E·XFL

AMD Xilinx - XC2V40-4FGG256I Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	64
Number of Logic Elements/Cells	-
Total RAM Bits	73728
Number of I/O	88
Number of Gates	40000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-BGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc2v40-4fgg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Virtex-II Platform FPGAs: **Functional Description**

DS031-2 (v3.5) November 5, 2007

Product Specification

Detailed Description

Input/Output Blocks (IOBs)

Virtex-II[™] I/O blocks (IOBs) are provided in groups of two or four on the perimeter of each device. Each IOB can be used as input and/or output for single-ended I/Os. Two IOBs can be used as a differential pair. A differential pair is always connected to the same switch matrix, as shown in Figure 1.

IOB blocks are designed for high performances I/Os, supporting 19 single-ended standards, as well as differential signaling with LVDS, LDT, Bus LVDS, and LVPECL.

Figure 1: Virtex-II Input/Output Tile

Note: Differential I/Os must use the same clock.

Supported I/O Standards

Virtex-II IOB blocks feature SelectI/O-Ultra inputs and outputs that support a wide variety of I/O signaling standards. In addition to the internal supply voltage ($V_{CCINT} = 1.5V$), output driver supply voltage (V_{CCO}) is dependent on the I/O standard (see Table 1 and Table 2). An auxiliary supply voltage (V_{CCAUX} = 3.3 V) is required, regardless of the I/O standard used. For exact supply voltage absolute maximum ratings, see DC Input and Output Levels in Module 3.

All of the user IOBs have fixed-clamp diodes to V_{CCO} and to ground. As outputs, these IOBs are not compatible or compliant with 5V I/O standards. As inputs, these IOBs are not normally 5V tolerant, but can be used with 5V I/O standards when external current-limiting resistors are used. For more details, see the "5V Tolerant I/Os" Tech Topic at www.xilinx.com.

Table 3 lists supported I/O standards with Digitally Controlled Impedance. See Digitally Controlled Impedance (DCI), page 8.

IOSTANDARD Attribute	Output V _{CCO}	Input V _{CCO}	Input V _{REF}	Board Termination Voltage (V _{TT})
LVTTL	3.3	3.3	N/R ⁽³⁾	N/R
LVCMOS33	3.3	3.3	N/R	N/R
LVCMOS25	2.5	2.5	N/R	N/R
LVCMOS18	1.8	1.8	N/R	N/R
LVCMOS15	1.5	1.5	N/R	N/R
PCI33_3	3.3	3.3	N/R	N/R
PCI66_3	3.3	3.3	N/R	N/R
PCI-X	3.3	3.3	N/R	N/R
GTL	Note (1)	Note (1)	0.8	1.2
GTLP	Note (1)	Note (1)	1.0	1.5
HSTL_I	1.5	N/R	0.75	0.75
HSTL_II	1.5	N/R	0.75	0.75
HSTL_III	1.5	N/R	0.9	1.5
HSTL_IV	1.5	N/R	0.9	1.5
HSTL_I_18	1.8	N/R	0.9	0.9
HSTL_II_18	1.8	N/R	0.9	0.9
HSTL_III _18	1.8	N/R	1.1	1.8
HSTL_IV_18	1.8	N/R	1.1	1.8
SSTL18_I ⁽²⁾	1.8	N/R	0.9	0.9
SSTL18_II	1.8	N/R	0.9	0.9
SSTL2_I	2.5	N/R	1.25	1.25
SSTL2_II	2.5	N/R	1.25	1.25
SSTL3_I	3.3	N/R	1.5	1.5
SSTL3_II	3.3	N/R	1.5	1.5
AGP-2X/AGP	3.3	N/R	1.32	N/R

Table 1⁻ Supported Single-Ended I/O Standards

Notes:

 V_{CCO} of GTL or GTLP should not be lower than the termination voltage or the voltage seen at the I/O pad. Example: If the pin High level is 1.5V, connect V_{CCO} to 1.5V. SSTL18_I is not a JEDEC-supported standard.

3. N/R = no requirement.

^{© 2000-2007} Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners

Figure 13 provides examples illustrating the use of the LVDS_DCI and LVDSEXT_DCI I/O standards. For a complete list, see the <u>Virtex-II Platform FPGA User Guide</u>.

