

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	18-DIP (0.300", 7.62mm)
Supplier Device Package	18-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf648a-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

18-pin Flash-Based, 8-Bit CMOS Microcontrollers with nanoWatt Technology

High-Performance RISC CPU:

- Operating speeds from DC 20 MHz
- · Interrupt capability
- 8-level deep hardware stack
- Direct, Indirect and Relative Addressing modes
- 35 single-word instructions:
 - All instructions single cycle except branches

Special Microcontroller Features:

- · Internal and external oscillator options:
 - Precision internal 4 MHz oscillator factory calibrated to $\pm 1\%$
 - Low-power internal 48 kHz oscillator
 - External Oscillator support for crystals and resonators
- Power-saving Sleep mode
- · Programmable weak pull-ups on PORTB
- Multiplexed Master Clear/Input-pin
- Watchdog Timer with independent oscillator for reliable operation
- Low-voltage programming
- In-Circuit Serial Programming[™] (via two pins)
- Programmable code protection
- Brown-out Reset
- Power-on Reset
- · Power-up Timer and Oscillator Start-up Timer
- Wide operating voltage range (2.0-5.5V)
- Industrial and extended temperature range
- High-Endurance Flash/EEPROM cell:
 - 100,000 write Flash endurance
 - 1,000,000 write EEPROM endurance
 - 40 year data retention

Low-Power Features:

- · Standby Current:
- 100 nA @ 2.0V, typical
- · Operating Current:
 - 12 μA @ 32 kHz, 2.0V, typical
 - 120 μA @ 1 MHz, 2.0V, typical
- Watchdog Timer Current:
- 1 μA @ 2.0V, typical
- Timer1 Oscillator Current:
 - 1.2 μA @ 32 kHz, 2.0V, typical
- Dual-speed Internal Oscillator:
 - Run-time selectable between 4 MHz and 48 kHz
 - 4 µs wake-up from Sleep, 3.0V, typical

Peripheral Features:

- 16 I/O pins with individual direction control
- High current sink/source for direct LED drive
- · Analog comparator module with:
 - Two analog comparators
 - Programmable on-chip voltage reference (VREF) module
 - Selectable internal or external reference
 - Comparator outputs are externally accessible
- Timer0: 8-bit timer/counter with 8-bit programmable prescaler
- Timer1: 16-bit timer/counter with external crystal/ clock capability
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- · Capture, Compare, PWM module:
 - 16-bit Capture/Compare
 - 10-bit PWM
- Addressable Universal Synchronous/Asynchronous Receiver/Transmitter USART/SCI

Dovice	Program Memory	Data N	lemory	10	ССР		Comporatora	Timers	
Device	Flash (words)	SRAM (bytes)	EEPROM (bytes)	10	(PWM)	USARI	Comparators	8/16-bit	
PIC16F627A	1024	224	128	16	1	Y	2	2/1	
PIC16F628A	2048	224	128	16	1	Y	2	2/1	
PIC16F648A	4096	256	256	16	1	Y	2	2/1	

3.1 Clocking Scheme/Instruction Cycle

The clock input (RA7/OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks namely Q1, Q2, Q3 and Q4. Internally, the Program Counter (PC) is incremented every Q1, the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow is shown in Figure 3-2.

3.2 Instruction Flow/Pipelining

An instruction cycle consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO) then two cycles are required to complete the instruction (Example 3-1).

A fetch cycle begins with the program counter incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-1: INSTRUCTION PIPELINE FLOW

