E·XFL

NXP USA Inc. - MCF51EM256CLLR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, SCI, SPI
Peripherals	LCD, LVD, PWM, WDT
Number of I/O	63
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mcf51em256cllr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Feature	MCF51EM256 MCF51EM128			
MTIM1 (8-bit)	Ye	es		
MTIM2 (8-bit)	Yes			
MTIM3 (16-it)	Yes			
TPM channels	2			
PDB	Yes			
XOSC1 ⁴	Yes			
XOSC2 ⁵	Yes			

Table 1. MCF51EM256 Series Features by MCU and Package (continued)

¹ Each differential channel is comprised of 2 pin inputs

² RGPIO is muxed with standard Port I/O

³ Port I/O count does not include the ouput only PTC2/BKGD/MS.

⁴ IRTC crystal input and possible crystal input to the ICS module

⁵ Main external crystal input for the ICS module

1.2 Block Diagram

Figure 1 shows the connections between the MCF51EM256 series pins and modules.

1.3 Features

Table 2 describes the functional units of the MCF51EM256 series.

Table 2. MCF51EM256	Series Functional Units
---------------------	--------------------------------

Unit	Function
ADC (analog-to-digital converter)	Measures analog voltages at up to 16 bits of resolution. Each ADC has up to four differential and 24 single-ended inputs.
BDM (background debug module)	Provides single pin debugging interface (part of the V1 ColdFire core)
CF1 CORE (V1 ColdFire core) with MAC unit	Executes programs, handles interrupts and containes multiply-accumulate hardware (MAC).
PRACMP1, PRACMP2 (comparators)	Analog comparators for comparing external analog signals against each other, or a variety of reference levels.
COP (computer operating poperly)	Software watchdog
IRQ (interrupt request)	Single pin high priority interrupt (part of the V1 ColdFire core)
CRC (cyclic Redundancy Check)	High-speed CRC calculation
DBG (debug)	Provides debugging and emulation capabilities (part of the V1 ColdFire core)
FLASH (flash memory)	Provides storage for program code, constants and variables
IIC (inter-integrated circuits)	Supports standard IIC communications protocol and SMBus
INTC (interrupt controller)	Controls and prioritizes all device interrupts
KBI1 & KBI2	Keyboard Interfaces 1 and 2
LCD	Liquid crystal display driver
LVD (low voltage detect)	Provides an interrupt to the CF1CORE in the event that the supply voltage drops below a critical value. The LVD can also be programmed to reset the device upon a low voltage event
ICS (internal clock source)	Provides clocking options for the device, including a three frequency-locked loops (FLLs) for multiplying slower reference clock sources
IRTC (independent real-time clock)	The independent real time clock provides an independent time-base with optional interrupt, battery backup and tamper protection
VREF (voltage reference)	The voltage reference output is available for both on and off-chip use
MTIM1, MTIM2 (modulo timers)	8-bit modulo timers with configurable clock inputs and interrupt generation on overflow
MTIM3 (modulo timer)	16-bit modulo timer with configurable clock inputs and interrupt generation on overflow
PDB (programmable delay block)	This timer is optimized for scheduling ADC conversions
RAM (random-access memory)	Provides stack and variable storage
RGPIO (rapid general-purpose input/output)	Allows for I/O port access at CPU clock speeds and is used to implement GPIO functionality for PTA and PTB.