LVDS_DCI and LVDSEXT_DCI Receiver

Figure 13: LVDS DCI Usage Examples

Device	CLB Array: Row x Column	Number of Slices	Number of LUTs	Max Distributed SelectRAM or Shift Register (bits)	Number of Flip-Flops	Number of Carry-Chains ⁽¹⁾	Number of SOP Chains ⁽¹⁾
XC2V40	8 x 8	256	512	8,192	512	16	16
XC2V80	16 x 8	512	1,024	16,384	1,024	16	32
XC2V250	24 x 16	1,536	3,072	49,152	3,072	32	48
XC2V500	32 x 24	3,072	6,144	98,304	6,144	48	64
XC2V1000	40 x 32	5,120	10,240	163,840	10,240	64	80
XC2V1500	48 x 40	7,680	15,360	245,760	15,360	80	96
XC2V2000	56 x 48	10,752	21,504	344,064	21,504	96	112
XC2V3000	64 x 56	14,336	28,672	458,752	28,672	112	128
XC2V4000	80 x 72	23,040	46,080	737,280	46,080	144	160
XC2V6000	96 x 88	33,792	67,584	1,081,344	67,584	176	192
XC2V8000	112 x 104	46,592	93,184	1,490,944	93,184	208	224

Table 13: Virtex-II Logic Resources Available in All CLBs

Notes:

1. The carry-chains and SOP chains can be split or cascaded.

18 Kbit Block SelectRAM Resources

Introduction

Virtex-II devices incorporate large amounts of 18 Kbit block SelectRAM. These complement the distributed SelectRAM resources that provide shallow RAM structures implemented in CLBs. Each Virtex-II block SelectRAM is an 18 Kbit true dual-port RAM with two independently clocked and independently controlled synchronous ports that access a common storage area. Both ports are functionally identical. CLK, EN, WE, and SSR polarities are defined through configuration.

Each port has the following types of inputs: Clock and Clock Enable, Write Enable, Set/Reset, and Address, as well as separate Data/parity data inputs (for write) and Data/parity data outputs (for read).

Operation is synchronous; the block SelectRAM behaves like a register. Control, address and data inputs must (and need only) be valid during the set-up time window prior to a rising (or falling, a configuration option) clock edge. Data outputs change as a result of the same clock edge.

Configuration

The Virtex-II block SelectRAM supports various configurations, including single- and dual-port RAM and various data/address aspect ratios. Supported memory configurations for single- and dual-port modes are shown in Table 14.

Table 14: Dual- and Single-Port Configurations

16K x 1 bit	2K x 9 bits
8K x 2 bits	1K x 18 bits
4K x 4 bits	512 x 36 bits

Single-Port Configuration

As a single-port RAM, the block SelectRAM has access to the 18 Kbit memory locations in any of the 2K x 9-bit, 1K x 18-bit, or 512 x 36-bit configurations and to 16 Kbit memory locations in any of the 16K x 1-bit, 8K x 2-bit, or 4K x 4-bit configurations. The advantage of the 9-bit, 18-bit and 36-bit widths is the ability to store a parity bit for each eight bits. Parity bits must be generated or checked externally in user logic. In such cases, the width is viewed as 8 + 1, 16 + 2, or 32 + 4. These extra parity bits are stored and behave exactly as the other bits, including the timing parameters. Video applications can use the 9-bit ratio of Virtex-II block SelectRAM memory to advantage.

Each block SelectRAM cell is a fully synchronous memory as illustrated in Figure 29. Input data bus and output data bus widths are identical. Place-and-route software takes advantage of this regular array to deliver optimum system performance and fast compile times. The segmented routing resources are essential to guarantee IP cores portability and to efficiently handle an incremental design flow that is based on modular implementations. Total design time is reduced due to fewer and shorter design iterations.

Hierarchical Routing Resources

Most Virtex-II signals are routed using the global routing resources, which are located in horizontal and vertical routing channels between each switch matrix.

As shown in Figure 49, Virtex-II has fully buffered programmable interconnections, with a number of resources counted between any two adjacent switch matrix rows or columns. Fanout has minimal impact on the performance of each net.

- The long lines are bidirectional wires that distribute signals across the device. Vertical and horizontal long lines span the full height and width of the device.
- The hex lines route signals to every third or sixth block away in all four directions. Organized in a staggered pattern, hex lines can only be driven from one end. Hex-line signals can be accessed either at the endpoints or at the midpoint (three blocks from the source).
- The double lines route signals to every first or second block away in all four directions. Organized in a staggered pattern, double lines can be driven only at

their endpoints. Double-line signals can be accessed either at the endpoints or at the midpoint (one block from the source).

- The direct connect lines route signals to neighboring blocks: vertically, horizontally, and diagonally.
- The fast connect lines are the internal CLB local interconnections from LUT outputs to LUT inputs.

Dedicated Routing

In addition to the global and local routing resources, dedicated signals are available.

- There are eight global clock nets per quadrant (see Global Clock Multiplexer Buffers).
- Horizontal routing resources are provided for on-chip 3-state busses. Four partitionable bus lines are provided per CLB row, permitting multiple busses within a row. (See 3-State Buffers.)
- Two dedicated carry-chain resources per slice column (two per CLB column) propagate carry-chain MUXCY output signals vertically to the adjacent slice. (See CLB/Slice Configurations.)
- One dedicated SOP chain per slice row (two per CLB row) propagate ORCY output logic signals horizontally to the adjacent slice. (See Sum of Products.)
- One dedicated shift-chain per CLB connects the output of LUTs in shift-register mode to the input of the next LUT in shift-register mode (vertically) inside the CLB. (See Shift Registers, page 16.)

