

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Detuns	
Product Status	Obsolete
Number of LABs/CLBs	8448
Number of Logic Elements/Cells	
Total RAM Bits	2654208
Number of I/O	1104
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	0°C ~ 85°C (TJ)
Package / Case	1517-BBGA, FCBGA
Supplier Device Package	1517-FCBGA (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc2v6000-6ffg1517c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Configurable Logic Blocks (CLBs)

The Virtex-II configurable logic blocks (CLB) are organized in an array and are used to build combinatorial and synchronous logic designs. Each CLB element is tied to a switch matrix to access the general routing matrix, as shown in Figure 14. A CLB element comprises 4 similar slices, with fast local feedback within the CLB. The four slices are split in two columns of two slices with two independent carry logic chains and one common shift chain.

Figure 14: Virtex-II CLB Element

Slice Description

Each slice includes two 4-input function generators, carry logic, arithmetic logic gates, wide function multiplexers and two storage elements. As shown in Figure 15, each 4-input function generator is programmable as a 4-input LUT, 16 bits of distributed SelectRAM memory, or a 16-bit variable-tap shift register element.

The output from the function generator in each slice drives both the slice output and the D input of the storage element. Figure 16 shows a more detailed view of a single slice.

DS031_31_100900

Figure 15: Virtex-II Slice Configuration

Configurations

Look-Up Table

Virtex-II function generators are implemented as 4-input look-up tables (LUTs). Four independent inputs are provided to each of the two function generators in a slice (F and G). These function generators are each capable of implementing any arbitrarily defined boolean function of four inputs. The propagation delay is therefore independent of the function implemented. Signals from the function generators can exit the slice (X or Y output), can input the XOR dedicated gate (see arithmetic logic), or input the carry-logic multiplexer (see fast look-ahead carry logic), or feed the D input of the storage element, or go to the MUXF5 (not shown in Figure 16).

In addition to the basic LUTs, the Virtex-II slice contains logic (MUXF5 and MUXFX multiplexers) that combines function generators to provide any function of five, six, seven, or eight inputs. The MUXFX are either MUXF6, MUXF7 or MUXF8 according to the slice considered in the CLB. Selected functions up to nine inputs (MUXF5 multiplexer) can be implemented in one slice. The MUXFX can also be a MUXF6, MUXF7, or MUXF8 multiplexers to map any functions of six, seven, or eight inputs and selected wide logic functions.

Register/Latch

The storage elements in a Virtex-II slice can be configured either as edge-triggered D-type flip-flops or as level-sensitive latches. The D input can be directly driven by the X or Y output via the DX or DY input, or by the slice inputs bypassing the function generators via the BX or BY input. The clock enable signal (CE) is active High by default. If left unconnected, the clock enable for that storage element defaults to the active state.

In addition to clock (CK) and clock enable (CE) signals, each slice has set and reset signals (SR and BY slice inputs). SR forces the storage element into the state specified by the attribute SRHIGH or SRLOW. SRHIGH forces a logic "1" when SR is asserted. SRLOW forces a logic "0". When SR is used, a second input (BY) forces the storage element into the opposite state. The reset condition is predominant over the set condition. (See Figure 17.)

The initial state after configuration or global initial state is defined by a separate INIT0 and INIT1 attribute. By default, setting the SRLOW attribute sets INIT0, and setting the SRHIGH attribute sets INIT1. For each slice, set and reset can be set to be synchronous or asynchronous. Virtex-II devices also have the ability to set INIT0 and INIT1 independent of SRHIGH and SRLOW.

The control signals clock (CLK), clock enable (CE) and set/reset (SR) are common to both storage elements in one slice. All of the control signals have independent polarity. Any inverter placed on a control input is automatically absorbed.

Figure 37: Multipliers (2-column, 4-column, and 6-column)

Global Clock Multiplexer Buffers

Virtex-II devices have 16 clock input pins that can also be used as regular user I/Os. Eight clock pads are on the top edge of the device, in the middle of the array, and eight are on the bottom edge, as illustrated in Figure 38.

The global clock multiplexer buffer represents the input to dedicated low-skew clock tree distribution in Virtex-II devices. Like the clock pads, eight global clock multiplexer buffers are on the top edge of the device and eight are on the bottom edge.

Each global clock buffer can either be driven by the clock pad to distribute a clock directly to the device, or driven by the Digital Clock Manager (DCM), discussed in Digital Clock Manager (DCM), page 29. Each global clock buffer can also be driven by local interconnects. The DCM has clock output(s) that can be connected to global clock buffer inputs, as shown in Figure 39.