MCF51EM256 Series ColdFire Microcontroller Data Sheet, Rev.3

- 6 µs typical wakeup time from stop3 mode
- Clock source options
 - Two independent oscillators (XOSC1 and XOSC2) loop-control Pierce oscillator;
 32.768 kHz crystal or ceramic resonator. XOSC1 nominally supports the independent real time clock, and can be powered by a separate battery backup. XOSC2 is the primary external clock source for the ICS
 - Internal clock source (ICS) internal clock source module containing a frequency-locked-loop (FLL) controlled by internal or external reference (XOSC1 or XOSC2); precision trimming of internal reference allowing 0.2% resolution and typical 0.5% to –1% deviation over temperature and voltage; supporting CPU frequencies from 4 kHz to 50 MHz
- System protection
 - Watchdog computer operating properly (COP) reset with option to run from dedicated 1 kHz internal clock source or bus clock
 - Low voltage detection with reset or interrupt; selectable trip points; seperate low voltage warning with optional interrupt; selectable trip points
 - Illegal opcode and illegal address detection with reset
 - Flash block protection for each array to prevent accidental write/erasure
 - Hardware CRC module to support fast cyclic redundancy checks
- Development support
 - Integrated ColdFire DEBUG_Rev_B+ interface with single wire BDM connection supports same electrical interface used by the S08 family debug modules
 - Real-time debug support with six hardware breakpoints (4 PC, 1 address and 1 data)
 - On-chip trace buffer provides programmable start/stop recording conditions
- Peripherals
 - ADC16 4 analog-to-digital converters; the 100 pin version of the device has 1 dedicated differential channel and 1 dedicated single-ended channel per ADC, along with 3 muxed single-ended channels per ADC. The ADCs have 16-bit resolution, range compare function, 1.7 mV/°C temperature sensor, internal bandgap reference channel, operate in stop3 and are fully functional from 3.6 V to 1.8 V
 - PDB Programmable delay block with 16-bit counter and modulus and 3-bit prescaler; 8 trigger outputs for ADC16 modules (2 per ADC); provides periodic coordination of ADC sampling sequence with programmable sequence completion interrupt
 - IRTC Ultra-low power independent real time clock with calendar features (IRTC); runs in all MCU modes; external clock source with trim capabilities (XOSC1); independent voltage source runs IRTC when MCU is powered-down; tamper detection and indicator; battery monitor output to ADC; unaffected by MCU resets
 - **PRACMPx** Two analog comparators with selectable interrupt on rising, falling, or either edge of comparator output; compare option to programmable internal reference voltage; operation in stop3
 - LCD up to 288 segments (8×36) ; 160 segments (4×40) ; internal charge pump and option to provide internal reference voltage that can be trimmed for contrast control; flexible

Freescale Part Number	Flash / SRAM (KB)	Package	Temperature
MCF51EM256CLL	256/16	100-Pin LQFP	–40°C to 85°C
MCF51EM256CLK	256/16	80-Pin LQFP	–40°C to 85°C
MCF51EM128CLL	128/16	100-Pin LQFP	–40°C to 85°C
MCF51EM128CLK	128/16	80-Pin LQFP	–40°C to 85°C

Table 3. Orderable Part Number Summary

1.5.2 Pinout: 100-Pin LQFP

Figure 3 shows the pinout configuration for the 100-pin LQFP. Pins which are blacked out do not have an equivalent pin on the 80-pin LQFP package.

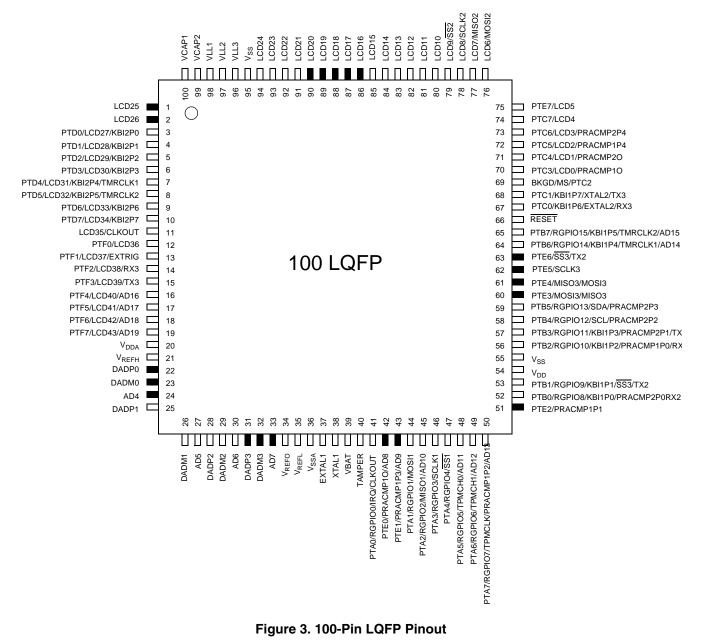


Table 4 shows the package pin assignments.

