

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

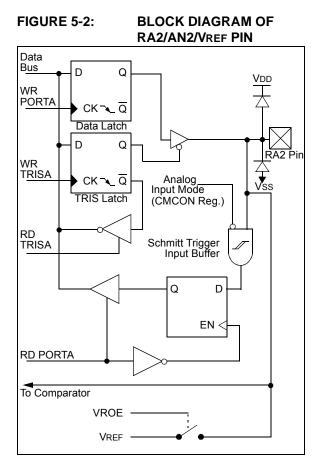
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	18-SOIC (0.295", 7.50mm Width)
Supplier Device Package	18-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf648a-i-so

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

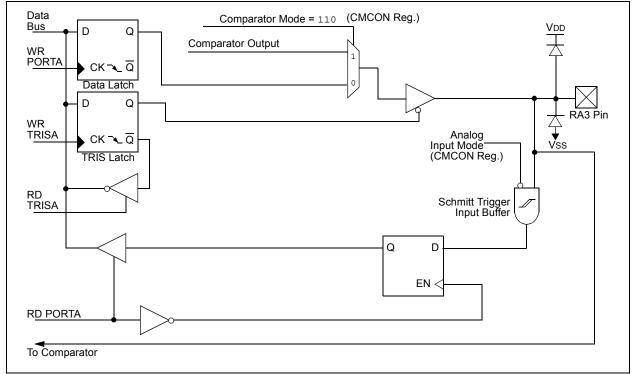

NOTES:

FIGURE 4-2: DATA MEMORY MAP OF THE PIC16F627A AND PIC16F628A

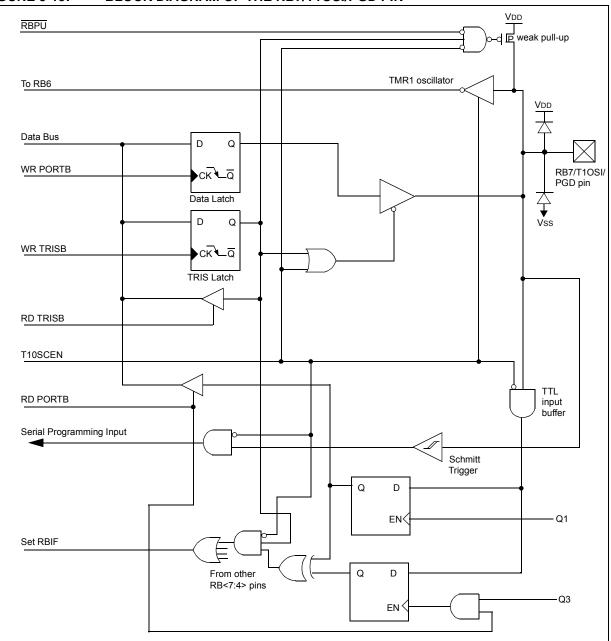

direct addr. ⁽¹⁾	00h	Indirect addr. ⁽¹⁾	80h	Indirect addr. ⁽¹⁾	100h	Indirect addr. ⁽¹⁾
TMR0	01h	OPTION	81h	TMR0	101h	OPTION
PCL	02h	PCL	82h	PCL	102h	PCL
STATUS	03h	STATUS	83h	STATUS	103h	STATUS
FSR	04h	FSR	84h	FSR	104h	FSR
PORTA	05h	TRISA	85h		105h	
PORTB	06h	TRISB	86h	PORTB	106h	TRISB
	07h		87h		107h	
	08h		88h		108h	
	09h		89h		109h	
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON
PIR1	0Ch	PIE1	8Ch		10Ch	
	0Dh		8Dh		10Dh	
TMR1L	0Eh	PCON	8Eh		10Eh	
TMR1H	0Fh		8Fh		10Fh	
T1CON	10h		90h			
TMR2	11h		91h			
T2CON	12h	PR2	92h			
	13h		93h			
	14h		94h			
CCPR1L	15h		95h			
CCPR1H	16h		96h			
CCP1CON	17h		97h			
RCSTA	18h	TXSTA	98h			
TXREG	19h	SPBRG	99h			
RCREG	1Ah	EEDATA	9Ah			
	1Bh	EEADR	9Bh			
	1Ch	EECON1	9Ch			
	1Dh	EECON2 ⁽¹⁾	9Dh			
	1Eh		9Eh			
CMCON	1Fh	VRCON	9Fh		11Fh	
	20h		A0h	General Purpose	120h	
General		General		Register		
Purpose Register		Purpose Register		48 Bytes	14Fh	
•		80 Bytes			150h	
80 Bytes						
	6Fh		EFh		16Fh	
16 Bytes	70h	accesses	F0h	accesses	170h	accesses
IO Dyles		70h-7Fh		70h-7Fh		70h-7Fh
	7Fh		FFh		17Fh	
Bank 0		Bank 1		Bank 2		Bank 3
-	4 4	a memory locations, r		,		