Figure 38: Virtex-II Clock Pads

Figure 42: Virtex-II BUFGCE Function

If the CE input is inactive (Low) prior to the incoming rising clock edge, the following clock pulse does not pass through the clock buffer, and the output stays Low. Any level change of CE during the incoming clock High time has no effect. CE must not change during a short setup window just prior to the rising clock edge on the BUFGCE input I. Violating this setup time requirement can result in an undefined runt pulse output.

BUFGMUX

BUFGMUX can switch between two unrelated, even asynchronous clocks. Basically, a Low on S selects the I0 input, a High on S selects the I1 input. Switching from one clock to the other is done in such a way that the output High and Low time is never shorter than the shortest High or Low time of either input clock. As long as the presently selected clock is High, any level change of S has no effect.

Figure 43: Virtex-II BUFGMUX Function

If the presently selected clock is Low while S changes, or if it goes Low after S has changed, the output is kept Low until the other ("to-be-selected") clock has made a transition from High to Low. At that instant, the new clock starts driving the output.

The two clock inputs can be asynchronous with regard to each other, and the S input can change at any time, except for a short setup time prior to the rising edge of the presently selected clock (I0 or I1). Violating this setup time requirement can result in an undefined runt pulse output.

All Virtex-II devices have 16 global clock multiplexer buffers.

Figure 44 shows a switchover from I0 to I1.

- The current clock is CLK0.
- S is activated High.
- If CLK0 is currently High, the multiplexer waits for CLK0 to go Low.
- Once CLK0 is Low, the multiplexer output stays Low

until CLK1 transitions High to Low.

- When CLK1 transitions from High to Low, the output switches to CLK1.
- No glitches or short pulses can appear on the output.

Figure 44: Clock Multiplexer Waveform Diagram

Local Clocking

In addition to global clocks, there are local clock resources in the Virtex-II devices. There are more than 72 local clocks in the Virtex-II family. These resources can be used for many different applications, including but not limited to memory interfaces. For example, even using only the left and right I/O banks, Virtex-II FPGAs can support up to 50 local clocks for DDR SDRAM. These interfaces can operate beyond 200 MHz on Virtex-II devices.

Digital Clock Manager (DCM)

The Virtex-II DCM offers a wide range of powerful clock management features.

- **Clock De-skew**: The DCM generates new system clocks (either internally or externally to the FPGA), which are phase-aligned to the input clock, thus eliminating clock distribution delays.
- Frequency Synthesis: The DCM generates a wide range of output clock frequencies, performing very flexible clock multiplication and division.
- Phase Shifting: The DCM provides both coarse phase shifting and fine-grained phase shifting with dynamic phase shift control.

The DCM utilizes fully digital delay lines allowing robust high-precision control of clock phase and frequency. It also utilizes fully digital feedback systems, operating dynamically to compensate for temperature and voltage variations during operation.

Up to four of the nine DCM clock outputs can drive inputs to global clock buffers or global clock multiplexer buffers simultaneously (see Figure 45). All DCM clock outputs can simultaneously drive general routing resources, including routes to output buffers.

Figure 46: Fine-Phase Shifting Effects

Table 22 lists fine-phase shifting control pins, when used in variable mode.

Table	22:	Fine-Phase	Shifting	Control Pins
-------	-----	-------------------	----------	--------------

Control Pin	Direction	Function
PSINCDEC	in	Increment or decrement
PSEN	in	Enable ± phase shift
PSCLK	in	Clock for phase shift
PSDONE	out	Active when completed

Two separate components of the phase shift range must be understood:

- PHASE_SHIFT attribute range
- FINE_SHIFT_RANGE DCM timing parameter range

The PHASE_SHIFT attribute is the numerator in the following equation:

Phase Shift (ns) = (PHASE_SHIFT/256) * PERIOD_{CLKIN}

The full range of this attribute is always -255 to +255, but its practical range varies with CLKIN frequency, as constrained by the FINE_SHIFT_RANGE component, which represents the total delay achievable by the phase shift delay line. Total delay is a function of the number of delay taps used in the circuit. Across process, voltage, and temperature, this absolute range is guaranteed to be as specified under DCM Timing Parameters in Module 3.