Figure 49: Hierarchical Routing Resources

www.xilinx.com

Configuration

Virtex-II devices are configured by loading application specific configuration data into the internal configuration memory. Configuration is carried out using a subset of the device pins, some of which are dedicated, while others can be re-used as general purpose inputs and outputs once configuration is complete.

Depending on the system design, several configuration modes are supported, selectable via mode pins. The mode pins M2, M1 and M0 are dedicated pins. The M2, M1, and M0 mode pins should be set at a constant DC voltage level, either through pull-up or pull-down resistors, or tied directly to ground or V_{CCAUX} . The mode pins should not be toggled during and after configuration.

An additional pin, HSWAP_EN is used in conjunction with the mode pins to select whether user I/O pins have pull-ups during configuration. By default, HSWAP_EN is tied High (internal pull-up) which shuts off the pull-ups on the user I/O pins during configuration. When HSWAP_EN is tied Low, user I/Os have pull-ups during configuration. Other dedicated pins are CCLK (the configuration clock pin), DONE, PROG_B, and the Boundary-Scan pins: TDI, TDO, TMS, and TCK. Depending on the configuration mode chosen, CCLK can be an output generated by the FPGA, or an input accepting an externally generated clock. The configuration pins and Boundary-Scan pins are independent of the V_{CCO}. The auxiliary power supply (V_{CCAUX}) of 3.3V is used for these pins. All configuration pins are LVTTL 12 mA. (See Virtex-II DC Characteristics in Module 3.)

A persist option is available which can be used to force the configuration pins to retain their configuration function even after device configuration is complete. If the persist option is not selected then the configuration pins with the exception of CCLK, PROG_B, and DONE can be used as user I/O in normal operation. The persist option does not apply to the Boundary-Scan related pins. The persist feature is valuable in applications which employ partial reconfiguration or reconfiguration on the fly.

Configuration Modes

Virtex-II supports the following five configuration modes:

- Slave-Serial Mode
- Master-Serial Mode
- Slave SelectMAP Mode
- Master SelectMAP Mode
- Boundary-Scan (JTAG, IEEE 1532) Mode

A detailed description of configuration modes is provided in the Virtex-II *User Guide*.

Slave-Serial Mode

In slave-serial mode, the FPGA receives configuration data in bit-serial form from a serial PROM or other serial source of configuration data. The CCLK pin on the FPGA is an input in this mode. The serial bitstream must be setup at the DIN input pin a short time before each rising edge of the externally generated CCLK.

Multiple FPGAs can be daisy-chained for configuration from a single source. After a particular FPGA has been configured, the data for the next device is routed internally to the DOUT pin. The data on the DOUT pin changes on the falling edge of CCLK.

Slave-serial mode is selected by applying <111> to the mode pins (M2, M1, M0). A weak pull-up on the mode pins makes slave serial the default mode if the pins are left unconnected.

Master-Serial Mode

In master-serial mode, the CCLK pin is an output pin. It is the Virtex-II FPGA device that drives the configuration clock on the CCLK pin to a Xilinx Serial PROM which in turn feeds bit-serial data to the DIN input. The FPGA accepts this data on each rising CCLK edge. After the FPGA has been loaded, the data for the next device in a daisy-chain is presented on the DOUT pin after the falling CCLK edge.

The interface is identical to slave serial except that an internal oscillator is used to generate the configuration clock (CCLK). A wide range of frequencies can be selected for CCLK which always starts at a slow default frequency. Configuration bits then switch CCLK to a higher frequency for the remainder of the configuration.

Slave SelectMAP Mode

The SelectMAP mode is the fastest configuration option. Byte-wide data is written into the Virtex-II FPGA device with a BUSY flag controlling the flow of data. An external data source provides a byte stream, CCLK, an active Low Chip Select (CS_B) signal and a Write signal (RDWR_B). If BUSY is asserted (High) by the FPGA, the data must be held until BUSY goes Low. Data can also be read using the SelectMAP mode. If RDWR_B is asserted, configuration data is read out of the FPGA as part of a readback operation.

After configuration, the pins of the SelectMAP port can be used as additional user I/O. Alternatively, the port can be retained to permit high-speed 8-bit readback using the persist option.

Multiple Virtex-II FPGAs can be configured using the SelectMAP mode, and be made to start-up simultaneously. To configure multiple devices in this way, wire the individual CCLK, Data, RDWR_B, and BUSY pins of all the devices in parallel. The individual devices are loaded separately by deasserting the CS_B pin of each device in turn and writing the appropriate data.

Master SelectMAP Mode

This mode is a master version of the SelectMAP mode. The device is configured byte-wide on a CCLK supplied by the

Virtex-II Platform FPGAs: DC and Switching Characteristics

DS031-3 (v3.5) November 5, 2007

Product Specification

Virtex-II Electrical Characteristics

Virtex-II[™] devices are provided in -6, -5, and -4 speed grades, with -6 having the highest performance.