FIGURE 5-3: BLOCK DIAGRAM OF THE RA3/AN3/CMP1 PIN

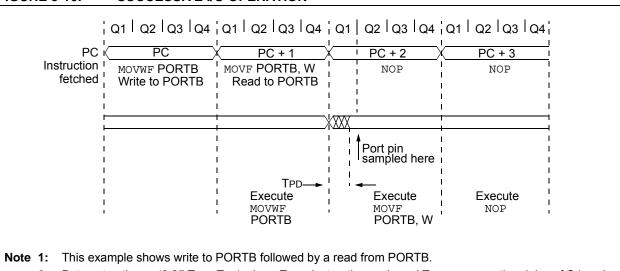
5.3 I/O Programming Considerations

5.3.1 BIDIRECTIONAL I/O PORTS

Any instruction that writes operates internally as a read followed by a write operation. The BCF and BSF instructions, for example, read the register into the CPU, execute the bit operation and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit 5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit 5 and PORTB is written to the output latches. If another bit of PORTB is used as a bidirectional I/O pin (e.g., bit 0) and is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit 0 is switched into Output mode later on, the content of the data latch may now be unknown.

Reading a port register reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (ex. BCF, BSF, etc.) on a port, the value of the port pins is read, the desired operation is done to this value, and this value is then written to the port latch.

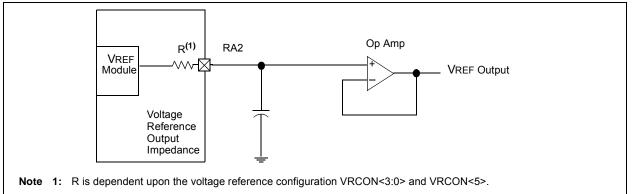
Example 5-2 shows the effect of two sequential read-modify-write instructions (ex., ${\tt BCF}, {\tt BSF},$ etc.) on an I/O port


A pin actively outputting a Low or High should not be driven from external devices at the same time in order to change the level on this pin ("wired-OR", "wired-AND"). The resulting high output currents may damage the chip.

EXAMPLE 5-2: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT settings:	:PORTB<7:4> Inputs
;	PORTB<3:0> Outputs
;PORTB<7:6> have extern	nal pull-up and are
;not connected to other	c circuitry
;	
;	PORT latchPORT Pins
BCF STATUS, RPO	;
BCF PORTB, 7	;01pp pppp 11pp pppp
BSF STATUS, RPO	;
	;10pp pppp 11pp pppp
BCF TRISB, 6	;10pp pppp 10pp pppp
;	, the sets - set fore
, Note that the user may	v have expected the
; pin values to be 00pp	-
; caused RB7 to be latch	
; (High).	ica ab che più value
, (111911).	

5.3.2 SUCCESSIVE OPERATIONS ON I/O PORTS


The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 5-16). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

2: Data setup time = (0.25 TCY - TPD) where TCY = instruction cycle and TPD = propagation delay of Q1 cycle to output valid. Therefore, at higher clock frequencies, a write followed by a read may be problematic.