Absolute range (fixed mode) = ± FINE_SHIFT_RANGE

Absolute range (variable mode) = ± FINE_SHIFT_RANGE/2

The reason for the difference between fixed and variable modes is as follows. For variable mode to allow symmetric, dynamic sweeps from -255/256 to +255/256, the DCM sets the "zero phase skew" point as the middle of the delay line, thus dividing the total delay line range in half. In fixed mode, since the PHASE_SHIFT value never changes after configuration, the entire delay line is available for insertion into either the CLKIN or CLKFB path (to create either positive or negative skew).

Taking both of these components into consideration, the following are some usage examples:

- If PERIOD_{CLKIN} = 2 * FINE_SHIFT_RANGE, then PHASE_SHIFT in fixed mode is limited to ± 128, and in variable mode it is limited to ± 64.
- If PERIOD_{CLKIN} = FINE_SHIFT_RANGE, then PHASE_SHIFT in fixed mode is limited to ± 255, and in variable mode it is limited to ± 128.
- If $PERIOD_{CLKIN} \le 0.5 * FINE_SHIFT_RANGE$, then PHASE_SHIFT is limited to ± 255 in either mode.

Operating Modes

The frequency ranges of DCM input and output clocks depend on the operating mode specified, either low-frequency mode or high-frequency mode, according to Table 23. (For actual values, see Virtex-II Switching Characteristics in Module 3). The CLK2X, CLK2X180, CLK90, and CLK270 outputs are not available in high-frequency mode.

High or low-frequency mode is selected by an attribute.

	Low-Frequ	lency Mode	High-Freq	uency Mode
Output Clock	CLKIN Input	CLK Output	CLKIN Input	CLK Output
CLK0, CLK180	CLKIN_FREQ_DLL_LF	CLKOUT_FREQ_1X_LF	CLKIN_FREQ_DLL_HF	CLKOUT_FREQ_1X_HF
CLK90, CLK270	CLKIN_FREQ_DLL_LF	CLKOUT_FREQ_1X_LF	NA	NA
CLK2X, CLK2X180	CLKIN_FREQ_DLL_LF	CLKOUT_FREQ_2X_LF	NA	NA
CLKDV	CLKIN_FREQ_DLL_LF	CLKOUT_FREQ_DV_LF	CLKIN_FREQ_DLL_HF	CLKOUT_FREQ_DV_HF
CLKFX, CLKFX180	CLKIN_FREQ_FX_LF	CLKOUT_FREQ_FX_LF	CLKIN_FREQ_FX_HF	CLKOUT_FREQ_FX_HF

Table 23: DCM Frequency Ranges

XILINX[®]

Creating a Design

Creating Virtex-II designs is easy with Xilinx Integrated Synthesis Environment (ISE) development systems, which support advanced design capabilities, including ProActive Timing Closure, integrated logic analysis, and the fastest place and route runtimes in the industry. ISE solutions enable designers to get the performance they need, quickly and easily.

As a result of the ongoing cooperative development efforts between Xilinx and EDA Alliance partners, designers can take advantage of the benefits provided by EDA technologies in the programmable logic design process. Xilinx development systems are available in a number of easy to use configurations, collectively known as the ISE Series.

ISE Alliance

The ISE Alliance solution is designed to plug and play within an existing design environment. Built using industry standard data formats and netlists, these stable, flexible products enable Alliance EDA partners to deliver their best design automation capabilities to Xilinx customers, along with the time to market benefits of ProActive Timing Closure.

ISE Foundation

The ISE Foundation solution delivers the benefits of true HDL-based design in a seamlessly integrated design environment. An intuitive project navigator, as well as powerful HDL design and two HDL synthesis tools, ensure that high-quality results are achieved quickly and easily. The ISE Foundation product includes:

- State Diagram entry using Xilinx StateCAD
- Automatic HDL Testbench generation using Xilinx
 HDLBencher
- HDL Simulation using ModelSim XE

Design Flow

Virtex-II design flow proceeds as follows:

- Design Entry
- Synthesis
- Implementation
- Verification

Most programmable logic designers iterate through these steps several times in the process of completing a design.

Design Entry

All Xilinx ISE development systems support the mainstream EDA design entry capabilities, ranging from schematic design to advanced HDL design methodologies. Given the high densities of the Virtex-II family, designs are created most efficiently using HDLs. To further improve their time to market, many Xilinx customers employ incremental, modular, and Intellectual Property (IP) design techniques. When properly used, these techniques further accelerate the logic design process. To enable designers to leverage existing investments in EDA tools, and to ensure high performance design flows, Xilinx jointly develops tools with leading EDA vendors, including:

- Aldec[®]
- Cadence[®]
- Exemplar[®]
- Mentor Graphics[®]
- Model Technology[®]
- Synopsys[®]
- Synplicity[®]

Complete information on Alliance Series partners and their associated design flows is available at <u>www.xilinx.com</u> on the Xilinx Alliance Series web page.

