

7.3 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during Sleep and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 7.3.2 "Reading and Writing Timer1 in Asynchronous Counter Mode").

Note:	In Asynchronous Counter mode, Timer1
	cannot be used as a time base for capture
	or compare operations.

7.3.1 EXTERNAL CLOCK INPUT TIMING WITH UNSYNCHRONIZED CLOCK

If control bit $\overline{\text{T1SYNC}}$ is set, the timer will increment completely asynchronously. The input clock must meet certain minimum high and low time requirements. Refer to Table 17-8 in the Electrical Specifications Section, timing parameters 45, 46 and 47.

7.3.2 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading the TMR1H or TMR1L register, while the timer is running from an external asynchronous clock, will produce a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself poses certain problems since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. Example 7-1 is an example routine to read the 16-bit timer value. This is useful if the timer cannot be stopped.

EXAMPLE 7-1: READING A 16-BIT FREE-RUNNING TIMER

	All inte	rrupts are d	lisabled
,	MOVF	TMR1H, W	
	MOVWF		, kedd high byte
	MOVF	,	;Read low byte
	MOVWF	TMPL	;
	MOVF	TMR1H, W	;Read high byte
	SUBWF	TMPH, W	;Sub 1st read with
			;2nd read
	BTFSC	STATUS, Z	;Is result = 0
	GOTO	CONTINUE	;Good 16-bit read
;			
;	TMR1L ma	v have rolle	ed over between the
;		-	l low bytes. Reading
'		5	
;	5	and low byc	es now will read a good
;	value.		
;			
	MOVF	TMR1H, W	;Read high byte
	MOVWF	TMPH	;
	MOVF	TMR1L, W	;Read low byte
	MOVWF	TMPL	i
;	Re-enabl	e the Intern	rupts (if required)
	ONTINUE		;Continue with your
			; code
			, coue

10.6 Comparator Interrupts

The comparator interrupt flag is set whenever there is a change in the output value of either comparator. Software will need to maintain information about the status of the output bits, as read from CMCON<7:6>, to determine the actual change that has occurred. The CMIF bit, PIR1<6>, is the comparator interrupt flag. The CMIF bit must be reset by clearing '0'. Since it is also possible to write a '1' to this register, a simulated interrupt may be initiated.

The CMIE bit (PIE1<6>) and the PEIE bit (INTCON<6>) must be set to enable the interrupt. In addition, the GIE bit must also be set. If any of these bits are clear, the interrupt is not enabled, though the CMIF bit will still be set if an interrupt condition occurs.

Note:	If a change in the CMCON register									
	(C1OUT or C2OUT) should occur when a									
	read operation is being executed (start of									
	the Q2 cycle), then the CMIF (PIR1<6>)									
	interrupt flag may not get set.									

The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any write or read of CMCON. This will end the mismatch condition.
- b) Clear flag bit CMIF.

A mismatch condition will continue to set flag bit CMIF. Reading CMCON will end the mismatch condition and allow flag bit CMIF to be cleared.

10.7 Comparator Operation During Sleep

When a comparator is active and the device is placed in Sleep mode, the comparator remains active and the interrupt is functional if enabled. This interrupt will wake-up the device from Sleep mode when enabled. While the comparator is powered-up, higher Sleep currents than shown in the power-down current specification will occur. Each comparator that is operational will consume additional current as shown in the comparator specifications. To minimize power consumption while in Sleep mode, turn off the comparators, CM<2:0> = 111, before entering Sleep. If the device wakes up from Sleep, the contents of the CMCON register are not affected.

10.8 Effects of a Reset

A device Reset forces the CMCON register to its Reset state. This forces the Comparator module to be in the comparator Reset mode, CM<2:0> = 000. This ensures that all potential inputs are analog inputs. Device current is minimized when analog inputs are present at Reset time. The comparators will be powered-down during the Reset interval.

10.9 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 10-4. Since the analog pins are connected to a digital output, they have reverse biased diodes to VDD and Vss. The analog input therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur. A maximum source impedance of 10 k Ω is recommended for the analog sources. Any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current.