Virtex-II DC and AC characteristics are specified for both commercial and industrial grades. Except the operating temperature range or unless otherwise noted, all the DC and AC electrical parameters are the same for a particular speed grade (that is, the timing characteristics of a -4 speed grade industrial device are the same as for a -4 speed grade

commercial device). However, only selected speed grades and/or devices might be available in the industrial range.

All supply voltage and junction temperature specifications are representative of worst-case conditions. The parameters included are common to popular designs and typical applications. Contact Xilinx for design considerations requiring more detailed information.

All specifications are subject to change without notice.

Virtex-II DC Characteristics

Table 1: Absolute Maximum Ratings

Symbol	Desc		Units	
V _{CCINT}	Internal supply voltage relative to GND)	-0.5 to 1.65	V
V _{CCAUX}	Auxiliary supply voltage relative to GN	D	-0.5 to 4.0	V
V _{CCO}	Output drivers supply voltage relative t	o GND	-0.5 to 4.0	V
V _{BATT}	Key memory battery backup supply		-0.5 to 4.0	V
V _{REF}	Input reference voltage	–0.5 to V _{CCO} + 0.5	V	
V _{IN} ⁽³⁾	Input voltage relative to GND (user and	-0.5 to V _{CCO} + 0.5	V	
V _{TS}	Voltage applied to 3-state output (user	-0.5 to 4.0	V	
T _{STG}	Storage temperature (ambient)		-65 to +150	°C
		All regular FF/BF flip-chip and FG/BG/CS wire-bond packages	+220	°C
T _{SOL}	Maximum soldering temperature ⁽²⁾	Pb-free FGG456, FGG676, BGG575, and BGG728 wire-bond packages	+250	°C
		Pb-free FGG256 and CSG144 wire-bond packages	+260	°C
TJ	Maximum junction temperature ⁽²⁾	+125	°C	

Notes:

. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.

2. For soldering guidelines and thermal considerations, see the <u>Device Packaging and Thermal Characteristics Guide</u> information on the Xilinx website.

3. Inputs configured as PCI are fully PCI compliant. This statement takes precedence over any specification that would imply that the device is not PCI compliant.

© 2000–2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners.

JTAG Test Access Port Switching Characteristics

Characterization data for some of the most commonly requested timing parameters shown in Figure 6 is listed in Table 33.

Figure 6: Virtex-II Pro Boundary Scan Port Timing Waveforms

Table	33:	Boundary	y-Scan	Port	Timing	Specific	ations
-------	-----	----------	--------	------	--------	----------	--------

	Description	Figure References	Symbol	Value	Units
ток	TMS and TDI setup time	1	T _{TAPTCK}	5.5	ns, min
	TMS and TDI hold times	2	T _{TCKTAP}	0.0	ns, min
TOR	Falling edge to TDO output valid	3	Т _{тсктро}	10.0	ns, max
	Maximum frequency		F _{TCK}	33.0	MHz, max

Input Clock Tolerances

Table 39: Input Clock Tolerances

					Speed Grade				
		Constraints	-	6	-	5	-	4	
Description	Symbol	F _{CLKIN}	Min	Мах	Min	Мах	Min	Мах	Units
Input Clock Low/High Pulse Wid	th								
PSCLK	PSCLK_PULSE	< 1MHz	25.00		25.00		25.00		ns
		1 – 10 MHz	25.00		25.00		25.00		ns
		10 – 25 MHz	10.00		10.00		10.00		ns
		25 – 50 MHz	5.00		5.00		5.00		ns
		50 – 100 MHz	3.00		3.00		3.00		ns
		100 – 150 MHz	2.40		2.40		2.40		ns
PSCLK and CLKIN ⁽³⁾	PSCLK_PULSE and CLKIN PULSE	150 – 200 MHz	2.00		2.00		2.00		ns
		200 – 250 MHz	1.80		1.80		1.80		ns
		250 – 300 MHz	1.50		1.50		1.50		ns
		300 – 350 MHz	1.30		1.30		1.30		ns
		350 – 400 MHz	1.15		1.15		1.15		ns
		> 400 MHz	1.05		1.05		1.05		ns
Input Clock Cycle-Cycle Jitter (L	ow Frequency Mode)	1	1	1	I	1	I	1	
CLKIN (using DLL outputs) ⁽¹⁾	CLKIN_CYC_JITT_DLL_LF			±300		±300		±300	ps
CLKIN (using CLKFX outputs) ⁽²⁾	CLKIN_CYC_JITT_FX_LF			±300		±300		±300	ps
Input Clock Cycle-Cycle Jitter (H	ligh Frequency Mode)	1	1	1	1	1	1	1	
CLKIN (using DLL outputs) ⁽¹⁾	CLKIN_CYC_JITT_DLL_HF			±150		±150		±150	ps
CLKIN (using CLKFX outputs) ⁽²⁾	CLKIN_CYC_JITT_FX_HF			±150		±150		±150	ps
Input Clock Period Jitter (Low Fi	requency Mode)								
CLKIN (using DLL outputs) ⁽¹⁾	CLKIN_PER_JITT_DLL_LF			±1		±1		±1	ns
CLKIN (using CLKFX outputs) ⁽²⁾	CLKIN_PER_JITT_FX_LF			±1		±1		±1	ns
Input Clock Period Jitter (High Frequency Mode)									
CLKIN (using DLL outputs) ⁽¹⁾	CLKIN_PER_JITT_DLL_HF			±1		±1		±1	ns
CLKIN (using CLKFX outputs) ⁽²⁾	CLKIN_PER_JITT_FX_HF			±1		±1		±1	ns
Feedback Clock Path Delay Varia	ation								•
CLKFB off-chip feedback	CLKFB_DELAY_VAR_EXT			±1		±1		±1	ns