FIGURE 5-16: SUCCESSIVE I/O OPERATION

FIGURE 11-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

TABLE 11-1: REGISTERS ASSOCIATED WITH VOLTAGE REFERENCE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value On POR	Value On All Other Resets
9Fh	VRCON	VREN	VROE	VRR	—	VR3	VR2	VR1	VR0	000- 0000	000- 0000
1Fh	CMCON	C2OUT	C10UT	C2INV	C1INV	CIS	CM2	CM1	CM0	0000 0000	0000 0000
85h	TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	1111 1111	1111 1111

Legend: - = Unimplemented, read as '0'.

NOTES:

BAUD	Fosc = 20 M	/IHz	SPBRG	16 MHz		SPBRG	10 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	NA		_	NA		_	NA	_	_
1.2	1.221	+1.73%	255	1.202	+0.16%	207	1.202	+0.16%	129
2.4	2.404	+0.16%	129	2.404	+0.16%	103	2.404	+0.16%	64
9.6	9.469	-1.36%	32	9.615	+0.16%	25	9.766	+1.73%	15
19.2	19.53	+1.73%	15	19.23	+0.16%	12	19.53	+1.73V	7
76.8	78.13	+1.73%	3	83.33	+8.51%	2	78.13	+1.73%	1
96	104.2	+8.51%	2	NA	_	_	NA	_	_
300	312.5	+4.17%	0	NA	_	_	NA	_	_
500	NA	_	_	NA	_	_	NA	_	_
HIGH	312.5	_	0	250	_	0	156.3	_	0
LOW	1.221		255	0.977		255	0.6104	_	255

TABLE 12-4 :	BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)
---------------------	---

BAUD	Fosc = 7.15	909 MHz	SPBRG	5.0688 MHz		SPBRG	4 MHz		SPBRG
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)
0.3	NA	_	_	0.31	+3.13%	255	0.3005	-0.17%	207
1.2	1.203	+0.23%	92	1.2	0	65	1.202	+1.67%	51
2.4	2.380	-0.83%	46	2.4	0	32	2.404	+1.67%	25
9.6	9.322	-2.90%	11	9.9	+3.13%	7	NA	_	_
19.2	18.64	-2.90%	5	19.8	+3.13%	3	NA	_	_
76.8	NA	_	_	79.2	+3.13%	0	NA	_	_
96	NA	_	_	NA	_	_	NA	_	_
300	NA	_	_	NA		_	NA	_	_
500	NA	_	_	NA	_	_	NA	_	_
HIGH	111.9	_	0	79.2		0	62.500	_	0
LOW	0.437	_	255	0.3094		255	3.906	_	255

BAUD	Fosc = 3.57	9545 MHz	SPBRG	1 MHz		SPBRG	32.768 kHz		SPBRG value
RATE (K)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	value (decimal)	KBAUD	ERROR	(decimal)
0.3	0.301	+0.23%	185	0.300	+0.16%	51	0.256	-14.67%	1
1.2	1.190	-0.83%	46	1.202	+0.16%	12	NA	_	_
2.4	2.432	+1.32%	22	2.232	-6.99%	6	NA	_	_
9.6	9.322	-2.90%	5	NA	_	_	NA	_	_
19.2	18.64	-2.90%	2	NA	_	_	NA	_	_
76.8	NA	_	_	NA	_	_	NA	_	_
96	NA	_	_	NA		_	NA	_	_
300	NA	_	_	NA	_	_	NA	_	_
500	NA	_	_	NA		_	NA	_	_
HIGH	55.93	_	0	15.63		0	0.512	_	0
LOW	0.2185	_	255	0.0610		255	0.0020	_	255

12.4.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>) or enable bit CREN (RCSTA<4>). Data is sampled on the RB1/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, then CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read-only bit which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a twodeep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The 9th receive bit is buffered the same way as the receive data. Reading the RCREG register, will load bit RX9D with a new value, therefore it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old RX9D information.