100 LQFP	80 LQFP	Default Function	ALT1	ALT2	ALT3	Comment
1	_	LCD25				
2	—	LCD26				
3	1	PTD0	LCD27	KBI2P0		
4	2	PTD1	LCD28	KBI2P1		
5	3	PTD2	LCD29	KBI2P2		
6	4	PTD3	LCD30	KBI2P3		
7	5	PTD4	LCD31	KBI2P4	TMRCLK1	
8	6	PTD5	LCD32	KBI2P5	TMRCLK2	
9	7	PTD6	LCD33	KBI2P6		
10	8	PTD7	LCD34	KBI2P7		
11	9	LCD35	CLKOUT			
12	10	PTF0	LCD36			
13	11	PTF1	LCD37		EXTRIG	
14	12	PTF2	LCD38		RX3	
15	13	PTF3	LCD39		TX3	
16	14	PTF4	LCD40		AD16	
17	15	PTF5	LCD41		AD17	
18	16	PTF6	LCD42		AD18	
19	17	PTF7	LCD43		AD19	
20	18	V _{DDA}				
21	19	V _{REFH}				
22		DADP0				
23		DADM0				
24		AD4				
25	20	DADP1				
26	21	DADM1				
27	22	AD5				
28	23	DADP2				
29	24	DADM2				
30	25	AD6				
31	_	DADP3				
32	_	DADM3				

Table 4. MCF51EM256 Series Package Pin Assignments

MCF51EM256 Series ColdFire Microcontroller Data Sheet, Rev.3

MCF51EM256 Series Configurations

100 LQFP	80 LQFP	Default Function	ALT1	ALT2	ALT3	Comment
58	47	PTB4/RGPIO12	SCL	PRACMP2P2		RGPIO_ENB is used to select
59	48	PTB5/RGPIO13	SDA	PRACMP2P3		between standard GPIO and RGPIO
60	—	PTE3	MOSI3	MISO3		
61	—	PTE4	MISO3	MOSI3		Open Drain
62	—	PTE5	SCLK3			Open Drain
63	—	PTE6	SS3	TX2		Open Drain
64	49	PTB6/RGPIO14	KBI1P4	TMRCLK1	AD14	RGPIO_ENB is used to select
65	50	PTB7/RGPIO15	KBI1P5	TMRCLK2	AD15	between standard GPIO and RGPIO
66	51	RESET				This pin is an open drain device and has an internal pullup. There is no clamp diode to V _{DD} .
67	52	PTC0	KBI1P6	EXTAL2	RX3	
68	53	PTC1	KBI1P7	XTAL2	ТХ3	
69	54	BKGD/MS	PTC2			This pin has an internal pullup. PTC2 can only be programmed as an output.
70 ¹	55 ¹	PTC3	LCD0	PRACMP10		
71 ¹	56 ¹	PTC4	LCD1	PRACMP2O		
72 ¹	57 ¹	PTC5	LCD2		PRACMP1P4	
73 ¹	58 ¹	PTC6	LCD3		PRACMP2P4	
74 ¹	59 ¹	PTC7	LCD4			
75 ¹	60 ¹	PTE7	LCD5			
76 ¹	61 ¹	LCD6	MOSI2			
77 ¹	62 ¹	LCD7	MISO2			
78 ¹	63 ¹	LCD8	SCLK2			
79 ¹	64 ¹	LCD9	SS2			
80	65	LCD10				
81	66	LCD11				
82	67	LCD12				
83	68	LCD13				
84	69	LCD14				
85	70	LCD15				
86	—	LCD16				