FIGURE 4-2: DATA MEMORY MAP OF THE PIC16F627A AND PIC16F628A

	1						7
Indirect addr. ⁽¹⁾	00h	Indirect addr. ⁽¹⁾	80h	Indirect addr. ⁽¹⁾	100h	Indirect addr. ⁽¹⁾	180
TMR0	01h	OPTION	81h	TMR0	101h	OPTION	181
PCL	02h	PCL	82h	PCL	102h	PCL	182
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183
FSR	04h	FSR	84h	FSR	104h	FSR	184
PORTA	05h	TRISA	85h		105h		185
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186
	07h		87h		107h		187
	08h		88h		108h		188
	09h		89h		109h		189
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18/
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	185
PIR1	0Ch	PIE1	8Ch		10Ch		180
	0Dh		8Dh		10Dh		18[
TMR1L	0Eh	PCON	8Eh		10Eh		18
TMR1H	0Fh		8Fh		10Fh		18F
T1CON	10h		90h				
TMR2	11h		91h				
T2CON	12h	PR2	92h				
	13h		93h				
	14h		94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h				
CCP1CON	17h		97h				
RCSTA	18h	TXSTA	98h				
TXREG	19h	SPBRG	99h				
RCREG	1Ah	EEDATA	9Ah				
	1Bh	EEADR	9Bh				
	1Ch	EECON1	9Ch				
	1Dh	EECON2 ⁽¹⁾	9Dh				
	1Eh		9Eh				
CMCON	1Fh	VRCON	9Fh		11Fh		
	20h		A0h	General	120h		
General		General		Register			
Purpose		Purpose		48 Bytes	14Fh		
Register		Register 80 Bytes			150h		
80 Bytes		00 2700					
	6Fh		EFh		16Fh		1EF
	70h		F0h	2002222	170h	20000000	1F0
16 Bytes		accesses		70h-7Fh		70h-7Fh	
	7Fb	701-711	FFh		17Fh		1FF
Bank 0		Bank 1		Bank 2		Bank 3	
Unimplem	iented dat	a memory locations, i	ead as 'o	,			

4.2.2.1 Status Register

The Status register, shown in Register 4-1, contains the arithmetic status of the ALU; the Reset status and the bank select bits for data memory (SRAM).

The Status register can be the destination for any instruction, like any other register. If the Status register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are non-writable. Therefore, the result of an instruction with the Status register as destination may be different than intended.

For example, CLRF STATUS will clear the upper-three bits and set the Z bit. This leaves the Status register as "000uu1uu" (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the Status register because these instructions do not affect any Status bit. For other instructions, not affecting any Status bits, see the "Instruction Set Summary".

Note:	The C and DC bits operate as a Borrow									
	and Digit Borrow out bit, respectively, in									
	subtraction. See the SUBLW and SUBWF									
	instructions for examples.									

REGISTER 4-1: STATUS – STATUS REGISTER (ADDRESS: 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x			
	IRP	RP1	RP0	TO	PD	Z	DC	С			
	bit 7							bit 0			
7	IRP : Regis 1 = Bank 2 0 = Bank 0	ter Bank Se 2, 3 (100h-1F 9, 1 (00h-FFt	lect bit (use ⁻ Fh) า)	d for indirec	t addressing)						
6-5	RP<1:0> : F 00 = Bank 01 = Bank 10 = Bank 11 = Bank	Register Bar 0 (00h-7Fh) 1 (80h-FFh) 2 (100h-17F 3 (180h-1FF	hk Select bit Fh) Fh)	ts (used for	direct addressir	ng)					
4	TO : Time C 1 = After po 0 = A WDT	Out bit ower-up, c⊥ ⁻ time out oc	RWDT instru	ction or SLI	EP instruction						
3	PD : Power 1 = After p 0 = By exe	PD: Power-down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction									
2	Z : Zero bit 1 = The res 0 = The res	sult of an ari sult of an ari	thmetic or le thmetic or le	ogic operati ogic operati	on is zero on is not zero						
1	DC : Digit C is reversed 1 = A carry 0 = No carr	arry/Borrow) -out from th	bit (ADDWF, e 4th low or be 4th low o	ADDLW, SU	BLW, SUBWF inst e result occurre	tructions) († d	for Borrow t	he polarity			
0	C: Carry/Be 1 = A carry 0 = No carr Note:	orrow bit (AI -out from th ry-out from t For Borrow, complemen loaded with	e Most Sigr he Most Sigr he Most Sig the polarity t of the sec either the h	W, SUBLW, S nificant bit of gnificant bit is reversed cond operar nigh or low c	TUBWF instruction the result occur of the result occur d. A subtraction ad. For rotate (F rder bit of the s	ons) nrred curred is execute RRF, RLF) i ource regis	ed by adding instructions ster.	g the two's , this bit is			
	Legend:]			
	R = Reada	ble bit	W = V	Vritable bit	U = Unimple	emented b	it, read as '	0'			
	-n = Value	at POR	'1' = E	Bit is set	'0' = Bit is c	leared	x = Bit is ur	hknown			

8.0 TIMER2 MODULE

Timer2 is an 8-bit timer with a prescaler and a postscaler. It can be used as the PWM time base for PWM mode of the CCP module. The TMR2 register is readable and writable, and is cleared on any device Reset.

The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS<1:0> (T2CON<1:0>).