Follow these steps when setting up a Synchronous Master Reception:

- 1. TRISB<1> and TRISB<2> should both be set to '1' to configure the RB1/RX/DT and RB2/TX/CK pins as inputs. Output drive, when required, is controlled by the peripheral circuitry.
- Initialize the SPBRG register for the appropriate baud rate. (Section 12.1 "USART Baud Rate Generator (BRG)").
- 3. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 4. Ensure bits CREN and SREN are clear.
- 5. If interrupts are desired, then set enable bit RCIE.
- 6. If 9-bit reception is desired, then set bit RX9.
- 7. If a single reception is required, set bit SREN. For continuous reception, set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 9. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 10. Read the 8-bit received data by reading the RCREG register.
- 11. If an OERR error occurred, clear the error by clearing bit CREN.

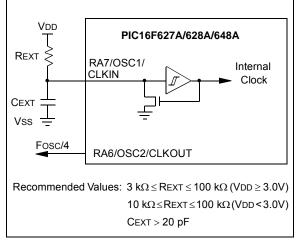
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR	Value on all other Resets
0Ch	PIR1	EEIF	CMIF	RCIF	TXIF		CCP1IF	TMR2IF	TMR1IF	0000 -000	0000 -000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART F	USART Receive Data Register							0000 0000	0000 0000
8Ch	PIE1	EPIE	CMIE	RCIE	TXIE	-	CCP1IE	TMR2IE	TMR1IE	-000 0000	-000 -000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Ra	te Gene	rator Re	gister					0000 0000	0000 0000

TABLE 12-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION

Legend: x = unknown, - = unimplemented read as '0'. Shaded cells are not used for synchronous master reception.

REGISTER 14-1: CONFIG – CONFIGURATION WORD REGISTER

CP		_		CPD	LVP	BOREN	MCLRE	FOSC2	PWRTE	WDTE	F0SC1	F0SC0
bit 13												bit 0
bit 13:	(PIC16F648A 1 = Coc 0 = 000 (PIC16F628A 1 = Coc 0 = 000 (PIC16F627A 1 = Coc	de protection c 10h to 0FFFh c <u>0</u> de protection c 10h to 07FFh c	ff ode-protec ff ode-protec ff	sted	2)							
bit 12-9:	Unimplemen	ted: Read as	ʻ0'									
bit 8:	CPD: Data Code Protection bit ⁽³⁾ 1 = Data memory code protection off 0 = Data memory code-protected											
bit 7:	1 = RB4/PGM	ltage Program /l pin has PGN /l is digital I/O,	function, I	<u>ow</u> -voltage								
bit 6:	BOREN : Brow 1 = BOR Res 0 = BOR Res		Enable bit (1)								
bit 5:	1 = RA5/MCL	5/MCLR/VPP P <u>_R/</u> VPP pin fun _R/VPP pin fun	ction is MC	LR	ICLR inter	nally tied to	Vdd					
bit 3:	PWRTE : Pow 1 = PWRT dis 0 = PWRT en		nable bit ⁽¹)								
bit 2:	WDTE: Watch 1 = WDT ena 0 = WDT disa		able bit									
bit 4, 1-0:	FOSC<2:0>: Oscillator Selection bits ⁽⁴⁾ 111 = RC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN 100 = RC oscillator: I/O function on RA6/OSC2/CLKOUT pin, Resistor and Capacitor on RA7/OSC1/CLKIN 101 = INTOSC oscillator: CLKOUT function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 100 = INTOSC oscillator: I/O function on RA6/OSC2/CLKOUT pin, I/O function on RA7/OSC1/CLKIN 101 = EC: I/O function on RA6/OSC2/CLKOUT pin, CLKIN on RA7/OSC1/CLKIN 100 = HS oscillator: High-speed crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 101 = XT oscillator: Crystal/resonator on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN 100 = LP oscillator: Low-power crystal on RA6/OSC2/CLKOUT and RA7/OSC1/CLKIN											
	Note 1: 2: 3: 4:	Enabling Brov PIC16F627/6 The code pro entire Flash p "PIC16F627/ The entire da 628A/648A E When MCLR	28 devices tection sch rogram me /628A/648 ta EEPROI EPROM M	eme has cl mory need A EEPROM M needs to lemory Prog	hanged fro Is to be bu <i>M Memory</i> be bulk er gramming	m the code lk erased to Programmin ased to set Specificatio	protection set the CF ng Specific the CPD b n" (DS4119	scheme us bit, turning <i>ation</i> " (DS4 it, turning t 96) for deta	ed on the F g the code j 1196) for d ne code pro ils.	PIC16F627 protection letails.	7/628 devic off. See	
	Legend:											
	R = Readable	e bit	W = Wri	table bit		U = Ur	nimplement	ted bit, read	d as '0'			
	-n = Value at	POR	'1' = bit	is set		'0' = bi	it is cleared	l	x =	bit is unkn	own	