The ISE Foundation product offers schematic entry and HDL design capabilities as part of an integrated design solution - enabling one-stop shopping. These capabilities are powerful, easy to use, and they support the full portfolio of Xilinx programmable logic devices. HDL design capabilities include a color-coded HDL editor with integrated language templates, state diagram entry, and Core generation capabilities.

Synthesis

The ISE Alliance product is engineered to support advanced design flows with the industry's best synthesis tools. Advanced design methodologies include:

- Physical Synthesis
- Incremental synthesis
- RTL floorplanning
- Direct physical mapping

The ISE Foundation product seamlessly integrates synthesis capabilities purchased directly from Exemplar, Synopsys, and Synplicity. In addition, it includes the capabilities of Xilinx Synthesis Technology.

A benefit of having two seamlessly integrated synthesis engines within an ISE design flow is the ability to apply alternative sets of optimization techniques on designs, helping to ensure that designers can meet even the toughest timing requirements.

Design Implementation

The ISE Series development systems include Xilinx timing-driven implementation tools, frequently called "place and route" or "fitting" software. This robust suite of tools enables the creation of an intuitive, flexible, tightly integrated design flow that efficiently bridges "logical" and "physical" design domains. This simplifies the task of defining a design, including its behavior, timing requirements, and optional layout (or floorplanning), as well as simplifying the task of analyzing reports generated during the implementation process.

Table 17: IOB Output Switching Characteristics Standard Adjustments (Continued)