80 LQFP	Default Function	ALT1	ALT2	ALT3	Comment
_	LCD17				
	LCD18				
	LCD19				
	LCD20				
71	LCD21				
72	LCD22				
73	LCD23				
74	LCD24				
75	V _{SS}				
76	VLL3				
77	VLL2				
78	VLL1				
79	VCAP2				
80	VCAP1				
	LQFP 71 72 73 74 75 76 77 78 79	LQFP Default Function — LCD17 — LCD18 — LCD19 — LCD20 71 LCD21 72 LCD22 73 LCD23 74 LCD24 75 V _{SS} 76 VLL3 77 VLL2 78 VLL1 79 VCAP2	LQFP Default Punction ALT1 — LCD17	LQFP Derault Function ALT1 ALT2 LCD17	LQFPDefault FunctionALTALT2ALT3-LCD17 </td

Table 4. MCF51EM256 Series Package Pin Assignments (continued)

¹ These pins that are shared with the LCD are open-drain by default if not used as LCD pins. To configure this pins as full complementary drive outputs, you must have the LCD modules bits configured as follow: FCDEN =1, VSUPPLY = 11 and RVEN = 0. The Input levels and internal pullup resistors are referenced to VLL3. Referer to the LCD chapter for further information.

2 Electrical Characteristics

This section contains electrical specification tables and reference timing diagrams for the MCF51EM256/128 series microcontrollers, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.

The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. These specifications will, however, be met for production silicon. Finalized specifications will be published after complete characterization and device qualifications have been completed.

NOTE

The parameters specified in this data sheet supersede any values found in the module specifications.

2.1 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 5. Parameter Classifications

Р	Those parameters are guaranteed during production testing on each individual device.
с	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

2.2 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 6 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}).

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to 4.0	V
Input voltage	V _{In}	-0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins except PTB1 and PTB3) ¹ , ² , ³	I _D	±25	mA
Instantaneous maximum current Single pin limit (applies to PTB1 and PTB3) ⁴ , ⁵ , ⁶	۱ _D	±50	mA
Maximum current into V _{DD}	I _{DD}	120	mA
Storage temperature	⊤ _{stg}	-55 to 150	°C

Table 6. Absolute Maximum Ratings

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2\,$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}

- ³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption.
- ⁴ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.
- 5 All functional non-supply pins are internally clamped to V_{SS} and V_{DD}.
- ⁶ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption.

2.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. In order to take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	-40 to 85	°C
Maximum junction temperature	T _{JM}	95	°C
Thermal resistance ^{1,2,3,4} 100-pin LQFP 80-pin LQFP 1s 2s2p	θ _{JA}	54 42 55 42	°C/W

Table 7.	Thermal	Characteristics
----------	---------	-----------------

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

- ² Junction to Ambient Natural Convection
- ³ 1s Single layer board, one signal layer

⁴ 2s2p — Four layers board, two signal and two power layers

The average chip-junction temperature (T_J) in °C can be obtained from:

Num	Rating	Symbol	Min	Max	Unit
1	Human Body Model (HBM)	V _{HBM}	±2000	_	V
2	Machine Model (MM)	V _{MM}	±200	_	V
3	Charge Device Model (CDM)	V _{CDM}	±500	_	V
4	Latch-up Current at T _A = 85 °C	I _{LAT}	±100	_	mA