14.2.6 RC OSCILLATOR

For applications where precise timing is not a requirement, the RC oscillator option is available. The operation and functionality of the RC oscillator is dependent upon a number of variables. The RC oscillator frequency is a function of:

- Supply voltage
- Resistor (REXT) and capacitor (CEXT) values
- Operating temperature

The oscillator frequency will vary from unit-to-unit due to normal process parameter variation. The difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to account for the tolerance of the external R and C components. Figure 14-5 shows how the R/C combination is connected.

FIGURE 14-5: RC OSCILLATOR MODE

The RC Oscillator mode has two options that control the unused OSC2 pin. The first allows it to be used as a general purpose I/O port. The other configures the pin as an output providing the Fosc signal (internal clock divided by 4) for test or external synchronization purposes.

14.2.7 CLKOUT

The PIC16F627A/628A/648A can be configured to provide a clock out signal by programming the Configuration Word. The oscillator frequency, divided by 4 can be used for test purposes or to synchronize other logic.

14.2.8 SPECIAL FEATURE: DUAL-SPEED OSCILLATOR MODES

A software programmable dual-speed oscillator mode is provided when the PIC16F627A/628A/648A is configured in the INTOSC oscillator mode. This feature allows users to dynamically toggle the oscillator speed between 4 MHz and 48 kHz nominal in the INTOSC mode. Applications that require low-current power savings, but cannot tolerate putting the part into Sleep, may use this mode.

There is a time delay associated with the transition between fast and slow oscillator speeds. This oscillator speed transition delay consists of two existing clock pulses and eight new speed clock pulses. During this clock speed transition delay, the System Clock is halted causing the processor to be frozen in time. During this delay, the program counter and the CLKOUT stop.

The OSCF bit in the PCON register is used to control Dual Speed mode. See **Section 4.2.2.6** "**PCON Register**", Register 4-6.

14.3 Reset

The PIC16F627A/628A/648A differentiates between various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during Sleep
- d) WDT Reset (normal operation)
- e) WDT wake-up (Sleep)
- f) Brown-out Reset (BOR)

Some registers are not affected in any Reset condition; their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on Power-on Reset, Brown-out Reset, MCLR Reset, WDT Reset and MCLR Reset during Sleep. They are not affected by a WDT wake-up, since this is viewed as the resumption of normal operation. TO and PD bits are set or cleared differently in different Reset situations as indicated in Table 14-4. These bits are used in software to determine the nature of the Reset. See Table 14-7 for a full description of Reset states of all registers.

A simplified block diagram of the on-chip Reset circuit is shown in Figure 14-6.

The $\overline{\text{MCLR}}$ Reset path has a noise filter to detect and ignore small pulses. See Table 17-7 for pulse width specification.