	IOSTANDARD	Timing	Speed Grade			
Description	Attribute	Parameter	-6	-5	-4	Units
LVCMOS, 2.5V, Fast, 16 mA	LVCMOS25_F16	T _{OLVCMOS25_F16}	-0.18	-0.19	-0.21	ns
LVCMOS, 2.5V, Fast, 24 mA	LVCMOS25_F24	T _{OLVCMOS25_F24}	-0.35	-0.36	-0.40	ns
LVCMOS, 1.8V, Slow, 2 mA	LVCMOS18_S2	T _{OLVCMOS18_S2}	15.62	16.10	17.71	ns
LVCMOS, 1.8V, Slow, 4 mA	LVCMOS18_S4	T _{OLVCMOS18_S4}	10.20	10.51	11.57	ns
LVCMOS, 1.8V, Slow, 6 mA	LVCMOS18_S6	T _{OLVCMOS18_S6}	7.52	7.75	8.53	ns
LVCMOS, 1.8V, Slow, 8 mA	LVCMOS18_S8	T _{OLVCMOS18_S8}	6.87	7.08	7.78	ns
LVCMOS, 1.8V, Slow, 12 mA	LVCMOS18_S12	T _{OLVCMOS18_S12}	5.54	5.71	6.28	ns
LVCMOS, 1.8V, Slow, 16 mA	LVCMOS18_S16	T _{OLVCMOS18_S16}	5.31	5.47	6.02	ns
LVCMOS, 1.8V, Fast, 2 mA	LVCMOS18_F2	T _{OLVCMOS18_F2}	5.55	5.72	6.30	ns
LVCMOS, 1.8V, Fast, 4 mA	LVCMOS18_F4	T _{OLVCMOS18_F4}	1.89	1.95	2.15	ns
LVCMOS, 1.8V, Fast, 6 mA	LVCMOS18_F6	T _{OLVCMOS18_F6}	0.83	0.85	0.94	ns
LVCMOS, 1.8V, Fast, 8 mA	LVCMOS18_F8	T _{OLVCMOS18_F8}	0.70	0.72	0.80	ns
LVCMOS, 1.8V, Fast, 12 mA	LVCMOS18_F12	T _{OLVCMOS18_F12}	0.26	0.27	0.30	ns
LVCMOS, 1.8V, Fast, 16 mA	LVCMOS18_F16	T _{OLVCMOS18_F16}	0.23	0.23	0.26	ns
LVCMOS, 1.5V, Slow, 2 mA	LVCMOS15_S2	T _{OLVCMOS15_S2}	18.96	19.55	21.50	ns
LVCMOS, 1.5V, Slow, 4 mA	LVCMOS15_S4	T _{OLVCMOS15} S4	12.77	13.17	14.48	ns
LVCMOS, 1.5V, Slow, 6 mA	LVCMOS15_S6	T _{OLVCMOS15_S6}	12.05	12.42	13.66	ns
LVCMOS, 1.5V, Slow, 8 mA	LVCMOS15_S8	T _{OLVCMOS15} S8	9.75	10.06	11.06	ns
LVCMOS, 1.5V, Slow, 12 mA	LVCMOS15_S12	T _{OLVCMOS15} S12	9.04	9.32	10.25	ns
LVCMOS, 1.5V, Slow, 16 mA	LVCMOS15_S16	T _{OLVCMOS15} S16	8.21	8.46	9.31	ns
LVCMOS, 1.5V, Fast, 2 mA	LVCMOS15_F2	T _{OLVCMOS15} F2	5.09	5.25	5.78	ns
LVCMOS, 1.5V, Fast, 4 mA	LVCMOS15_F4	T _{OLVCMOS15 F4}	2.01	2.07	2.27	ns
LVCMOS, 1.5V, Fast, 6 mA	LVCMOS15_F6	T _{OLVCMOS15_F6}	1.46	1.51	1.66	ns
LVCMOS, 1.5V, Fast, 8 mA	LVCMOS15_F8	T _{OLVCMOS15_F8}	0.93	0.96	1.05	ns
LVCMOS, 1.5V, Fast, 12 mA	LVCMOS15_F12	T _{OLVCMOS15 F12}	0.74	0.77	0.84	ns
LVCMOS, 1.5V, Fast, 16 mA	LVCMOS15_F16	T _{OLVCMOS15_F16}	0.67	0.69	0.75	ns
LVDS (Low-Voltage Differential Signaling), 2.5V	LVDS_25	T _{OLVDS_25}	-0.31	-0.32	-0.36	ns
LVDS, 3.3V	LVDS_33	T _{OLVDS_33}	-0.25	-0.26	-0.29	ns
LVDSEXT (LVDS Extended Mode), 2.5V	LVDSEXT_25	T _{OLVDSEXT_25}	-0.18	-0.19	-0.21	ns
LVDSEXT, 3.3V	LVDSEXT_33	T _{OLVDSEXT_33}	-0.17	-0.18	-0.19	ns
ULVDS (Ultra LVDS), 2.5V	ULVDS_25	T _{OULVDS_25}	-0.20	-0.21	-0.23	ns
BLVDS (Bus LVDS), 2.5V	BLVDS_25	T _{OBLVDS_25}	0.67	0.69	0.76	ns
LDT (HyperTransport), 2.5V	LDT_25	T _{OLDT_25}	-0.20	-0.21	-0.23	ns
LVPECL (Low-Voltage Positive Electron-Coupled Logic), 3.3V	LVPECL_33	T _{OLVPECL_33}	0.29	0.30	0.33	ns
PCI (Peripheral Component Interface), 33 MHz, 3.3V	PCI33_3	T _{OPCI33_3}	1.15	1.19	1.31	ns
PCI, 66 MHz, 3.3V	PCI66_3	T _{OPCI66_3}	-0.01	-0.01	-0.01	ns
PCI-X, 133 MHz, 3.3V	PCIX	T _{OPCIX}	-0.01	-0.01	-0.01	ns
GTL (Gunning Transceiver Logic)	GTL	T _{OGTL}	-0.31	-0.32	-0.36	ns
GTL Plus	GTLP	T _{OGTLP}	-0.17	-0.18	-0.20	ns
HSTL (High-Speed Transceiver Logic), Class I	HSTL_I	T _{OHSTL} I	0.26	0.27	0.29	ns
HSTL, Class II	HSTL_II	T _{OHSTL II}	-0.15	-0.16	-0.17	ns
HSTL, Class III	HSTL_III	T _{OHSTL III}	-0.17	-0.17	-0.19	ns
HSTL, Class IV	HSTL_IV	T _{OHSTL IV}	-0.40	-0.41	-0.45	ns
HSTL, Class I, 1.8V	HSTL_I_18	T _{OHSTL_I_18}	0.03	0.03	0.04	ns