Table 9. ESD and Latch-Up Protection Characteristics

2.5 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Num	С		Parameter		Min	Typical ¹	Max	Unit
		Operating	Digital supply — 50 MHz operation	V _{DD}	2.5	—	3.6	
1	Ρ	voltage	Digital supply ² — 20 MHz maximum operation	V _{DD}	1.8	_	3.6	V
2	Ρ	Analog supply		V _{DDA}	1.8		3.6	V
3	D	Battery supply		V _{BAT}	2.2	3	3.3	V
4	Ρ	Bandgap volta	ge reference ³	V _{BG}	1.15	1.17	1.18	V
	С	Output high	$\label{eq:ptau} \begin{split} & PTA[7{:}0], PTB[7{:}0], PTC[2{:}0], PTE[6{:}0], \\ & low-drive strength. \\ & V_{DD} \geq 1.8 V, I_{Load} = -0.6 mA \\ & PTA[7{:}0], PTB[7{:}0], PTC[2{:}0], PTE[6{:}0], \end{split}$					
5	Ρ	voltage	high-drive strength. $V_{DD} \ge 2.7 \text{ V}, \text{ I}_{Load} = -10 \text{ mA}$	V _{OH}	V _{DD} – 0.5	_	_	V
	с		$\label{eq:ptau} \begin{array}{l} \mbox{PTA[7:0], PTB[7:0], PTC[2:0], PTE[6:0],} \\ \mbox{high-drive strength.} \\ \mbox{V}_{DD} \geq 1.8 \mbox{ V, } I_{Load} = -3 \mbox{ mA} \end{array}$					
	С		$\label{eq:ptc:response} \begin{array}{l} \mbox{PTC[7:3], PTD[7:0], PTE7, PTF[7:0],} \\ \mbox{LCD35/CLKOUT, MOSI2, MISO2,} \\ \mbox{SCK2, SS2, low drive strength.} \\ \mbox{VDD} \geq 1.8 \ \mbox{V, } \ \mbox{I}_{Load} = -0.5 \ \mbox{mA} \end{array}$					
6	6 P	Output high voltage	$\label{eq:ptc} \begin{array}{l} \mbox{PTC[7:3], PTD[7:0], PTE7, PTF[7:0],} \\ \mbox{LCD35/CLKOUT, MOSI2, MISO2,} \\ \mbox{SCK2, SS2, high-drive strength.} \\ \mbox{V}_{DD} \geq 2.7 \mbox{ V, } \mbox{I}_{Load} = -3 \mbox{ mA} \end{array}$	V _{OH}	V _{DD} – 0.5	_	_	v
С	С		$\label{eq:ptc:response} \begin{array}{l} \mbox{PTC[7:3], PTD[7:0], PTE7, PTF[7:0],} \\ \mbox{LCD35/CLKOUT, MOSI2, MISO2,} \\ \mbox{SCK2, SS2, high-drive strength.} \\ \mbox{V}_{DD} \geq 1.8 \mbox{ V, } I_{Load} = -1 \mbox{ mA} \end{array}$					
7	D	Output high current	Max total I _{OH} for all ports	I _{OHT}	—	_	100	mA