TER 12-2:	RCSTA – RECEIVE STATUS AND CONTROL REGISTER (ADDRESS: 18h)											
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x				
	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D				
	bit 7	•		1		•	•	bit 0				
bit 7		rial Port Ena s RB1/RX/D		TX/CK pins a	as serial port pi	ns when bit	s TRISB<2:	1> are set)				
	 (Configures RB1/RX/DT and RB2/TX/CK pins as serial port pins when bits TRISB<2:1> are set) 1 = Serial port enabled 0 = Serial port disabled 											
bit 6	RX9 : 9-bit	Receive Ena	able bit									
		s 9-bit recep s 8-bit recep										
bit 5	SREN: Sin	gle Receive	Enable bit									
	Asynchron											
	Don't ca Synchrono	ire i <u>us mode - n</u>	naetor:									
		bles single r										
	0 = Disa	ables single i	receive									
		is cleared af		n is complet	e.							
	<u>Synchronous mode - slave</u> : Unused in this mode											
bit 4				le bit								
	CREN: Continuous Receive Enable bit Asynchronous mode:											
	1 = Enables continuous receive											
	0 = Disables continuous receive											
	Synchronous mode: 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)											
		ables continu						0 01 (211)				
bit 3	ADEN: Ad	dress Detect	t Enable bit									
	Asynchronous mode 9-bit (RX9 = 1): 1 = Enables address detection, enable interrupt and load of the receive buffer when RSR<8> is set											
	0 = Disables address detection, all bytes are received, and ninth bit can be used as parity bit											
	Asynchronous mode 8-bit (RX9 = 0): Unused in this mode											
	Synchronous mode Unused in this mode											
bit 2	FERR: Fra	iming Error b	bit									
	1 = Framin 0 = No frar		n be update	d by reading	RCREG regis	ter and rec	eive next va	ilid byte)				
bit 1	OERR: Ov	errun Error I	oit									
	 1 = Overrun error (Can be cleared by clearing bit CREN) 0 = No overrun error 											
bit 0	RX9D : 9th	RX9D : 9th bit of received data (Can be parity bit)										
	Legend:]				
	R = Reada	able bit	VV = V	Vritable bit	U = Unimp	lemented b	it, read as '	D'				
	-n = Value	at POR	'1' = E	Bit is set	'0' = Bit is	cleared	x = Bit is u	ıknown				
	,											

Follow these steps when setting up an Asynchronous Reception:

- 1. TRISB<1> and TRISB<2> should both be set to '1' to configure the RB1/RX/DT and RB2/TX/CK pins as inputs. Output drive, when required, is controlled by the peripheral circuitry.
- Initialize the SPBRG register for the appropriate baud rate. If a high-speed baud rate is desired, set bit BRGH. (Section 12.1 "USART Baud Rate Generator (BRG)").
- 3. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. Enable the reception by setting bit CREN.
- Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If an OERR error occurred, clear the error by clearing enable bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		e on DR		e on ther sets
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000	-000	0000	-000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000	000x	0000	000x
1Ah	RCREG	USART R	eceive D	Data Regi	ster					0000	0000	0000	0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000	-000	0000	-000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000	-010	0000	-010
99h	SPBRG	Baud Rate	Baud Rate Generator Register									0000	0000

TABLE 12-7: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception.

12.5.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical except in the case of the Sleep mode. Also, bit SREN is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during Sleep. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Follow these steps when setting up a Synchronous Slave Reception:

- 1. TRISB<1> and TRISB<2> should both be set to '1' to configure the RB1/RX/DT and RB2/TX/CK pins as inputs. Output drive, when required, is controlled by the peripheral circuitry.
- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. To enable reception, set enable bit CREN.
- Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If an OERR error occurred, clear the error by clearing bit CREN.

IADLE I	ABLE 12-11. REGISTERS ASSOCIATED WITH STINCHRONOUS SLAVE TRANSMISSION											
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets	
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000	
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x	
19h	TXREG	USART	Transmit	Data Re	egister					0000 0000	0000 0000	
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000	
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010	
99h	SPBRG	G Baud Rate Generator Register								0000 0000	0000 0000	

TABLE 12-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for synchronous slave transmission.

TABLE 12-12: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART Receive Data Register					0000 0000	0000 0000			
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register					0000 0000	0000 0000			

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for synchronous slave reception.

