

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

201010	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	1.75KB (1K x 14)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	224 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf627a-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR Reset ⁽¹⁾	Details on Page	
Bank 2												
100h	INDF	Addressing	g this location	cal register)	xxxx xxxx	30						
101h	TMR0	Timer0 Mo	dule's Registe	er						xxxx xxxx	47	
102h	PCL	Program C	rogram Counter's (PC) Least Significant Byte									
103h	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	24	
104h	FSR	Indirect Da	ndirect Data Memory Address Pointer									
105h	_	Unimpleme	direct Data Memory Address Pointer 2 nimplemented									
106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	38	
107h	_	Unimpleme	ented	•	•	•		•		_	_	
108h	_	Unimpleme	ented							_	_	
109h	_	Unimpleme	ented							_	—	
10Ah	PCLATH	_	_	_	Write	Buffer for u	pper 5 bits o	f Program C	Counter	0 0000	30	
10Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	26	
10Ch	—	Unimpleme	ented							—		
10Dh	—	Unimpleme	ented							—	_	
10Eh	_	Unimpleme	ented							_		
10Fh	_	Unimpleme	ented							_		
110h		Unimpleme	ented							_		
111h		Unimpleme	ented							—	—	
112h		Unimpleme	ented							—	—	
113h		Unimpleme	ented							—	—	
114h	—	Unimpleme	ented							—	_	
115h	—	Unimpleme	ented							_	_	
116h	—	Unimpleme	ented							_	—	
117h	_	Unimpleme	ented							_		
118h	_	Unimpleme	ented							_		
119h		Unimpleme								_		
11Ah		Unimpleme								—	—	
11Bh	_	Unimpleme								—	—	
11Ch	_	Unimpleme								_	—	
11Dh	-	Unimpleme								—	—	
11Eh	-	Unimpleme								—	—	
11Fh	—	Unimpleme	ented							—	—	

TABLE 4-5: SPECIAL FUNCTION REGISTERS SUMMARY BANK2

Legend:- = Unimplemented locations read as '0', u = unchanged, x = unknown, q = value depends on condition, shaded = unimplemented.Note1:For the initialization condition for registers tables, refer to Table 14-6 and Table 14-7.

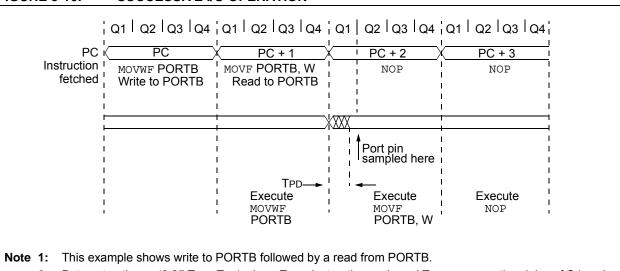
5.3 I/O Programming Considerations

5.3.1 BIDIRECTIONAL I/O PORTS

Any instruction that writes operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit 5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit 5 and PORTB is written to the output latches. If another bit of PORTB is used as a bidirectional I/O pin (e.g., bit 0) and is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit 0 is switched into Output mode later on, the content of the data latch may now be unknown.

Reading a port register reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

Example 5-2 shows the effect of two sequential read-modify-write instructions (ex., ${\tt BCF}, {\tt BSF},$ etc.) on an I/O port


A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-OR", "wired-AND"). The resulting high output currents may damage the chip.

EXAMPLE 5-2: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings:	:PORTB<7:4> Inputs
;	PORTB<3:0> Outputs
;PORTB<7:6> have extern	nal pull-up and are
;not connected to other	c circuitry
;	
;	PORT latchPORT Pins
BCF STATUS, RPO	;
BCF PORTB, 7	;01pp pppp 11pp pppp
BSF STATUS, RPO	;
	;10pp pppp 11pp pppp
BCF TRISB, 6	;10pp pppp 10pp pppp
;	, the sets - set fore
, Note that the user may	v have expected the
; pin values to be 00pp	-
; caused RB7 to be latch	
; (High).	ica ab che più value
, (111911).	