Notes:

1. "DLL outputs" is used here to describe the outputs: CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, and CLKDV.

2. If both DLL and CLKFX outputs are used, follow the more restrictive specification.

3. If DCM phase shift feature is used and CLKIN frequency > 200 Mhz, CLKIN duty cycle must be within ±5% (45/55 to 55/45).

Source-Synchronous Switching Characteristics

The parameters in this section provide the necessary values for calculating timing budgets for Virtex-II source-synchronous transmitter and receiver data-valid windows.

Table 45: Duty Cycle Distortion and Clock-Tree Skew

				Speed Grade	e	
Description	Symbol	Device	-6	-5	-4	Units
Duty Cycle Distortion ⁽¹⁾	T _{DCD_CLK0}	All	140	140	140	ps
	T _{DCD_CLK180}	All	50	50	50	ps
Clock Tree Skew ⁽²⁾	T _{CKSKEW}	XC2V40	50	50	60	ps
		XC2V80	50	50	60	ps
		XC2V250	50	50	60	ps
		XC2V500	50	50	60	ps
		XC2V1000	80	80	90	ps
		XC2V1500	80	80	90	ps
		XC2V2000	100	100	110	ps
		XC2V3000	100	100	110	ps
		XC2V4000	400	400	450	ps
		XC2V6000	500	500	550	ps
		XC2V8000		600	650	ps

Notes:

 These parameters represent the worst-case duty cycle distortion observable at the pins of the device using LVDS output buffers. For cases where other I/O standards are used, IBIS can be used to calculate any additional duty cycle distortion that might be caused by asymmetrical rise/fall times.

 T_{DCD_CLK0} applies to cases where local (IOB) inversion is used to provide the negative-edge clock to the DDR element in the I/O. T_{DCD_CLK180} applies to cases where the CLK180 output of the DCM is used to provide the negative-edge clock to the DDR element in the I/O.

2. This value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA_Editor and Timing Analyzer tools to evaluate clock skew specific to your application.

Table 46: Package Skew

Description	Symbol	Device/Package	Value	Units
Package Skew ⁽¹⁾	T _{PKGSKEW}	XC2V1000 / FF896	130	ps
		XC2V3000 / FF1152	115	ps
		XC2V3000 / BF957	130	ps
		XC2V4000 / FF1152	130	ps
		XC2V4000 / FF1517	200	ps
		XC2V4000 / BF957	140	ps
		XC2V6000 / FF1152	90	ps
		XC2V6000 / FF1517	105	ps
		XC2V6000 / BF957	105	ps

Notes:

- 1. These values represent the worst-case skew between any two balls of the package: shortest flight time to longest flight time from Pad to Ball (7.1ps per mm).
- 2. Package trace length information is available for these device/package combinations. This information can be used to deskew the package.

Source Synchronous Timing Budgets

This section describes how to use the parameters provided in the Source-Synchronous Switching Characteristics section to develop system-specific timing budgets. The following analysis provides information necessary for determining Virtex-II contributions to an overall system timing analysis; no assumptions are made about the effects of Inter-Symbol Interference or PCB skew.

Virtex-II Transmitter Data-Valid Window (T_x)

 T_X is the minimum aggregate valid data period for a source-synchronous data bus at the pins of the device and is calculated as follows:

 $T_X = Data Period - [Jitter^{(1)} + Duty Cycle Distortion^{(2)} + TCKSKEW^{(3)} + TPKGSKEW^{(4)}]$

Notes:

- 1. Jitter values and accumulation methodology to be provided in a future release of this document. The absolute period jitter values found in the DCM Timing Parameters section of the particular DCM output clock used to clock the IOB FF can be used for a best case analysis.
- 2. This value depends on the clocking methodology used. See Note1 for Table 45.
- This value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA_Editor and Timing Analyzer tools to evaluate clock skew specific to your application.
- 4. These values represent the worst-case skew between any two balls of the package: shortest flight time to longest flight time from Pad to Ball.