	IOSTANDARD	Timing	Speed Grade			
Description	Attribute	Parameter	-6	-5	-4	Units
HSTL, Class II, 1.8V	HSTL_II_18	T _{OHSTL_II_18}	-0.17	-0.18	-0.20	ns
HSTL, Class III, 1.8V	HSTL_III_18	T _{OHSTL_III_18}	-0.16	-0.16	-0.18	ns
HSTL, Class IV, 1.8V	HSTL_IV_18	T _{OHSTL_IV_18}	-0.39	-0.40	-0.44	ns
SSTL (Stub Series Terminated Logic), Class I, 1.8V	SSTL18_I	T _{OSSTL18_I}	0.20	0.20	0.22	ns
SSTL, Class II, 1.8V	SSTL18_II	T _{OSSTL18_II}	-0.05	-0.05	-0.06	ns
SSTL, Class I, 2.5V	SSTL2_I	T _{OSSTL2_I}	0.21	0.22	0.24	ns
SSTL, Class II, 2.5V	SSTL2_II	T _{OSSTL2_II}	-0.15	-0.16	-0.18	ns
SSTL, Class I, 3.3V	SSTL3_I	T _{OSSTL3_I}	0.29	0.30	0.33	ns
SSTL, Class II, 3.3V	SSTL3_II	T _{OSSTL3_II}	-0.05	-0.05	-0.05	ns
AGP-2X/AGP (Accelerated Graphics Port)	AGP	T _{OAGP}	-0.27	-0.28	-0.31	ns
LVDCI (Low-Voltage Digitally Controlled Impedance), 3.3V	LVDCI_33	T _{OLVDCI_33}	0.74	0.77	0.84	ns
LVDCI, 2.5V	LVDCI_25	T _{OLVDCI_25}	0.78	0.80	0.88	ns
LVDCI, 1.8V	LVDCI_18	T _{OLVDCI_18}	0.84	0.87	0.95	ns
LVDCI, 1.5V	LVDCI_15	T _{OLVDCI_15}	1.82	1.88	2.06	ns
LVDCI, 3.3V, Half-Impedance	LVDCI_DV2_33	T _{OLVDCI_DV2_33}	0.12	0.12	0.13	ns
LVDCI, 2.5V, Half-Impedance	LVDCI_DV2_25	T _{OLVDCI_DV2_25}	0.03	0.03	0.03	ns
LVDCI, 1.8V, Half-Impedance	LVDCI_DV2_18	T _{OLVDCI_DV2_18}	0.42	0.43	0.48	ns
LVDCI, 1.5V, Half-Impedance	LVDCI_DV2_15	T _{OLVDCI_DV2_15}	1.20	1.23	1.36	ns
HSLVDCI (High-Speed Low-Voltage DCI), 1.5V	HSLVDCI_15	T _{OHSLVDCI_15}	1.82	1.88	2.06	ns
HSLVDCI, 1.8V	HSLVDCI_18	T _{OHSLVDCI_18}	1.05	1.08	1.24	ns
HSLVDCI, 2.5V	HSLVDCI_25	T _{OHSLVDCI_25}	0.78	0.80	0.88	ns
HSLVDCI, 3.3V	HSLVDCI_33	T _{OHSLVDCI_33}	0.74	0.77	0.84	ns
GTL (Gunning Transceiver Logic) with DCI	GTL_DCI	T _{OGTL_DCI}	-0.31	-0.32	-0.35	ns
GTL Plus with DCI	GTLP_DCI	T _{OGTLP_DCI}	-0.15	-0.16	-0.17	ns
HSTL (High-Speed Transceiver Logic), Class I, with DCI	HSTL_I_DCI	T _{OHSTL_I_DCI}	0.23	0.23	0.26	ns
HSTL, Class II, with DCI	HSTL_II_DCI	T _{OHSTL_II_DCI}	0.06	0.06	0.07	ns
HSTL, Class III, with DCI	HSTL_III_DCI	T _{OHSTL_III_DCI}	-0.17	-0.18	-0.20	ns
HSTL, Class IV, with DCI	HSTL_IV_DCI	T _{OHSTL_IV_DCI}	-0.46	-0.47	-0.52	ns
HSTL, Class I, 1.8V, with DCI	HSTL_I_DCI_18	T _{OHSTL_I_DCI_18}	0.05	0.05	0.06	ns
HSTL, Class II, 1.8V, with DCI	HSTL_II_DCI_18	T _{OHSTL_II_DCI_18}	-0.03	-0.03	-0.03	ns
HSTL, Class III, 1.8V, with DCI	HSTL_III_DCI_18	T _{OHSTL_III_DCI_18}	-0.14	-0.14	-0.16	ns
HSTL, Class IV, 1.8V, with DCI	HSTL_IV_DCI_18	T _{OHSTL_IV_DCI_18}	-0.41	-0.42	-0.47	ns
SSTL (Stub Series Terminated Logic), Class I, 1.8V, with DCI	SSTL18_I_DCI	T _{OSSTL18_I_DCI}	0.36	0.37	0.40	ns
SSTL, Class II, 1.8V, with DCI	SSTL18_II_DCI	T _{OSSTL18_II_DCI}	0.06	0.06	0.07	ns
SSTL, Class I, 2.5V, with DCI	SSTL2_I_DCI	T _{OSSTL2_I_DCI}	0.12	0.13	0.14	ns
SSTL, Class II, 2.5V, with DCI	SSTL2_II_DCI	T _{OSSTL2_II_DCI}	-0.10	-0.10	-0.11	ns
SSTL, Class I, 3.3V, with DCI	SSTL3_I_DCI	T _{OSSTL3_I_DCI}	0.15	0.16	0.17	ns
SSTL, Class II, 3.3V, with DCI	SSTL3_II_DCI	T _{OSSTL3_II_DCI}	0.08	0.08	0.09	ns