14.4.5 TIME OUT SEQUENCE

On power-up, the time out sequence is as follows: First PWRT time-out is invoked after POR has expired. Then OST is activated. The total time out will vary based on oscillator configuration and <u>PWRTE</u> bit Status. For example, in RC mode with <u>PWRTE</u> bit set (PWRT disabled), there will be no time out at all. Figure 14-8, Figure 14-11 and Figure 14-12 depict time out sequences.

Since the time outs occur from the POR pulse, if $\overline{\text{MCLR}}$ is kept low long enough, the time outs will expire. Then bringing $\overline{\text{MCLR}}$ high will begin execution immediately (see Figure 14-11). This is useful for testing purposes or to synchronize more than one PIC16F627A/628A/ 648A device operating in parallel.

Table 14-6 shows the Reset conditions for some special registers, while Table 14-7 shows the Reset conditions for all the registers.

14.4.6 POWER CONTROL (PCON) STATUS REGISTER

The PCON/Status register, PCON (address 8Eh), has two bits.

Bit 0 is $\overline{\text{BOR}}$ (Brown-out Reset). $\overline{\text{BOR}}$ is unknown on Power-on Reset. It must then be set by the user and checked on subsequent Resets to see if $\overline{\text{BOR}} = 0$ indicating that a brown-out has occurred. The $\overline{\text{BOR}}$ Status bit is a "don't care" and is not necessarily predictable if the brown-out circuit is disabled (by setting BOREN bit = 0 in the Configuration Word).

Bit 1 is POR (Power-on Reset). It is a '0' on Power-on Reset and unaffected otherwise. The user must write a '1' to this bit following a Power-on Reset. On a subsequent Reset if POR is '0', it will indicate that a Power-on Reset must have occurred (VDD may have gone too low).

Oscillator Configuration	Power-u	ıp Timer	Brown-o	ut Reset	Wake-up from
Oscillator Configuration	PWRTE = 0	PWRTE = 1	PWRTE = 0	PWRTE = 1	Sleep
XT, HS, LP	72 ms + 1024•Tosc	1024•Tosc	72 ms + 1024•Tosc	1024•Tosc	1024•Tosc
RC, EC	72 ms	—	72 ms	_	—
INTOSC	72 ms	—	72 ms	—	6 μs

TABLE 14-3. THE OUT IN VARIOUS SITUATIONS	TABLE 14-3:	TIME OUT IN VARIOUS SITUATIONS
---	-------------	--------------------------------

TABLE 14-4: STATUS/PCON BITS AND THEIR SIGNIFICANCE

POR	BOR	то	PD	Condition			
0	Х	1	1	Power-on Reset			
0	Х	0	Х	Illegal, TO is set on POR			
0	Х	Х	0	Illegal, PD is set on POR			
1	0	Х	Х	Brown-out Reset			
1	1	0	u	WDT Reset			
1	1	0	0	WDT Wake-up			
1	1	u	u	MCLR Reset during normal operation			
1	1	1	0	MCLR Reset during Sleep			