Table 10. DC Characteristics

Num	с	Parame	ter	Symbol	V _{DD} (V)	Typical ¹	Мах	Unit	Temp (°C)
	Р		25.165 MHz			66.2	100		
4	Т	Run supply current	20 MHz		0	55.3	—		-40 to
1	Т	FEI mode, all modules on	8 MHz	RI _{DD}	3	23.9	_	mA	85°C
	Т		1 MHz			4.56	_		
	С		25.165 MHz			55.1	56		
2	Т	Run supply current FEI mode, all	20 MHz	ы	3	46.6	—	mA	-40 to
2	Т	modules off	8 MHz	RI _{DD}	5	19.9	—		85°C
	Т		1 MHz			3.92	_		
	Т	Run supply current	16 kHz FBILP			239	—		
3	т	LPS=0, all modules off	16 kHz FBELP	RI _{DD}	3	249	_	μΑ	_
4	т	Run supply current LPS = 1, all modules off, running from flash	16 kHz FBELP	RI _{DD}	3	50	_	μΑ	_
	С	Wait mode supply	25.165 MHz			51.1	69		
F	Т	current	20 MHz	14/1	3	42.6	_		-40 to
5	Т	FEI mode, all	8 MHz	WI _{DD}	5	18.8	_	mA	85°C
	Т	modules off	1			3.69	—		
6	т	Wait mode supply current LPRS = 1, all mods off		WI _{DD}	3	1	_	μA	_
7	Р	Stop2 mode supply c	urropt	S2I _{DD}	3	0.576	30	μA	-40 to
1	С		unent	00	2	0.570	16		85°C
8	Р	Stop3 mode supply c	urropt	621	3	1.05	45		–40 to 85°C
	С		unent	S3I _{DD}	2	1.05	27	μΑ	
9	т	LVD adder to stop3, s LVDSE = 1)	stop2 (LVDE =	S3I _{DDLVD}	3	120	_	μA	_
		Voltago reference	Low power mode			90			
10	Т	Voltage reference adder to stop3	Tight regulation mode	S3I _{DDLVD}	3	270	_	μA	-
11	т	PRACMP adder to	PRG disabled	601	3	13			
11		stop3	PRG enabled	S3I _{DDLVD}	3	29		μA	
12	т	LCD adder to stop3, stop2, VIREG enabled, 1/4 duty cycle, 4x39 configuration for 156 segments, 32Hz frame rate, no LCD glass connected		S3I _{DDLVD}	3	1.3	_	μΑ	_
13	с	Adder to stop3 for ose (ERCLKEN =1 and E		S3I _{DDOSC}	3	5		μA	_

Table 11. Supply Current Characteristics

Num	С	Parameter	Symbol	V _{DD} (V)	Typical ¹	Мах	Unit	Тетр (°С)
14	Ρ	IRTC supply current ^{3,4,5}	I _{DD-BAT}		1.5	5	μA	–40 to 85°C

¹ Typicals are measured at 25 °C.

² Values given under the following conditions: low range operation (RANGE = 0), low power mode (HGO = 0).

 $^3\,$ This is the current consumed when the IRTC is being powered by the V_{BAT}

⁴ The IRTC power source depends on the MCU configuration and V_{DD} voltage level. Refer to reference manual for further information.

⁵ The IRTC current consumption includes the IRTC XOSC1.

Num	Charact eristic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
5	Ref Voltage Low		V _{REFL}	V _{SSA}	V _{SSA}	V _{SSA}	V	
6	Input Voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
7	Input Capacit ance	16-bit modes 8/10/12-bit modes	C _{ADIN}	_	8 4	10 5	pF	
8	Input Resista nce		R _{ADIN}	_	2	5	kΩ	
9		16 bit modes f _{ADCK} > 8MHz 4MHz < f _{ADCK} < 8MHz f _{ADCK} < 4MHz			—	0.5 1 2		
10	Analog Source Resista	13/12 bit modes f _{ADCK} > 8MHz 4MHz < f _{ADCK} < 8MHz f _{ADCK} < 4MHz	R _{AS}			1 2 5	kΩ	External to MCU Assumes
11	nce	11/10 bit modes f _{ADCK} > 8MHz 4MHz < f _{ADCK} < 8MHz f _{ADCK} < 4MHz				2 5 10		ADLSMP=0
12		9/8 bit modes f _{ADCK} > 8MHz f _{ADCK} < 8MHz		_	_	5 10		
13	ADC	ADLPC = 0, ADHSC = 1		1.0	_	8		
14	Convers ion Clock	ADLPC = 0, ADHSC = 0	fadck	1.0	_	5	MHz	
15	Freq.	ADLPC = 1, ADHSC = 0		1.0	_	2.5		

Table 13. 16-bit ADC Operating Conditions

¹ Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

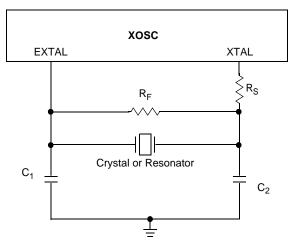
² DC potential difference.