Virtex-II Receiver Data-Valid Window (R_x)

 R_X is the required minimum aggregate valid data period for a source-synchronous data bus at the pins of the device and is calculated as follows:

$$R_{X} = [TSAMP^{(1)} + TCKSKEW^{(2)} + TPKGSKEW^{(3)}]$$

Notes:

- This parameter indicates the total sampling error of Virtex-II DDR input registers across voltage, temperature, and process. The characterization methodology uses the DCM to capture the DDR input registers' edges of operation. These measurements include:
 - CLK0 and CLK180 DCM jitter in a quiet system
 - Worst-case duty-cycle distortion
 - DCM accuracy (phase offset)
 - DCM phase shift resolution.

These measurements do not include package or clock tree skew.

- This value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA_Editor and Timing Analyzer tools to evaluate clock skew specific to your application.
- 3. These values represent the worst-case skew between any two balls of the package: shortest flight time to longest flight time from Pad to Ball.

Revision History

This section records the change history for this module of the data sheet.

Date	Version	Revision
11/07/00	1.0	Early access draft.
12/06/00	1.1	Initial release.
01/15/01	1.2	Added values to the tables in the Virtex-II Performance Characteristics and Virtex-II Switching Characteristics sections.
01/25/01	1.3	 The data sheet was divided into four modules (per the current style standard). Updated values in the Virtex-II Performance Characteristics and Virtex-II Switching Characteristics tables. Table 18, "Delay Measurement Methodology"
04/23/01	1.5	 Updated values in the Virtex-II Performance Characteristics and Virtex-II Switching Characteristics tables. Added T_{REG32} symbol to Table 23. Skipped v1.4 to sync with other modules. Reverted to traditional double-column format.

FG456/FGG456 Fine-Pitch BGA Package Specifications (1.00mm pitch)

456-BALL FINE PITCH BGA (FG456/FGG456)

Figure 3: FG456/FGG456 Fine-Pitch BGA Package Specifications

www.xilinx.com

Table 8: FG676/FGG676 BGA — XC2V1500, XC2V2000, and XC2V3000

Bank	Pin Description	Pin Number	No Connect in XC2V1500	No Connect in XC2V2000
3	VCCO_3	V19		
3	VCCO_3	U25		
3	VCCO_3	U19		
3	VCCO_3	T18		
3	VCCO_3	R18		
3	VCCO_3	P18		
4	VCCO_4	AE20		
4	VCCO_4	AE17		
4	VCCO_4	W18		
4	VCCO_4	W17		
4	VCCO_4	V16		
4	VCCO_4	V15		
4	VCCO_4	V14		
5	VCCO_5	AE10		
5	VCCO_5	AE7		
5	VCCO_5	W10		
5	VCCO_5	W9		
5	VCCO_5	V13		
5	VCCO_5	V12		
5	VCCO_5	V11		
6	VCCO_6	Y2		
6	VCCO_6	V8		
6	VCCO_6	U8		
6	VCCO_6	U2		
6	VCCO_6	Т9		
6	VCCO_6	R9		
6	VCCO_6	P9		
7	VCCO_7	N9		
7	VCCO_7	M9		
7	VCCO_7	L9		
7	VCCO_7	K8		
7	VCCO_7	K2		
7	VCCO_7	J8		
7	VCCO_7	G2		
NA	CCLK	AB21		
NA	PROG_B	C4		

Bank	Pin Description	Pin Number	No Connect in the XC2V1000	No Connect in the XC2V1500
NA	GND	T13		
NA	GND	T12		
NA	GND	R19		
NA	GND	R18		
NA	GND	R17		
NA	GND	R16		
NA	GND	R15		
NA	GND	R14		
NA	GND	R13		
NA	GND	R12		
NA	GND	P24		
NA	GND	P19		
NA	GND	P18		
NA	GND	P17		
NA	GND	P16		
NA	GND	P15		
NA	GND	P14		
NA	GND	P13		
NA	GND	P12		
NA	GND	P7		
NA	GND	N19		
NA	GND	N18		
NA	GND	N17		
NA	GND	N16		
NA	GND	N15		
NA	GND	N14		
NA	GND	N13		
NA	GND	N12		
NA	GND	M26		
NA	GND	M19		
NA	GND	M18		
NA	GND	M17		
NA	GND	M16		
NA	GND	M15		
NA	GND	M14		
NA	GND	M13		
NA	GND	M12		

Table 11: FF896 BGA — XC2V1000, XC2V1500, and XC2V2000

Table	12: FF1152 BG	A — XC2V3000, X	C2V4000, XC2V600	0, and XC2V8000
-------	---------------	-----------------	------------------	-----------------