Legend: u = unchanged, x = unknown

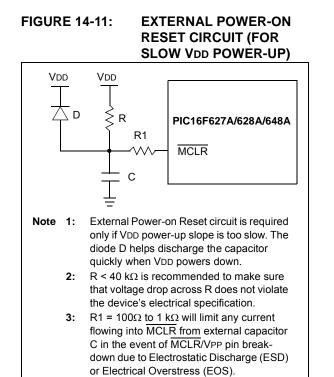
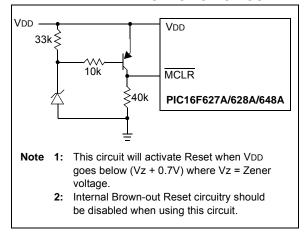
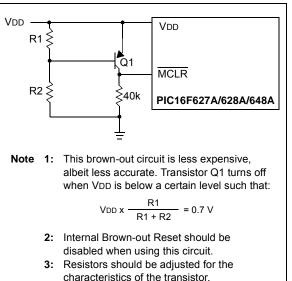
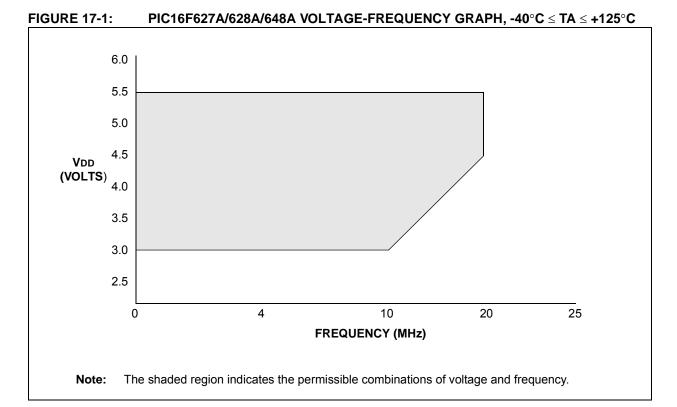
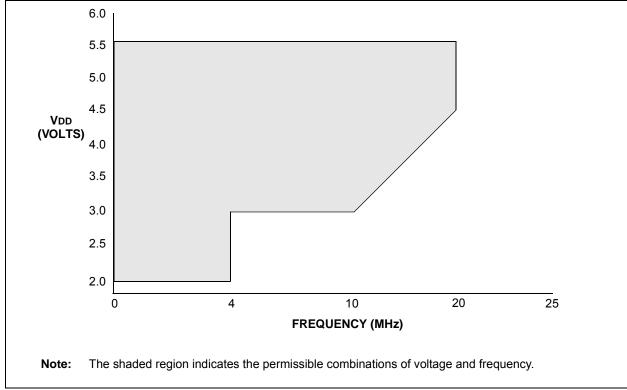




FIGURE 14-12: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 1

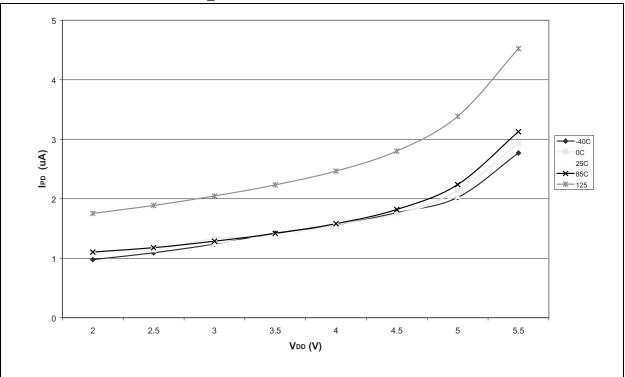
FIGURE 14-13: EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2

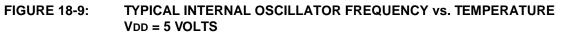


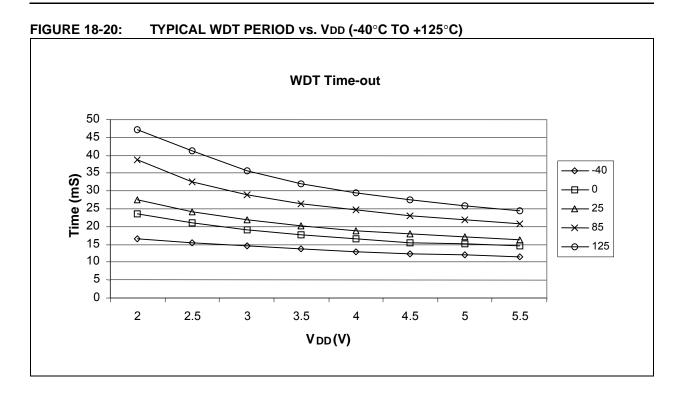
SUBWF	Subtract W from f					
Syntax:	[label] SUBWF f,d					
Operands:	$0 \leq f \leq 127$					
0 <i>1</i>	d ∈ [0,1]					
Operation:	$(f) - (W) \rightarrow (dest)$					
Status Affected:	C, DC, Z					
Encoding:	00 0010 dfff ffff					
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.					
Words:	1					
Cycles:	1					
Example 1:	SUBWF REG1, 1					
	Before Instruction					
	REG1 = 3 W = 2 C = ?					
	After Instruction					
	REG1 = 1 W = 2 C = 1; result is positive DC = 1 Z = 0					
Example 2:	Before Instruction					
	REG1 = 2 W = 2					
	C = ?					
	After Instruction REG1 = 0 W = 2 C = 1; result is zero Z = DC = 1					
Example 3:	Before Instruction					
	REG1 = 1 W = 2 C = ?					
	After Instruction					
	REG1 = 0xFF $W = 2$ $C = 0; result is negative$ $Z = DC = 0$					