5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-16). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

2: Data setup time = (0.25 TCY - TPD) where TCY = instruction cycle and TPD = propagation delay of Q1 cycle to output valid. Therefore, at higher clock frequencies, a write followed by a read may be problematic.

FIGURE 5-16: SUCCESSIVE I/O OPERATION

6.3 Timer0 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer. A prescaler assignment for the Timer0 module means that there is no postscaler for the Watchdog Timer, and vice-versa.

The PSA and PS<2:0> bits (OPTION<3:0>) determine the prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x...etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the Watchdog Timer. The prescaler is not readable or writable.

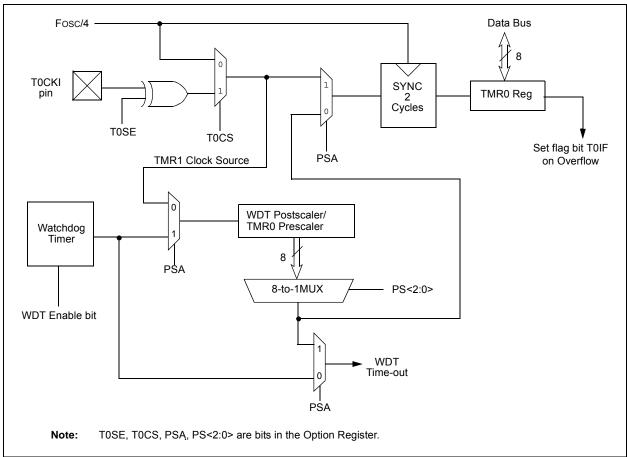


FIGURE 6-1: BLOCK DIAGRAM OF THE TIMER0/WDT

9.0 CAPTURE/COMPARE/PWM (CCP) MODULE

The CCP (Capture/Compare/PWM) module contains a 16-bit register which can operate as a 16-bit Capture register, as a 16-bit Compare register or as a PWM master/slave Duty Cycle register. Table 9-1 shows the timer resources of the CCP module modes.

CCP1 Module

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. All are readable and writable.

Additional information on the CCP module is available in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023).

TABLE 9-1: CCP MODE – TIMER RESOURCE

CCP Mode	Timer Resource			
Capture	Timer1			
Compare	Timer1			
PWM	Timer2			

REGISTER 9-1: CCP1CON – CCP OPERATION REGISTER (ADDRESS: 17h)

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0
bit 7							bit 0

- bit 7-6 Unimplemented: Read as '0'
- bit 5-4 CCP1X:CCP1Y: PWM Least Significant bits
 - <u>Capture Mode</u> Unused <u>Compare Mode</u> Unused <u>PWM Mode</u>

These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.

bit 3-0 CCP1M<3:0>: CCPx Mode Select bits

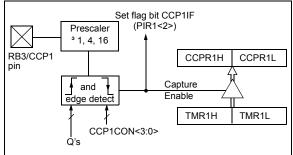
- 0000 = Capture/Compare/PWM off (resets CCP1 module)
- 0100 = Capture mode, every falling edge
- 0101 = Capture mode, every rising edge
- 0110 = Capture mode, every 4th rising edge
- 0111 = Capture mode, every 16th rising edge
- 1000 = Compare mode, set output on match (CCP1IF bit is set)
- 1001 = Compare mode, clear output on match (CCP1IF bit is set)
- 1010 = Compare mode, generate software interrupt on match (CCP1IF bit is set, CCP1 pin is unaffected)
- 1011 = Compare mode, trigger special event (CCP1IF bit is set; CCP1 resets TMR1
- 11xx = PWM mode

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

9.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RB3/CCP1. An event is defined as:

- · Every falling edge
- Every rising edge
- · Every 4th rising edge
- Every 16th rising edge


An event is selected by control bits CCP1M<3:0> (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

9.1.1 CCP PIN CONFIGURATION

In Capture mode, the RB3/CCP1 pin should be configured as an input by setting the TRISB<3> bit.

Note:	If the RB3/CCP1 is configured as an
	output, a write to the port can cause a
	capture condition.

FIGURE 9-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

9.1.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

9.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF following any such change in Operating mode.