2.9 External Oscillator (XOSC) Characteristics

Reference Figure 11 and Figure 12 for crystal or resonator circuits. XOSC1 operates only in low power low range mode. XOSC2 operates in all the power and range modes.

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1), high gain (HGO = 1) High range (RANGE = 1), low power (HGO = 0)		32 1 1		38.4 16 8	kHz MHz MHz
2	D	Load capacitors Low range (RANGE=0), low power (HGO = 0) Other oscillator settings	C _{1,} C ₂		See N See N		
3	D	Feedback resistor Low range, low power (RANGE = 0, HGO = 0) ² Low range, high gain (RANGE = 0, HGO = 1) High range (RANGE = 1, HGO = X)	ĸ _F		 10 1		MΩ
4	D	Series resistor — Low range, low power (RANGE = 0, HGO = 0) ² Low range, high gain (RANGE = 0, HGO = 1) High range, low power (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) $\geq 8 \text{ MHz}$ 4 MHz 1 MHz	R _S		 100 0 0 0	 0 10 20	kΩ
5	т	Crystal start-up time ⁴ Low range, low powe Low range, high powe High range, low powe High range, high powe		 	600 400 5 15	 	ms
6	D	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE mode FBE or FBELP mode	exiai	0.03125 0		50.33 50.33	MHz MHz

Table 16. XOSC Specifications (Temperature Range = -40 to 85 °C Ambient)


¹ Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.

² Load capacitors (C_1 , C_2), feedback resistor (R_F) and series resistor (R_S) are incorporated internally when RANGE = HGO = 0.

³ See crystal or resonator manufacturer's recommendation.

⁴ Proper PC board layout procedures must be followed to achieve specifications.

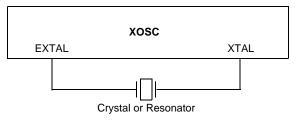


Figure 12. Typical Crystal or Resonator Circuit: Low Range/Low Gain

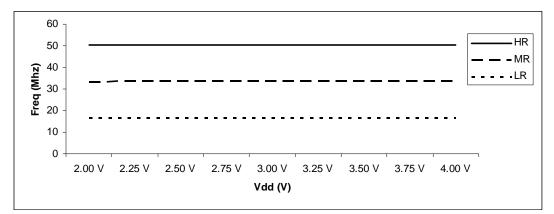

2.10 Internal Clock Source (ICS) Characteristics

Table 17. ICS Frequency Specifications (Temperature Range = -40 to 85 °C Ambient)

Num	С	Charac	teristic	Symbol	Min	Typical ¹	Max	Unit
1	Ρ	Average internal reference frequency — factory trimmed at $V_{DD} = 3.6$ V and temperature = 25 °C		f _{int_ft}	_	32.768	_	kHz
2	Ρ	Internal reference frequency —	user trimmed	f _{int_ut}	31.25	—	39.06	kHz
3	Т	Internal reference start-up time		t _{IRST}	_	60	100	μS
	Ρ		Low range (DRS = 00)		16	—	20	
4	С	DCO output frequency range — trimmed ²	Mid range (DRS = 01)	f _{dco_u}	32	—	40	MHz
	Ρ		High range (DRS = 10)		48		60	
	Ρ	DCO output frequency ²	Low range (DRS = 00)		_	19.92	_	
5	Ρ	Reference = 32768 Hz	Mid range (DRS = 01)	f _{dco_DMX32}	_	39.85	_	MHz
	Ρ	and DMX32 = 1	High range (DRS = 10)		_	59.77		
6	С	Resolution of trimmed DCO output frequency at fixed voltage and temperature (using FTRIM)		$\Delta f_{dco_res_t}$	_	±0.1	±0.2	%f _{dco}
7	С	Resolution of trimmed DCO outp and temperature (not using FTR		$\Delta f_{dco_res_t}$	_	±0.2	±0.4	%f _{dco}