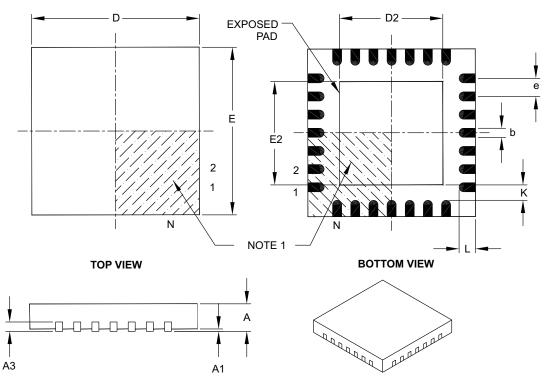

Swap Nibbles in f						
[label] SWAPF f,d						
$0 \le f \le 127$ d $\in [0,1]$						
(f<3:0>) → (dest<7:4>), (f<7:4>) → (dest<3:0>)						
None						
00 1110 dfff ffff						
The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W register. If 'd' is '1', the result is placed in register 'f'.						
1						
1						
SWAPF REG1, 0						
Before Instruction						
REG1 = 0xA5						
After Instruction						
REG1 = 0xA5 W = 0x5A						
Load TRIS Register						
[<i>label</i>] TRIS f						
$5 \le f \le 7$						
$(W) \rightarrow TRIS$ register f;						
None						
00 0000 0110 0fff						
The instruction is supported for code compatibility with the PIC16C5X products. Since TRIS registers are readable and writable, the user can directly address them.						
1						
1						
To maintain upward compatibil- ity with future PIC [®] MCU products, do not use this instruction.						

XORLW	Exclusive OR Literal with W				XORWF	
Syntax:	[<i>label</i>] XORLW k			Syntax:		
Operands:	$0 \le k \le 255$	5	Operands:			
Operation:	(W) .XOR. $k \rightarrow$ (W) Z					
Status Affected:					Operation:	
Encoding:	11 1	010	kkkk	kkkk	Status Affected:	
Description:	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register.				Encoding: Description:	
Words:	1					
Cycles: <u>Example</u> :	1 XORLW $0 \times AF$ Before Instruction $W = 0 \times B5$ After Instruction $W = 0 \times 1A$				Words: Cycles: <u>Example</u>	


ORWF	Exclusive OR W with f						
vntax:	[label] XORWF f,d						
,							
perands:	0 ≤ f ≤ 127 d ∈ [0,1]						
peration:	(W) .XOR. (f) \rightarrow (dest)						
atus Affected:	Z						
ncoding:	00 0110 dfff ffff						
escription: Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.							
/ords:	1						
ycles:	1						
<u>xample</u>	XORWF REG1, 1						
	Before Instruction						
	REG1 = 0xAF W = 0xB5						
	After Instruction						
	REG1 = 0x1A $W = 0xB5$						







28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimensio	Dimension Limits		NOM	MAX
Number of Pins	Ν	28		
Pitch	е	0.65 BSC		
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3	0.20 REF		
Overall Width	E	6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.20
Overall Length	D	6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20
Contact Width	b	0.23	0.30	0.35
Contact Length		0.50	0.55	0.70
Contact-to-Exposed Pad	К	0.20	_	_

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B