9.1.4 CCP PRESCALER

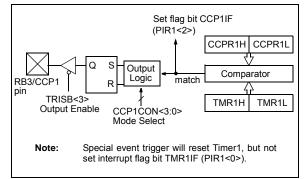
There are four prescaler settings, specified by bits CCP1M<3:0>. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. This means that any Reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 9-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 9-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		; the new prescaler
		; mode value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		; value

9.2 Compare Mode

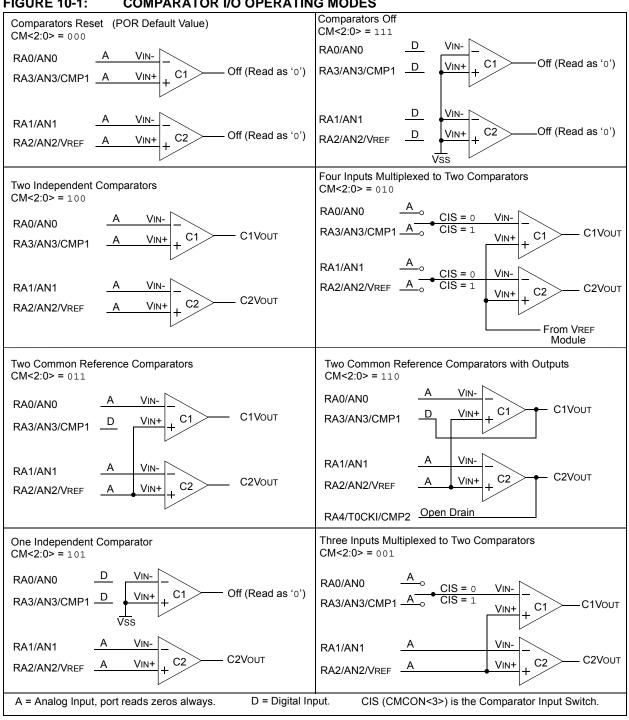

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RB3/CCP1 pin is:

- Driven high
- Driven low
- · Remains unchanged

The action on the pin is based on the value of control bits CCP1M<3:0> (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

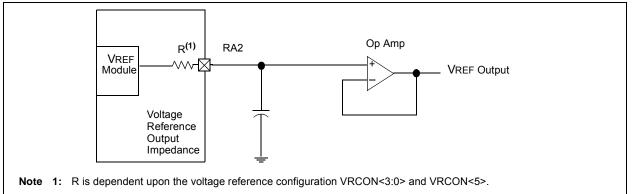
FIGURE 9-2: C

COMPARE MODE OPERATION BLOCK DIAGRAM



10.1 Comparator Configuration

There are eight modes of operation for the comparators. The CMCON register is used to select the mode. Figure 10-1 shows the eight possible modes. The TRISA register controls the data direction of the comparator pins for each mode.


If the Comparator mode is changed, the comparator output level may not be valid for the specified mode change delay shown in Table 17-2.

- Note 1: Comparator interrupts should be disabled during a Comparator mode change, otherwise a false interrupt may occur.
 - 2: Comparators can have an inverted output. See Figure 10-1.

FIGURE 10-1: COMPARATOR I/O OPERATING MODES

FIGURE 11-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 11-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE

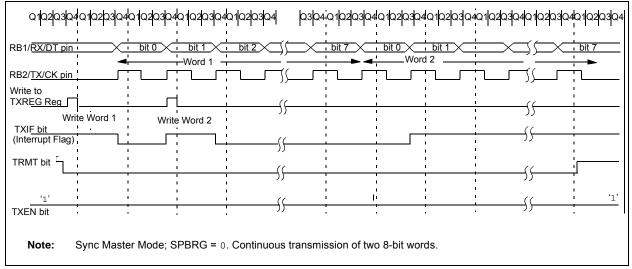
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value On POR	Value On All Other Resets
9Fh	VRCON	VREN	VROE	VRR	—	VR3	VR2	VR1	VR0	000- 0000	000- 0000
1Fh	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

Legend: - = Unimplemented, read as '0'.