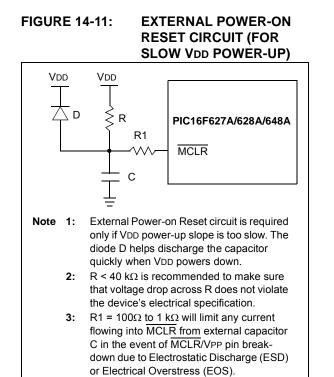
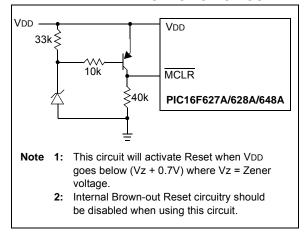
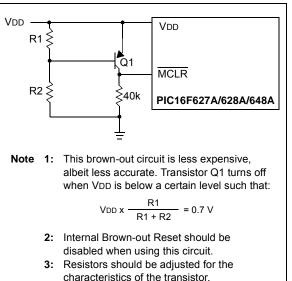




FIGURE 14-12: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 14-13: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

14.5 Interrupts

The PIC16F627A/628A/648A has 10 sources of interrupt:

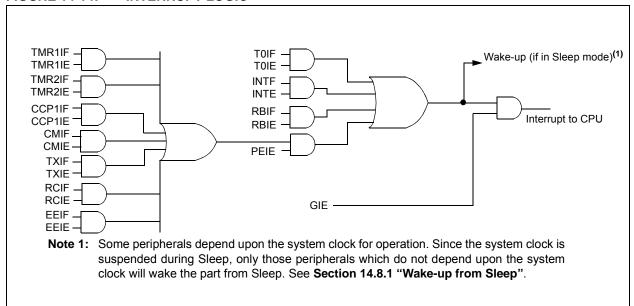
- External Interrupt RB0/INT
- TMR0 Overflow Interrupt
- PORTB Change Interrupts (pins RB<7:4>)
- Comparator Interrupt
- USART Interrupt TX
- USART Interrupt RX
- CCP Interrupt
- TMR1 Overflow Interrupt
- TMR2 Match Interrupt
- Data EEPROM Interrupt

The Interrupt Control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

A Global Interrupt Enable bit, GIE (INTCON<7>) enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. Individual interrupts can be disabled through their corresponding enable bits in INTCON register. GIE is cleared on Reset.

The "return-from-interrupt" instruction, RETFIE, exits interrupt routine as well as sets the GIE bit, which reenables RB0/INT interrupts.

The INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.


The peripheral interrupt flag is contained in the special register PIR1. The corresponding interrupt enable bit is contained in special registers PIE1.

When an interrupt is responded to, the GIE is cleared to disable any further interrupt, the return address is pushed into the stack and the PC is loaded with 0004h. Once in the interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid RB0/ INT recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs (Figure 14-15). The latency is the same for one or two-cycle instructions. Once in the interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid multiple interrupt requests.

Note 1: Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit.

2: When an instruction that clears the GIE bit is executed, any interrupts that were pending for execution in the next cycle are ignored. The CPU will execute a NOP in the cycle immediately following the instruction which clears the GIE bit. The interrupts which were ignored are still pending to be serviced when the GIE bit is set again.

FIGURE 14-14: INTERRUPT LOGIC

AND Literal with W

ANDLW

ADDLW	Add Literal and W				
Syntax:	[<i>label</i>] ADDLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	$(W) + k \to (W)$				
Status Affected:	C, DC, Z				
Encoding:	11 111x kkkk kkkk				
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.				
Words:	1				
Cycles:	1				
Example	ADDLW 0x15				
	Before Instruction W = 0x10 After Instruction W = 0x25				

Curstand				
Syntax:	[label] ANDLW k			
Operands:	$0 \le k \le 255$			
Operation:	(W) .AND. (k) \rightarrow (W)			
Status Affected:	Z			
Encoding:	11 1001 kkkk kkkk			
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.			
Words:	1			
Cycles:	1			
Example	ANDLW 0x5F			
	Before Instruction W = 0xA3 After Instruction			
	W = 0x03			
ANDWF	AND W with f			
Syntax:	[label] ANDWF f,d			
Operands:	$0 \le f \le 127$			
	$d \in [0,1]$			
Operation:	d ∈ [0,1] (W) .AND. (f) → (dest)			
Operation: Status Affected:				
•	(W) .AND. (f) \rightarrow (dest)			
Status Affected:	(W) .AND. (f) \rightarrow (dest) Z			
Status Affected: Encoding:	(W) .AND. (f) \rightarrow (dest) Z 00 0101 dfff ffff AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register			
Status Affected: Encoding: Description:	$\begin{array}{c c} (W) \ . AND. \ (f) \rightarrow (dest) \\ \hline Z \\ \hline 00 & 0101 & dfff & ffff \\ \hline AND \ the \ W \ register \ with \ register \\ \ 'f'. \ If \ 'd' \ is \ '0', \ the \ result \ is \ stored \\ in \ the \ W \ register. \ If \ 'd' \ is \ '1', \ the \\ result \ is \ stored \ back \ in \ register \\ \ 'f'. \end{array}$			
Status Affected: Encoding: Description: Words:	(W) .AND. (f) \rightarrow (dest) Z 00 0101 dfff ffff AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'. 1			