The Timer2 module has an 8-bit period register PR2. The TMR2 register value increments from 00h until it matches the PR2 register value and then resets to 00h on the next increment cycle. The PR2 register is a readable and writable register. The PR2 register is initialized to FFh upon Reset.

The match output of Timer2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a Timer2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

Timer2 can be shut off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

Register 8-1 shows the Timer2 control register.

8.1 Timer2 Prescaler and Postscaler

The prescaler and postscaler counters are cleared when any of the following occurs:

- a write to the TMR2 register
- · a write to the T2CON register
- any device Reset (Power-on Reset, MCLR Reset, Watchdog Timer Reset or Brown-out Reset)

The TMR2 register is not cleared when T2CON is written.

8.2 TMR2 Output

The TMR2 output (before the postscaler) is fed to the Synchronous Serial Port module which optionally uses it to generate shift clock.

FIGURE 8-1: TIMER2 BLOCK DIAGRAM

9.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available: the CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

PWM duty cycle =

(CCPR1L:CCP1CON<5:4>) · Tosc · TMR2 prescale value

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

Maximum PWM resolution (bits) for a given PWM frequency:

Note: If the PWM duty cycle value is longer than the PWM period the CCP1 pin will not be cleared.

For an example PWM period and duty cycle calculation, see the *PIC[®] Mid-Range Reference Manual* (DS33023).

9.3.3 SET-UP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- Make the CCP1 pin an output by clearing the TRISB<3> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.

TABLE 9-3: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 20 MHz

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescaler (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.5

TABLE 9-4: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
86h, 186h	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	1111 1111	1111 1111
11h	TMR2	Timer2 M	odule's Reg	ister						0000 0000	0000 0000
92h	PR2	Timer2 M	odule's Peri	od Register						1111 1111	1111 1111
12h	T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	uuuu uuuu
15h	CCPR1L	Capture/0	Compare/PV		xxxx xxxx	uuuu uuuu					
16h	CCPR1H	Capture/0	Compare/PV		XXXX XXXX	uuuu uuuu					
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PWM and Timer2.

FIGURE 10-4: ANALOG INPUT MODE

TABLE 10-1:	REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on All Other Resets
1Fh	CMCON	C2OUT	C10UT	C2INV	C1NV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
0Bh, 8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	T0IE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

Legend: x = Unknown, u = Unchanged, - = Unimplemented, read as '0'

BAUD	Fosc = 20 MHz		SPBRG	16 MHz		SPBRG	10 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9.615	+0.16%	129	9.615	+0.16%	103	9.615	+0.16%	64
19200	19.230	+0.16%	64	19.230	+0.16%	51	18.939	-1.36%	32
38400	37.878	-1.36%	32	38.461	+0.16%	25	39.062	+1.7%	15
57600	56.818	-1.36%	21	58.823	+2.12%	16	56.818	-1.36%	10
115200	113.636	-1.36%	10	111.111	-3.55%	8	125	+8.51%	4
250000	250	0	4	250	0	3	NA	_	—
625000	625	0	1	NA	_	—	625	0	0
1250000	1250	0	0	NA	—	_	NA	—	—

TABLE 12-5: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

BAUD	Fosc = 7.16 MHz		SPBRG	5.068 MHz	5.068 MHz		4 MHz	SPBRG	
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
9600	9.520	-0.83%	46	9598.485	0.016%	32	9615.385	0.160%	25
19200	19.454	+1.32%	22	18632.35	-2.956%	16	19230.77	0.160%	12
38400	37.286	-2.90%	11	39593.75	3.109%	7	35714.29	-6.994%	6
57600	55.930	-2.90%	7	52791.67	-8.348%	5	62500	8.507%	3
115200	111.860	-2.90%	3	105583.3	-8.348%	2	125000	8.507%	1
250000	NA	_	_	316750	26.700%	0	250000	0.000%	0
625000	NA	_	_	NA	_	_	NA	_	_
1250000	NA	_	_	NA	_	_	NA	_	_

BAUD	Fosc = 3.579 MHz		SPBRG	1 MHz		SPBRG	32.768 kHz		SPBRG
RATE (K)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)	KBAUD	ERROR	(decimal)
9600	9725.543	1.308%	22	8.928	-6.994%	6	NA	NA	NA
19200	18640.63	-2.913%	11	20833.3	8.507%	2	NA	NA	NA
38400	37281.25	-2.913%	5	31250	-18.620%	1	NA	NA	NA
57600	55921.88	-2.913%	3	62500	+8.507	0	NA	NA	NA
115200	111243.8	-2.913%	1	NA	_	_	NA	NA	NA
250000	223687.5	-10.525%	0	NA	_	_	NA	NA	NA
625000	NA	_	_	NA	_	_	NA	NA	NA
1250000	NA	—	—	NA	—	—	NA	NA	NA

FIGURE 12-3: ASYNCHRONOUS TRANSMISSION (BACK TO BACK)

TABLE 12-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG USART Transmit Data Register									0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG Baud Rate Generator Register								0000 0000	0000 0000	

Legend: x = unknown, - = unimplemented locations read as '0'.