Bank	Pin Description	Pin Number	No Connect in the XC2V3000
5	VCCO_5	AP19	
5	VCCO_5	AL28	
5	VCCO_5	AK20	
5	VCCO_5	AD23	
5	VCCO_5	AD22	
5	VCCO_5	AD21	
5	VCCO_5	AD20	
5	VCCO_5	AC22	
5	VCCO_5	AC21	
5	VCCO_5	AC20	
5	VCCO_5	AC19	
5	VCCO_5	AC18	
6	VCCO_6	AH31	
6	VCCO_6	AE34	
6	VCCO_6	AC24	
6	VCCO_6	AB24	
6	VCCO_6	AB23	
6	VCCO_6	AA24	
6	VCCO_6	AA23	
6	VCCO_6	Y30	
6	VCCO_6	Y24	
6	VCCO_6	Y23	
6	VCCO_6	W34	
6	VCCO_6	W23	
6	VCCO_6	V23	
7	VCCO_7	U23	
7	VCCO_7	T34	
7	VCCO_7	T23	
7	VCCO_7	R30	
7	VCCO_7	R24	
7	VCCO_7	R23	
7	VCCO_7	P24	
7	VCCO_7	P23	
7	VCCO_7	N24	
7	VCCO_7	N23	
7	VCCO_7	M24	

Bank	Pin Description	Pin Number	No Connect in the XC2V3000
NA	VCCINT	AB17	
NA	VCCINT	AB16	
NA	VCCINT	AB15	
NA	VCCINT	AB14	
NA	VCCINT	AB13	
NA	VCCINT	AA22	
NA	VCCINT	AA13	
NA	VCCINT	Y22	
NA	VCCINT	Y13	
NA	VCCINT	W22	
NA	VCCINT	W13	
NA	VCCINT	V22	
NA	VCCINT	V13	
NA	VCCINT	U22	
NA	VCCINT	U13	
NA	VCCINT	T22	
NA	VCCINT	T13	
NA	VCCINT	R22	
NA	VCCINT	R13	
NA	VCCINT	P22	
NA	VCCINT	P13	
NA	VCCINT	N22	
NA	VCCINT	N21	
NA	VCCINT	N20	
NA	VCCINT	N19	
NA	VCCINT	N18	
NA	VCCINT	N17	
NA	VCCINT	N16	
NA	VCCINT	N15	
NA	VCCINT	N14	
NA	VCCINT	N13	
NA	VCCINT	M23	
NA	VCCINT	M12	
NA	VCCINT	L24	
NA	VCCINT	L11	

Table 12: FF1152 BGA — XC2V3000, XC2V4000, XC2V6000, and XC2V8000

Bank	Pin Description	Pin Number	No Connect in the XC2V4000	No Connect in the XC2V6000
3	IO_L58N_3	AD5		
3	IO_L58P_3	AE5		
3	IO_L57N_3/VREF_3	AE11		
3	IO_L57P_3	AD11		
3	IO_L56N_3	AG1		
3	IO_L56P_3	AH1		
3	IO_L55N_3	AD6		
3	IO_L55P_3	AE6		
3	IO_L54N_3	AF10		
3	IO_L54P_3	AE10		
3	IO_L53N_3	AG2		
3	IO_L53P_3	AH2		
3	IO_L52N_3	AF4		
3	IO_L52P_3	AG4		
3	IO_L51N_3/VREF_3	AG8		
3	IO_L51P_3	AF8		
3	IO_L50N_3	AH3		
3	IO_L50P_3	AJ3		
3	IO_L49N_3	AE7		
3	IO_L49P_3	AF7		
3	IO_L48N_3	AG9		
3	IO_L48P_3	AF9		
3	IO_L47N_3	AF6		
3	IO_L47P_3	AG6		
3	IO_L46N_3	AG5		
3	IO_L46P_3	AH5		
3	IO_L45N_3/VREF_3	AF12		
3	IO_L45P_3	AE12		
3	IO_L44N_3	AJ1		
3	IO_L44P_3	AK1		
3	IO_L43N_3	AH4		
3	IO_L43P_3	AJ4		
3	IO_L36N_3	AG11	NC	
3	IO_L36P_3	AF11	NC	
3	IO_L35N_3	AK2	NC	
3	IO_L35P_3	AL2	NC	

Table 13: FF1517 BGA — XC2V4000, XC2V6000, and XC2V8000

Table	14:	BF957 — XC2V2000, XC2V3000, XC2V4000, and XC2V6000
-------	-----	--

Bank	Pin Description	Pin Number	No Connect in XC2V2000
1	IO_L21P_1	A4	
1	IO_L20N_1	G10	
1	IO_L20P_1	G9	
1	IO_L19N_1	B6	
1	IO_L19P_1	C5	
1	IO_L06N_1	C6	
1	IO_L06P_1	D6	
1	IO_L05N_1	H9	
1	IO_L05P_1	G8	
1	IO_L04N_1	D7	
1	IO_L04P_1/VREF_1	E6	
1	IO_L03N_1/VRP_1	E8	
1	IO_L03P_1/VRN_1	E7	
1	IO_L02N_1	F8	
1	IO_L02P_1	F7	
1	IO_L01N_1	B5	
1	IO_L01P_1	B3	
2	IO_L01N_2	F5	
2	IO_L01P_2	G4	
2	IO_L02N_2/VRP_2	G6	
2	IO_L02P_2/VRN_2	H6	
2	IO_L03N_2	D3	
2	IO_L03P_2/VREF_2	E4	
2	IO_L04N_2	K10	
2	IO_L04P_2	K9	
2	IO_L05N_2	D2	
2	IO_L05P_2	E3	
2	IO_L06N_2	F4	
2	IO_L06P_2	F3	
2	IO_L19N_2	L10	
2	IO_L19P_2	M10	
2	IO_L20N_2	H7	
2	IO_L20P_2	J8	
2	IO_L21N_2	D1	
2	IO_L21P_2/VREF_2	E1	
2	IO_L22N_2	G5	
2	IO_L22P_2	H5	