ADDWF	Add W and f			
Syntax:	[label] ADDWF f,d			
Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Operation:	$(W) + (f) \to (dest)$			
Status Affected:	C, DC, Z			
Encoding:	00 0111 dfff ffff			
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.			
Words:	1			
Cycles:	1			
Example	ADDWF REG1, 0			
	Before Instruction W = 0x17 REG1 = 0xC2 After Instruction W = 0xD9 REG1 = 0xC2 Z = 0 C = 0 DC = 0			

IORLW	Inclusive OR Literal with W				
Syntax:	[<i>label</i>] IORLW k				
Operands:	$0 \le k \le 255$				
Operation:	(W) .OR. $k \rightarrow$ (W)				
Status Affected:	Z				
Encoding:	11 1000 kkkk kkkk				
Description:	The contents of the W register is OR'ed with the eight-bit literal 'k'. The result is placed in the W register.				
Words:	1				
Cycles:	1 IORLW 0x35				
Example					
	Before Instruction W = 0x9A After Instruction W = 0xBF Z = 0				
IORWF	Inclusive OR W with f				

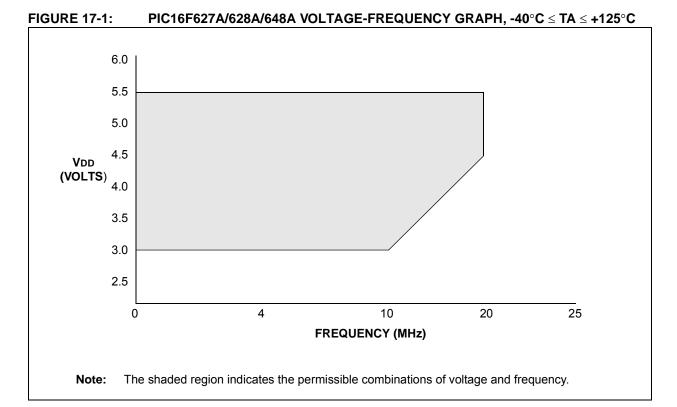
MOVLW	Move Literal to W					
Syntax:	[<i>label</i>] MOVLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	$k \rightarrow (W)$					
Status Affected:	d: None					
Encoding:	oding: 11 00xx kkkk kkkk					
Description:	The eight bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.					
Words:	1					
Cycles:	1					
<u>Example</u>	MOVLW 0x5A					
	After Instruction W = 0x5A					

IORWF	Inclusive OR W with f				
Syntax:	[<i>label</i>] IORWF f,d				
Operands:	$0 \le f \le 127$ d \in [0,1]				
Operation:	(W) .OR. (f) \rightarrow (dest)				
Status Affected:	Z				
Encoding:	00 0100 dfff ffff				
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.				
Words:	1				
Cycles:	1				
Example	IORWF REG1, 0				
	Before Instruction REG1 = 0x13 W = 0x91 After Instruction REG1 = 0x13 W = 0x93 Z = 1				

MOVF	Move f				
Syntax:	[<i>label</i>] MOVF f,d				
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in[0,1] \end{array}$				
Operation:	$(f) \rightarrow (dest)$				
Status Affected:	Z				
Encoding:	00 1000 dfff ffff				
Description:	The contents of register 'f' is moved to a destination dependent upon the status of 'd'. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.				
Words:	1				
Cycles:	1				
Example	MOVF REG1, 0				
	After Instruction W= value in REG1 register Z = 1				