Shaded cells are not used for Asynchronous Transmission.

12.5.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical except in the case of the Sleep mode. Also, bit SREN is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during Sleep. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from Sleep. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Follow these steps when setting up a Synchronous Slave Reception:

- 1. TRISB<1> and TRISB<2> should both be set to '1' to configure the RB1/RX/DT and RB2/TX/CK pins as inputs. Output drive, when required, is controlled by the peripheral circuitry.
- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. To enable reception, set enable bit CREN.
- Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If an OERR error occurred, clear the error by clearing bit CREN.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF	_	CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART ⁻	Transmit	Data Re	egister					0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	—	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG Baud Rate Generator Register							0000 0000	0000 0000		

TABLE 12-11: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE TRANSMISSION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for synchronous slave transmission.

TABLE 12-12: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	Value on all other Resets
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART F	Receive	Data Re	gister					0000 0000	0000 0000
8Ch	PIE1	EEIE	CMIE	RCIE	TXIE	_	CCP1IE	TMR2IE	TMR1IE	0000 -000	0000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	RG Baud Rate Generator Register								0000 0000	0000 0000

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for synchronous slave reception.

13.3 Reading the EEPROM Data Memory

To read a data memory location, the user must write the address to the EEADR register and then set control bit RD (EECON1<0>). The data is available, in the very next cycle, in the EEDATA register; therefore it can be read in the next instruction. EEDATA will hold this value until another read or until it is written to by the user (during a write operation).

EXAMPLE 13-1: DATA EEPROM READ

BSF	STATUS, RPO	;Bank 1
MOVLW	CONFIG_ADDR	;
MOVWF	EEADR	;Address to read
BSF	EECON1, RD	;EE Read
MOVF	EEDATA, W	;W = EEDATA
BCF	STATUS, RPO	;Bank 0

13.4 Writing to the EEPROM Data Memory

To write an EEPROM data location, the user must first write the address to the EEADR register and the data to the EEDATA register. Then the user must follow a specific sequence to initiate the write for each byte.

EXAMPLE 13-2: DATA EEPROM WRITE

Required Sequence	BSF BSF BCF GOTO MOVLW MOVWF MOVLW MOVWF BSF	STATUS, RPO EECON1, WREN INTCON, GIE INTCON, GIE \$-2 55h EECON2 AAh EECON2 EECON1, WR	<pre>;Bank 1 ;Enable write ;Disable INTs. ;See AN576 ; ;Write 55h ; ;Write AAh ;Set WR bit ;begin write</pre>
	BSF INT	CON, GIE	;begin write ;Enable INTs.

The write will not initiate if the above sequence is not followed exactly (write 55h to EECON2, write AAh to EECON2, then set WR bit) for each byte. We strongly recommend that interrupts be disabled during this code segment. A cycle count is executed during the required sequence. Any number that is not equal to the required cycles to execute the required sequence will cause the data not to be written into the EEPROM.

Additionally, the WREN bit in EECON1 must be set to enable write. This mechanism prevents accidental writes to data EEPROM due to errant (unexpected) code execution (i.e., lost programs). The user should keep the WREN bit clear at all times, except when updating EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, clearing the WREN bit will not affect this write cycle. The WR bit will be inhibited from being set unless the WREN bit is set.

At the completion of the write cycle, the WR bit is cleared in hardware and the EE Write Complete Interrupt Flag bit (EEIF) is set. The user can either enable this interrupt or poll this bit. The EEIF bit in the PIR1 registers must be cleared by software.

13.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the Data EEPROM should be verified (Example 13-3) to the desired value to be written. This should be used in applications where an EEPROM bit will be stressed near the specification limit.