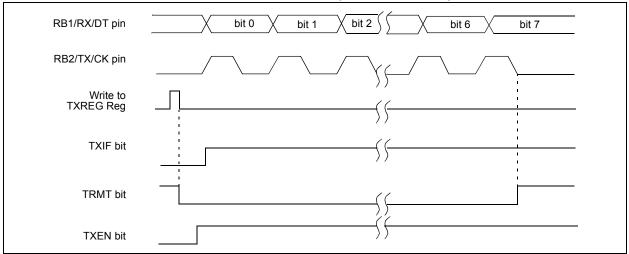
BAUD	Fosc = 20 MHz		SPBRG	16 MHz		SPBRG	10 MHz	SPBRG	
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	NA		_	NA		_	NA	_	_
1.2	1.221	+1.73%	255	1.202	+0.16%	207	1.202	+0.16%	129
2.4	2.404	+0.16%	129	2.404	+0.16%	103	2.404	+0.16%	64
9.6	9.469	-1.36%	32	9.615	+0.16%	25	9.766	+1.73%	15
19.2	19.53	+1.73%	15	19.23	+0.16%	12	19.53	+1.73V	7
76.8	78.13	+1.73%	3	83.33	+8.51%	2	78.13	+1.73%	1
96	104.2	+8.51%	2	NA	_	_	NA	_	_
300	312.5	+4.17%	0	NA	_	_	NA	_	_
500	NA	_	_	NA	_	_	NA	_	_
HIGH	312.5	_	0	250	_	0	156.3	_	0
LOW	1.221		255	0.977		255	0.6104	_	255

TABLE 12-4 :	BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)
---------------------	---

BAUD	Fosc = 7.15909 MHz		SPBRG 5.0688 MHz			SPBRG	4 MHz	SPBRG	
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	NA	_	_	0.31	+3.13%	255	0.3005	-0.17%	207
1.2	1.203	+0.23%	92	1.2	0	65	1.202	+1.67%	51
2.4	2.380	-0.83%	46	2.4	0	32	2.404	+1.67%	25
9.6	9.322	-2.90%	11	9.9	+3.13%	7	NA	_	_
19.2	18.64	-2.90%	5	19.8	+3.13%	3	NA	_	_
76.8	NA	_	_	79.2	+3.13%	0	NA	_	_
96	NA	_	_	NA	_	_	NA	_	_
300	NA	_	_	NA		_	NA	_	_
500	NA	_	_	NA	_	_	NA	_	_
HIGH	111.9	_	0	79.2		0	62.500	_	0
LOW	0.437	_	255	0.3094		255	3.906	_	255


BAUD	Fosc = 3.57	9545 MHz	SPBRG	1 MHz		SPBRG	32.768 kHz		SPBRG value
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	(decimal)
0.3	0.301	+0.23%	185	0.300	+0.16%	51	0.256	-14.67%	1
1.2	1.190	-0.83%	46	1.202	+0.16%	12	NA	_	_
2.4	2.432	+1.32%	22	2.232	-6.99%	6	NA	_	_
9.6	9.322	-2.90%	5	NA	_	_	NA	_	_
19.2	18.64	-2.90%	2	NA	_	_	NA	_	_
76.8	NA	_	_	NA	_	_	NA	_	_
96	NA	_	_	NA		_	NA	_	_
300	NA	_	_	NA	_	_	NA	_	_
500	NA	_	_	NA		_	NA	_	_
HIGH	55.93	_	0	15.63		0	0.512	_	0
LOW	0.2185	_	255	0.0610		255	0.0020	_	255

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART 1	USART Transmit Data Register								0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rat	te Gener	ator Reg	gister					0000 0000	0000 0000


TABLE 12-9: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

FIGURE 12-8: SYNCHRONOUS TRANSMISSION

FIGURE 12-9: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

12.5.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical except in the case of the Sleep mode. Also, bit SREN is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during Sleep. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Follow these steps when setting up a Synchronous Slave Reception:

- 1. TRISB<1> and TRISB<2> should both be set to '1' to configure the RB1/RX/DT and RB2/TX/CK pins as inputs. Output drive, when required, is controlled by the peripheral circuitry.
- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. To enable reception, set enable bit CREN.
- Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If an OERR error occurred, clear the error by clearing bit CREN.