RETLW	Return with Literal in W	RLF	Rotate Left f through Carry			
Syntax:	[<i>label</i>] RETLW k	Syntax:	[<i>label</i>] RLF f,d			
Operands:	$0 \le k \le 255$	Operands:	$0 \leq f \leq 127$			
Operation:	$k \rightarrow (W);$		d ∈ [0,1]			
	$TOS \rightarrow PC$	Operation:	See description below			
Status Affected:	None	Status Affected:	С			
Encoding:	11 01xx kkkk kkkk	Encoding:	00 1101 dfff ffff			
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.			
Words:	1					
Cycles:	2					
Example	CALL TABLE;W contains table	Words: Cycles:	1			
	;offset value • ;W now has table value	Example	RLF REG1, 0			
TABLE	<pre>ADDWF PC;W = offset RETLW k1;Begin table RETLW k2; RETLW kn; End of table Before Instruction W = 0x07 After Instruction W = value of k8</pre>	<u>Enumpro</u>	Before Instruction REG1=1110 0110 C = 0 After Instruction REG1=1110 0110 W = 1100 1100 C = 1			
RETURN Syntax:	Return from Subroutine					

Syntax:	[label]	RETU	RN		
Operands:	None				
Operation:	$TOS\toPC$				
Status Affected:	None				
Encoding:	00	0000	0000	1000	
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.			op of I into	
Words:	1				
Cycles:	2				
Example	RETURN				
	After Int P	terrupt C = TO	S		


17.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings(†)

5-(1)	
Ambient temperature under bias	40 to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	-0.3 to +6.5V
Voltage on MCLR and RA4 with respect to Vss	0.3 to +14V
Voltage on all other pins with respect to Vss	0.3V to VDD + 0.3V
Total power dissipation ⁽¹⁾	800 mW
Maximum current out of Vss pin	300 mA
Maximum current into VDD pin	250 mA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	± 20 mA
Output clamp current, loк (Vo < 0 or Vo >VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA and PORTB (Combined)	200 mA
Maximum current sourced by PORTA and PORTB (Combined)	200 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\Sigma$ IOH} + Σ {(VDD $-V$	он) x Iон} + ∑(Vol x Io∟)

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}}$ pin rather than pulling this pin directly to Vss.

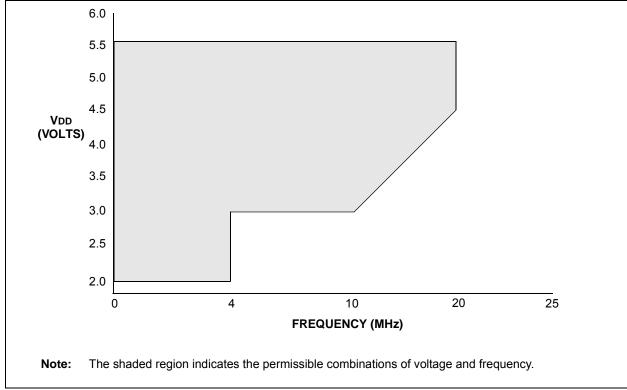


FIGURE 18-10: TYPICAL INTERNAL OSCILLATOR FREQUENCY vs. TEMPERATURE VDD = 3 VOLTS

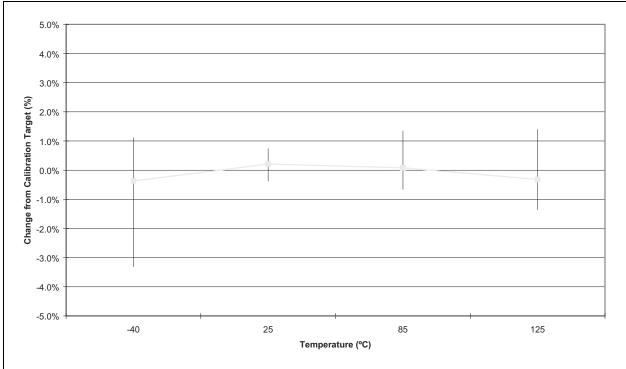
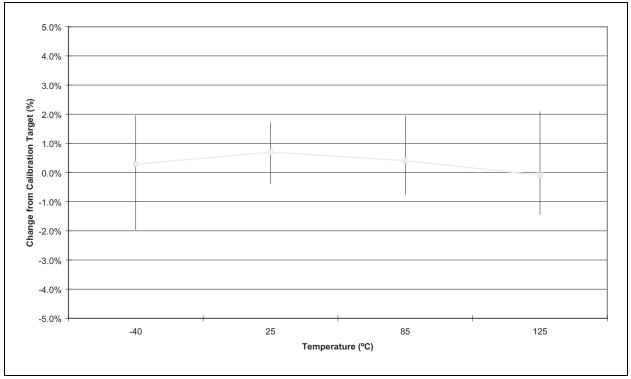
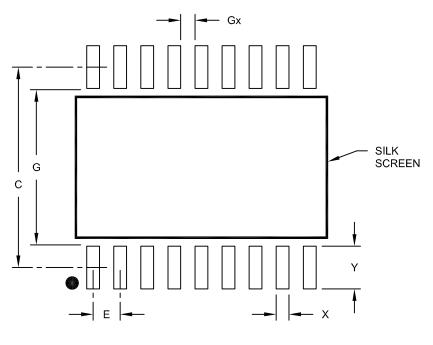