EXAMPLE 13-3: WRITE VERIFY

	BSF	STATUS,	RP0	;Bank 1
	MOVF	EEDATA,	W	
	BSF	EECON1,	RD	;Read the
				;value written
;				
;Is	the val	lue writt	en	(in W req) and
;re	ad (in H	EEDATA) t	he	same?
;				
	SUBWF	EEDATA,	W	;
	BTFSS	STATUS,	Z	;Is difference 0?
	GOTO	WRITE EF	RR	:NO, Write error
	:	_		:YES, Good write
				:Continue program
	-			,

13.6 Protection Against Spurious Write

There are conditions when the device may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been built-in. On power-up, WREN is cleared. Also when enabled, the Power-up Timer (72 ms duration) prevents EEPROM write.

The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch or software malfunction.

NOTES:

RETLW	Return with Literal in W	RLF	Rotate Left f through Carry				
Syntax:	[<i>label</i>] RETLW k	Syntax:	[<i>label</i>] RLF f,d				
Operands:	$0 \le k \le 255$	Operands:	$0 \le f \le 127$				
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC	Operation:	a ∈ [0, 1] See description below				
Status Affected:	None	Status Affected:	С				
Encoding:	11 01xx kkkk kkkk	Encoding:	00 1101 dfff ffff				
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.				
Words:	1						
Cycles:	2	\M/ordo:	1				
Example	CALL TABLE;W contains table	words.	1				
	;offset value • ;W now has table value	Cycles.					
TABLE	<pre>ADDWF PC;W = offset RETLW k1;Begin table RETLW k2; RETLW kn; End of table Before Instruction W = 0x07 After Instruction W = value of k8</pre>	<u>example</u>	Before Instruction REG1=1110 0110 C = 0 After Instruction REG1=1110 0110 W = 1100 1100 C = 1				
RETURN Syntax:	Return from Subroutine						

Syntax:	[label]	RETU	RN				
Operands:	None						
Operation:	$\text{TOS} \rightarrow$	PC					
Status Affected:	None						
Encoding:	00	0000	0000	1000			
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.						
Words:	1						
Cycles:	2						
Example	RETURN						
	After Interrupt PC = TOS						

17.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings(†)

Ambient temperature under bias	40 to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3 to +6.5V
Voltage on MCLR and RA4 with respect to Vss	0.3 to +14V
Voltage on all other pins with respect to Vss	0.3V to VDD + 0.3V
Total power dissipation ⁽¹⁾	
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Input clamp current, Ιικ (Vi < 0 or Vi > VDD)	± 20 mA
Output clamp current, loк (Vo < 0 or Vo >VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA and PORTB (Combined)	
Maximum current sourced by PORTA and PORTB (Combined)	
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\Sigma$ IOH} + Σ {(VDD $-\Sigma$	VOH) x IOH} + Σ (VOI x IOL)

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Note: Voltage spikes below Vss at the $\overline{\text{MCLR}}$ pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100 Ω should be used when applying a "low" level to the $\overline{\text{MCLR}}$ pin rather than pulling this pin directly to Vss.

TABLE 17-9:	CAPTURE/COMPARE/PWM REQUIREMENTS

Param No.	Sym		Min	Тур†	Max	Units	Conditions		
50	TCCL	CCP input low time	No Prescaler		0.5Tcy + 20*	—		ns	
				PIC16F62XA	10*		_	ns	
			With Prescaler	PIC16LF62XA	20*	_		ns	
51	ТссН	CCP input high time	No Prescaler		0.5TCY + 20*	_		ns	
				PIC16F62XA	10*	_		ns	
			With Prescaler	PIC16LF62XA	20*	—	l	ns	
52	TCCP	CCP input period			<u>3Tcy + 40*</u> N	_		ns	N = prescale value (1,4 or 16)
53	TccR	CCP output rise	time	PIC16F62XA		10	25*	ns	
				PIC16LF62XA		25	45*	ns	
54	TCCF	CCP output fall time		PIC16F62XA		10	25*	ns	
				PIC16LF62XA		25	45*	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

NOTES:

18.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

The graphs and tables provided in this section are for design guidance and are not tested.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.

The data presented in this section is a **statistical summary** of data collected on units from different lots over a period of time and matrix samples. 'Typical' represents the mean of the distribution at 25°C. 'Max' or 'Min' represents (mean + 3σ) or (mean - 3σ) respectively, where σ is standard deviation, over the whole temperature range.

FIGURE 18-1: TYPICAL BASELINE IPD vs. VDD (-40°C TO 25°C)