TABLE 12-11. REGISTERS ASSOCIATED WITH STNCHRONOUS SLAVE TRANSMISSION											
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART	USART Transmit Data Register								0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Ra	te Gene	rator Reg	gister					0000 0000	0000 0000

TABLE 12-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for synchronous slave transmission.

TABLE 12-12: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART F	Receive		0000 0000	0000 0000					
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	99h SPBRG Baud Rate Generator Register								0000 0000	0000 0000	

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for synchronous slave reception.

NOTES:

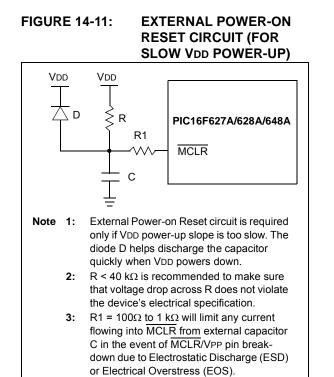
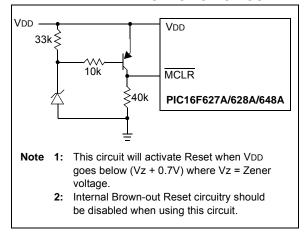
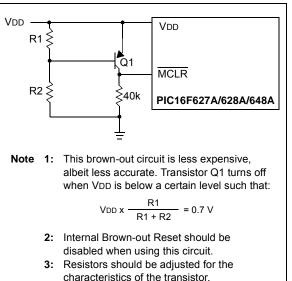




FIGURE 14-12: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

FIGURE 14-13: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

INCF	Increme	nt f				INCFSZ	Increm	ent f, Sk	tip if 0		
Syntax:	[label]	INCF	f,d		I	Syntax:	[label] INCFSZ f,d				
Operands:		$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$				Operands:		$0 \le f \le 127$ d $\in [0,1]$			
Operation:	(f) + 1 →	(f) + 1 \rightarrow (dest)				Operation:	(f) + 1 \rightarrow (dest), skip if result = 0				
Status Affected:	Z					Status Affected:	None				
Encoding:	00	1010	dfff	ffff		Encoding:	00	1111	dfff	ffff	
Description: Words: Cycles:	incremer result is p If 'd' is '1	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. 1				Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '0', the next instruction, which is already				
Example	INCF Before Ir	REG1,			fetched, is discarded. A NOP is executed instead making it a two-cycle instruction.						
		EG1 =				Words:	1				
	Z		0			Cycles:					
	After Insi RE Z	EG1 =	0x00 1			Example	1(2) HERE CONTIN	INCF GOTO UE • •		EG1, 1 DOP	
							Before	Instructio	on		

PC = address HERE After Instruction REG1 = REG1 + 1 if CNT = 0, PC = address CONTINUE if REG1≠ 0, PC = address HERE +1

16.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

16.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

16.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

16.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

16.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

16.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

TABLE 17-2: COMPARATOR SPECIFICATIONS

	Operating Conditions: 2.0V < VDD <5.5V, -40°C < TA < +125°C, unless otherwise stated.											
Param No.	Characteristics	Sym	Min	Тур	Мах	Units	Comments					
D300	Input Offset Voltage	VIOFF		±5.0	±10	mV						
D301	Input Common Mode Voltage	VICM	0	_	Vdd - 1.5*	V						
D302	Common Mode Rejection Ratio	CMRR	55*	_	—	db						
D303	Response Time ⁽¹⁾	TRESP	_	300	400*	ns	VDD = 3.0V to 5.5V -40° to +85°C					
			—	400	600*	ns	VDD = 3.0V to 5.5V -85° to +125°C					
			—	400	600*	ns	VDD = 2.0V to 3.0V -40° to +85°C					
D304	Comparator Mode Change to Output Valid	Тмс2оv		300	10*	μ S						

* These parameters are characterized but not tested.