Table 17: IOB Output Switching Characteristics Standard Adjustments (Continued)

Table 5: CS144/CSG144 — XC2V40, XC2V80, and XC2V250

Bank	Pin Description	Pin Number	No Connect in the XC2V40
2	IO_L96N_2	G11	
2	IO_L96P_2	G13	
3	IO_L96N_3	G12	
3	IO_L96P_3	H12	
3	IO_L94N_3	H11	
3	IO_L94P_3	J13	
3	IO_L03N_3/VREF_3	J10	
3	IO_L03P_3	K13	
3	IO_L02N_3/VRP_3	K12	
3	IO_L02P_3/VRN_3	K11	
3	IO_L01N_3	K10	
3	IO_L01P_3	L13	
4	IO_L01N_4/BUSY/DOUT ⁽¹⁾	M11	
4	IO_L01P_4/INIT_B	N11	
4	IO_L02N_4/D0/DIN ⁽¹⁾	L10	
4	IO_L02P_4/D1	M10	
4	IO_L03N_4/D2/ALT_VRP_4	N10	
4	IO_L03P_4/D3/ALT_VRN_4	K9	
4	IO_L94N_4/VREF_4	N9	
4	IO_L94P_4	K8	
4	IO_L95N_4/GCLK3S	L8	
4	IO_L95P_4/GCLK2P	M8	
4	IO_L96N_4/GCLK1S	N8	
4	IO_L96P_4/GCLK0P	K7	
5	IO_L96N_5/GCLK7S	N7	
5	IO_L96P_5/GCLK6P	M7	
5	IO_L95N_5/GCLK5S	N6	
5	IO_L95P_5/GCLK4P	M6	
5	IO_L94N_5	L6	
5	IO_L94P_5/VREF_5	K6	
5	IO_L03N_5/D4/ALT_VRP_5	L5	
5	IO_L03P_5/D5/ALT_VRN_5	K5	
5	IO_L02N_5/D6	N4	
5	IO_L02P_5/D7	M4	
5	IO_L01N_5/RDWR_B	L4	
5	IO_L01P_5/CS_B	K4	
		· ·	

Bank	Pin Description	Pin Number	No Connect in XC2V250	No Connect in XC2V500
4	IO_L95N_4/GCLK3S	W12		
4	IO_L95P_4/GCLK2P	Y12		
4	IO_L96N_4/GCLK1S	AA12		
4	IO_L96P_4/GCLK0P	AB12		
			1	1
5	IO_L96N_5/GCLK7S	AA11		
5	IO_L96P_5/GCLK6P	Y11		
5	IO_L95N_5/GCLK5S	W11		
5	IO_L95P_5/GCLK4P	V11		
5	IO_L94N_5	U11		
5	IO_L94P_5/VREF_5	U10		
5	IO_L93N_5	AB10		
5	IO_L93P_5	AA10		
5	IO_L92N_5	Y10		
5	IO_L92P_5	W10		
5	IO_L91N_5	V10		
5	IO_L91P_5/VREF_5	V9		
5	IO_L54N_5	AB9	NC	
5	IO_L54P_5	AA9	NC	
5	IO_L52N_5	Y9	NC	
5	IO_L52P_5	W9	NC	
5	IO_L51N_5/VREF_5	AB8	NC	
5	IO_L51P_5	AA8	NC	
5	IO_L49N_5	Y8	NC	
5	IO_L49P_5	W8	NC	
5	IO_L24N_5	U9	NC	NC
5	IO_L24P_5	V8	NC	NC
5	IO_L22N_5	AB7	NC	NC
5	IO_L22P_5	AA7	NC	NC
5	IO_L21N_5/VREF_5	Y7	NC	NC
5	IO_L21P_5	W7	NC	NC
5	IO_L19N_5	AB6	NC	NC
5	IO_L19P_5	AA6	NC	NC
5	IO_L06N_5	Y6		