MCF51EM256 Series ColdFire Microcontroller Data Sheet, Rev.3

2.11 LCD Specifications

Ν	С	Characteristic	Symbo	ol Min	Typical	Max	Unit	
1	D	LCD frame frequency	f _{Frame}	28	30	58	Hz	
2	D	LCD charge pump capacitance	C _{LCD}		100	100	nF	
3	D	LCD bypass capacitance	C _{BYLC}	D	100	100	nF	
4	D	LCD glass capacitance	C _{glass}	;	2000	8000	pF	
5	D	HRefSel	= 0	.89	1.00	1.15	v	
6	D	V _{IREG} HRefSel	= 1 V _{IREG}	1.49	1.67	1.85 ¹	v	
7	D	V _{IREG} trim resolution	Δ_{RTRIN}	_Л 1.5			% V _{IREG}	
8	D	HRefSel	= 0			0.1	v	
0	8 U	V _{IREG} ripple HRefSel	= 1			0.15		
9	D	V _{IREG} current adder RVEN	= 1 I _{VIREG}	i —	1 ²		μA	
10	D	V _{LCD} buffered adder ³	I _{Buff}	_	1		μΑ	

Table 18. LCD Electricals, 3 V Glass

¹ V_{IREG} Max can not exceed $V_{DD} - 0.15$ V

² 2000 pF Load LCD, frame frequency = 32 Hz

³ VSUPPLY = 10, BYPASS = 0

2.12 AC Characteristics

This section describes AC timing characteristics for each peripheral system.

2.13 VREF Characteristics

Num	С	Characteristic	Symbol	Min	Typical	Мах	Unit
1		Supply voltage	V _{DDAD}	1.80	_	3.60	V
2	_	Operating temperature range	T _{op}	-40	_	105	°C
3	D	Load capability	I _{load}	_	_	10	mA
4	C P	Voltage reference output untrimmed factory trimmed	nLi U	1.070 1.04	 1.150	1.202 1.17	V V
5	D	Load regulation mode = 10, I _{load} = 1 mA		20	_	100	μV/mA
6	т	Line regulation (power supply rejection) DC AC		±0.1 from room temp voltage —60		mV dB	
7	Т	Bandgap only (mode = 00)	I _{BG}	_	72	_	μΑ
8	С	Low power mode (mode = 01)	I _{LP}	_	90	125	μΑ
9	Т	Tight regulation mode (mode =10)	I _{TR}	_	0.27	_	mA

	Table 21.	VREF	Electrical	Specifications
--	-----------	------	------------	----------------

2.14 SPI Characteristics

Table 22 and Figure 19 through Figure 22 describe the timing requirements for the SPI system.

Mechanical Outline Drawings

3.2 100-pin LQFP Package

4 Revision History

Table 24. Revision History

Revision	Date	Description
1	10/15/2009	Initial public release.
2	4/29/2010	Updated teh descriptions of SPI in the Table 2. Changed the FSPIx to SPI16 to keep the term in accordance. Updated Figure 4 to Figure 8. Updated WI _{DD} , S2I _{DD} , S3I _{DD} in the Table 11. Updated the ADC characteristics in the Table 13 to Table 15. Updated description of XOSC in the Section 2.9, "External Oscillator (XOSC) Characteristics." Updated t _{CSTL} in the Table 16. Updated the classification of IBG and ITR to T and added Voltage reference output (factory trimmed) in the Table 21. Update SPI data in the Table 22.
3	8/9/2010	Updated the V _{DD} at 20 MHz maximum operation to 3.6 V. Updated the RI _{DD} (at Run supply current FEI mode, all module on), S2I _{DD} and S3I _{DD} at 3 V, S3I _{DDLVD} in the Table 11. Updated ENOB at 16 bit single-ended mode in the Table 14.