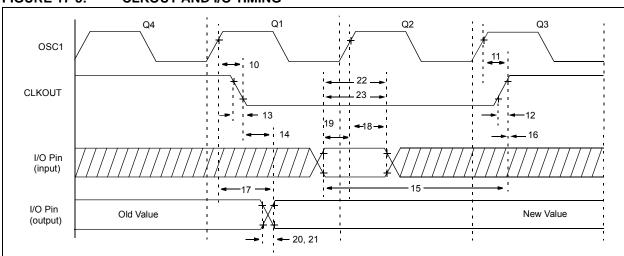
Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 17-3: VOLTAGE REFERENCE SPECIFICATIONS

	Operating Conditions: 2.0V < VDD < 5.5V, -40°C < TA < +125°C, unless otherwise stated.											
Spec No.	Characteristics	Sym	Min	Тур	Max	Units	Comments					
D310	Resolution	VRES	—	-	VDD/24 VDD/32	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)					
D311	Absolute Accuracy	VRAA	_	_	1/4 ⁽²⁾ * 1/2 ⁽²⁾ *	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)					
D312	Unit Resistor Value (R)	Vrur	_	2k*	_	Ω						
D313	Settling Time ⁽¹⁾	TSET	_	_	10*	μS						

* These parameters are characterized but not tested.

Note 1: Settling time measured while VRR = 1 and VR<3:0> transitions from '0000' to '1111'.


2: When VDD is between 2.0V and 3.0V, the VREF output voltage levels on RA2 described by the equation:[VDD/2 ± (3 – VDD)/2] may cause the Absolute Accuracy (VRAA) of the VREF output signal on RA2 to be greater than the stated max.

Parameter No.	Sym	Characteristic	Min	Тур	Max	Units	Conditions
F10	Fiosc	Oscillator Center frequency	_	4	_	MHz	
F13	∆losc	Oscillator Accuracy	3.96	4	4.04	MHz	VDD = 3.5 V, 25°C
		5	3.92	4	4.08	MHz	$2.0V \le VDD \le 5.5V$ $0^{\circ}C \le TA \le +85^{\circ}C$
			3.80	4	4.20	MHz	$\begin{array}{l} 2.0V \leq VDD \leq 5.5V \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ (IND)} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ (EXT)} \end{array}$
F14 [*]	TIOSCST	Oscillator Wake-up from Sleep		6	8	μS	VDD = 2.0V, -40°C to +85°C
		start-up time		4	6	μS	VDD = 3.0V, -40°C to +85°C
				3	5	μS	VDD = 5.0V, -40°C to +85°C

TABLE 17-5: PRECISION INTERNAL OSCILLATOR PARAMETERS

Legend: TBD = To Be Determined.

* Characterized but not tested.

FIGURE 17-5: CLKOUT AND I/O TIMING

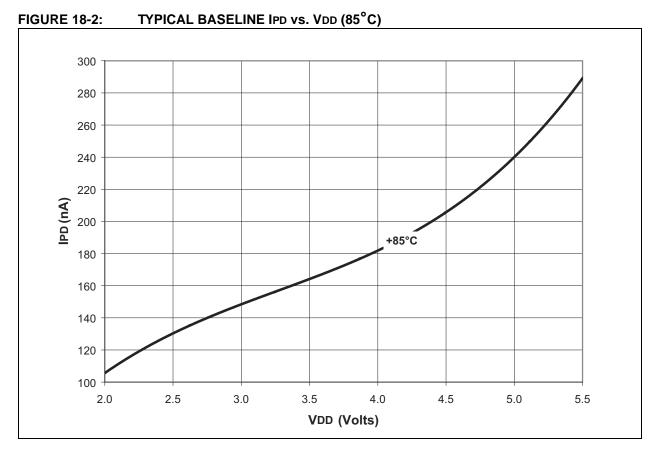
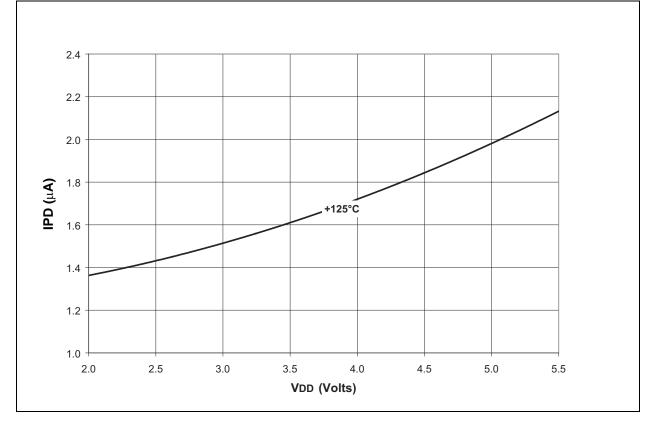