Bank	Pin Description	Pin Number	No Connect in XC2V2000
4	IO_L78N_4	AJ13	
4	IO_L78P_4	AK13	
4	IO_L91N_4/VREF_4	AC15	
4	IO_L91P_4	AC16	
4	IO_L92N_4	AG14	
4	IO_L92P_4	AG15	
4	IO_L93N_4	AK14	
4	IO_L93P_4	AK15	
4	IO_L94N_4/VREF_4	AF16	
4	IO_L94P_4	AG16	
4	IO_L95N_4/GCLK3S	AL14	
4	IO_L95P_4/GCLK2P	AL15	
4	IO_L96N_4/GCLK1S	AH15	
4	IO_L96P_4/GCLK0P	AJ15	
5	IO_L96N_5/GCLK7S	AJ16	
5	IO_L96P_5/GCLK6P	AH17	
5	IO_L95N_5/GCLK5S	AD16	
5	IO_L95P_5/GCLK4P	AD17	
5	IO_L94N_5	AL17	
5	IO_L94P_5/VREF_5	AL18	
5	IO_L93N_5	AG17	
5	IO_L93P_5	AF17	
5	IO_L92N_5	AE17	
5	IO_L92P_5	AE18	
5	IO_L91N_5	AK17	
5	IO_L91P_5/VREF_5	AJ17	
5	IO_L78N_5	AK18	
5	IO_L78P_5	AK19	
5	IO_L77N_5	AC17	
5	IO_L77P_5	AB18	
5	IO_L76N_5	AH18	
5	IO_L76P_5	AH19	
5	IO_L75N_5/VREF_5	AL19	
5	IO_L75P_5	AL20	
5	IO_L74N_5	AC18	
5	IO_L74P_5	AC19	
5	IO_L73N_5	AJ19	

Table 14: BF957 — XC2V2000, XC2V3000, XC2V4000, and XC2V6000

Bank	Pin Description	Pin Number	No Connect in XC2V2000
6	IO_L20P_6	AD25	
6	IO_L20N_6	AC24	
6	IO_L21P_6	AG30	
6	IO_L21N_6/VREF_6	AF30	
6	IO_L22P_6	AD26	
6	IO_L22N_6	AC26	
6	IO_L23P_6	AF29	
6	IO_L23N_6	AD29	
6	IO_L24P_6	AE28	
6	IO_L24N_6	AD28	
6	IO_L25P_6	AB24	NC
6	IO_L25N_6	AA24	NC
6	IO_L27P_6	AC25	NC
6	IO_L27N_6/VREF_6	AB25	NC
6	IO_L43P_6	AF31	
6	IO_L43N_6	AE31	
6	IO_L44P_6	AA23	
6	IO_L44N_6	Y23	
6	IO_L45P_6	AE30	
6	IO_L45N_6/VREF_6	AC30	
6	IO_L46P_6	AC28	
6	IO_L46N_6	AA28	
6	IO_L47P_6	AD27	
6	IO_L47N_6	AC27	
6	IO_L48P_6	AA25	
6	IO_L48N_6	Y25	
6	IO_L49P_6	AC29	
6	IO_L49N_6	AB29	
6	IO_L50P_6	AB27	
6	IO_L50N_6	AA27	
6	IO_L51P_6	AA26	
6	IO_L51N_6/VREF_6	Y26	
6	IO_L52P_6	AD31	
6	IO_L52N_6	AC31	
6	IO_L53P_6	W22	
6	IO_L53N_6	V22	
6	IO_L54P_6	Y27	
6	IO_L54N_6	W27	

Table 14: BF957 — XC2V2000, XC2V3000, XC2V4000, and XC2V6000

Bank	Pin Description	Pin Number	No Connect in XC2V2000
NA	GND	AG27	
NA	GND	AH4	
NA	GND	AH10	
NA	GND	AH16	
NA	GND	AH22	
NA	GND	AH28	
NA	GND	AJ1	
NA	GND	AJ3	
NA	GND	AJ29	
NA	GND	AJ31	
NA	GND	AK1	
NA	GND	AK2	
NA	GND	AK8	
NA	GND	AK24	
NA	GND	AK30	
NA	GND	AK31	
NA	GND	AL2	
NA	GND	AL3	
NA	GND	AL16	
NA	GND	AL29	
NA	GND	AL30	

Table 14: BF957 — XC2V2000, XC2V3000, XC2V4000, and XC2V6000

Notes:

1. See Table 4 for an explanation of the signals available on this pin.