FIGURE 18-11: TYPICAL INTERNAL OSCILLATOR FREQUENCY vs. TEMPERATURE VDD = 2 VOLTS

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

RECOMMENDED LAND PATTERN

Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	Е	1.27 BSC		
Contact Pad Spacing	С		9.40	
Contact Pad Width	Х			0.60
Contact Pad Length	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2051A

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
From	n: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone: ()	FAX: ()
Appli	ication (optional):	
Wou	ld you like a reply?YN	
Devi	ce: PIC16F627A/628A/648A	Literature Number: DS40044G
Ques	stions:	
1. V	What are the best features of this do	cument?
2. H	How does this document meet your l	hardware and software development needs?
_		
_		
3. E	Do you find the organization of this d	locument easy to follow? If not, why?
_		
_		
4. V	What additions to the document do y	you think would enhance the structure and subject?
_		
-		
5. V	What deletions from the document c	ould be made without affecting the overall usefulness?
-		· · · · · · · · · · · · · · · · · · ·
6. I	s there any incorrect or misleading i	nformation (what and where)?
_		
- 7 '	low would you improve this desures	ant?
7. F	low would you improve this docume	
_		
-		

Q

Q-Clock Quick-Turnaround-Production (QTP) Devices	
R	
RC Oscillator	101
RC Oscillator Mode	
Block Diagram	101
Reader Response	174
Registers	
CCP1CON (CCP Operation)	57
CMCON (Comparator Configuration)	63
CONFIG (Configuration Word)	
EECON1 (EEPROM Control Register 1)	
INTCON (Interrupt Control)	
Maps	
PIC16F627A	18, 19
PIC16F628A	18, 19
OPTION_REG (Option)	25
PCON (Power Control)	29
PIE1 (Peripheral Interrupt Enable 1)	
PIR1 (Peripheral Interrupt Register 1)	28
Status	24
T1CON Timer1 Control)	50
T2CON Timer2 Control)	55
Reset	
RETFIE Instruction	126
RETLW Instruction	127
RETURN Instruction	127
Revision History	171
RLF Instruction	127
RRF Instruction	128

S

Serial Communication Interface (SCI) Module, See USART	
Serialized Quick-Turnaround-Production (SQTP) Devices 9	9
SLEEP Instruction	8
Software Simulator (MPLAB SIM) 133	3
Special Event Trigger. See Compare	
Special Features of the CPU97	7
Special Function Registers	C
Status Register	4
SUBLW Instruction	3
SUBWF Instruction	9
SWAPF Instruction	9

Т

T1CKPS0 bit	50
T1CKPS1 bit	50
T1CON Register	50
T1OSCEN bit	50
T2CKPS0 bit	55
T2CKPS1 bit	55
T2CON Register	55
Timer0	
Block Diagrams	
Timer0/WDT	48
External Clock Input	47
Interrupt	47
Prescaler	
Switching Prescaler Assignment	
Timer0 Module	47
Timer1	
Asynchronous Counter Mode	52
Capacitor Selection	53

51
52
53
51, 53
53
53
59
51
51
52
52
54
54
54
54, 61
54
54
60
147
147
83
80
83
89
87
144
110
50
50
55
55
55
55
55
129
33

U

Universal Synchronous Asynchronous Receiver Transmitter (USART)
Setting Up Reception
Address Detect
Block Diagram
USART
Asynchronous Mode79
Asynchronous Receiver
Asynchronous Reception
Asynchronous Transmission 80
Asynchronous Transmitter79
Baud Rate Generator (BRG) 75
Block Diagrams
Transmit 80
USART Receive 82
BRGH bit 75
Sampling
Synchronous Master Mode 86
Synchronous Master Reception 88
Synchronous Master Transmission
Synchronous Slave Mode 89
Synchronous Slave Reception