FIGURE 18-3: TYPICAL BASELINE CURRENT IPD vs. VDD (125°C)

INDEX

1	
^	۰.

A/D	
Special Event Trigger (CCP)	59
Absolute Maximum Ratings	135
ADDLW Instruction	119
ADDWF Instruction	
ANDLW Instruction	
ANDWF Instruction	
Architectural Overview	11
Assembler	
MPASM Assembler	132
В	
Baud Rate Error	75
Baud Rate Formula	75
BCF Instruction	120
Block Diagrams	
Comparator	
I/O Operating Modes	
Modified Comparator Output	66
I/O Ports	
RB0/INT Pin	
RB1/RX/DT Pin	
RB2/TX/CK Pin	
RB3/CCP1 Pin	
RB4/PGM Pin	
RB5 Pin	
RB6/T1OSO/T1CKI Pin	
RB7/T10SI Pin	
RC Oscillator Mode	
USART Receive	
USART Transmit	
BRGH bit	
Brown-Out Reset (BOR)	
BSF Instruction	
BTFSC Instruction	
BTFSS Instruction	121

С

C Compilers	
MPLAB C18	132
CALL Instruction	121
Capture (CCP Module)	58
Block Diagram	58
CCP Pin Configuration	58
CCPR1H:CCPR1L Registers	58
Changing Between Capture Prescalers	58
Prescaler	58
Software Interrupt	58
Timer1 Mode Selection	58
Capture/Compare/PWM (CCP)	57
Capture Mode. See Capture	
CCP1	57
CCPR1H Register	57
CCPR1L Register	57
CCP2	57
Compare Mode. See Compare	
PWM Mode. See PWM	
Timer Resources	57
CCP1CON Register	57
CCP1M Bits	57
CCP1X:CCP1Y Bits	57
CCP2CON Register	
CCP2M<3:2> Bits	57

CCP2X:CCP2Y Bits	57
Clocking Scheme/Instruction Cycle	
CLRF Instruction	
CLRW Instruction	
CLRWDT Instruction	122
CMCON Register	
Code Examples	
Data EEPROM Refresh Routine	94
Code Protection	113
COMF Instruction	122
Comparator	
Block Diagrams	
I/O Operating Modes	64
Modified Comparator Output	66
Comparator Module	63
Configuration	64
Interrupts	67
Operation	65
Reference	65
Compare (CCP Module)	58
Block Diagram	
CCP Pin Configuration	59
CCPR1H:CCPR1L Registers	58
Software Interrupt	59
Special Event Trigger	59
Timer1 Mode Selection	59
CONFIG Register	98
Configuration Bits	97
Crystal Operation	99
Customer Change Notification Service	173
Customer Notification Service	
Customer Support	173

D

Data EEPROM Memory	
EECON1 Register	
EECON2 Register	
Operation During Code Protection	95
Reading	93
Spurious Write Protection	93
Using	
Write Verify	93
Writing to	93
Data Memory Organization	17
DECF Instruction	122
DECFSZ Instruction	123
Development Support	131
Device Differences	171
Device Migrations	172
Dual-speed Oscillator Modes	101

Ε

EECON1 Register	
EECON1 register	
EECON2 register	
Errata	
External Crystal Oscillator Circuit	

F

Fuses. See Configuration Bits

G

General-Purpose Register File 17	,
GOTO Instruction	3