Table 7: FG456/FGG456 BGA — XC2V250, XC2V500, and XC2V1000

Table 8: FG676/FGG676 BGA — XC2V1500, XC2V2000, and XC2V3000

Bank	Pin Description	Pin Number	No Connect in XC2V1500	No Connect in XC2V2000
4	IO_L78N_4	Y15	NC	
4	IO_L78P_4	AA15	NC	
4	IO_L91N_4/VREF_4	W15		
4	IO_L91P_4	W16		
4	IO_L92N_4	AB15		
4	IO_L92P_4	AC15		
4	IO_L93N_4	AD15		
4	IO_L93P_4	AE15		
4	IO_L94N_4/VREF_4	W14		
4	IO_L94P_4	Y14		
4	IO_L95N_4/GCLK3S	AA14		
4	IO_L95P_4/GCLK2P	AB14		
4	IO_L96N_4/GCLK1S	AC14		
4	IO_L96P_4/GCLK0P	AD14		
5	IO_L96N_5/GCLK7S	AC13		
5	IO_L96P_5/GCLK6P	AB13		
5	IO_L95N_5/GCLK5S	AA13		
5	IO_L95P_5/GCLK4P	Y13		
5	IO_L94N_5	W13		
5	IO_L94P_5/VREF_5	W12		
5	IO_L93N_5	AF15		
5	IO_L93P_5	AF14		
5	IO_L92N_5	AF13		
5	IO_L92P_5	AF12		
5	IO_L91N_5	AE12		
5	IO_L91P_5/VREF_5	AD12		
5	IO_L78N_5	AC12	NC	
5	IO_L78P_5	AB12	NC	
5	IO_L76N_5	AA12	NC	
5	IO_L76P_5	Y12	NC	
5	IO_L75N_5/VREF_5	AF11	NC	
5	IO_L75P_5	AF10	NC	
5	IO_L73N_5	AE11	NC	
5	IO_L73P_5	AD11	NC	
5	IO_L72N_5	AC11		
5	IO_L72P_5	AB11		

Table 8: FG6/6/FGG6/6 BGA — XC2V 1500, XC2V2000, and XC2V3000	Table 8	: FG676/FGG676 E	BGA — XC2V1500,	XC2V2000, and	XC2V3000
---	---------	------------------	-----------------	---------------	----------

Bank	Pin Description	Pin Number	No Connect in XC2V1500	No Connect in XC2V2000
NA	GND	L11		
NA	GND	L10		
NA	GND	K17		
NA	GND	K16		
NA	GND	K15		
NA	GND	K14		
NA	GND	K13		
NA	GND	K12		
NA	GND	K11		
NA	GND	K10		
NA	GND	F21		
NA	GND	F6		
NA	GND	E22		
NA	GND	E5		
NA	GND	D23		
NA	GND	D4		
NA	GND	C24		
NA	GND	C3		
NA	GND	B25		
NA	GND	B14		
NA	GND	B13		
NA	GND	B2		
NA	GND	A26		
NA	GND	A1		

Notes:

1. See Table 4 for an explanation of the signals available on this pin.

Table 9: BG575/BGG575 BGA — XC2V1000, XC2V1500, and XC2V2000

Bank	Pin Description	Pin Number	No Connect in XC2V1000	No Connect in XC2V1500
2	IO_L01P_2	D23		
2	IO_L02N_2/VRP_2	E21		
2	IO_L02P_2/VRN_2	E22		
2	IO_L03N_2	F21		
2	IO_L03P_2/VREF_2	F20		
2	IO_L04N_2	G20		
2	IO_L04P_2	G19		
2	IO_L06N_2	H18		
2	IO_L06P_2	J17		
2	IO_L19N_2	D24		
2	IO_L19P_2	E23		
2	IO_L21N_2	E24		
2	IO_L21P_2/VREF_2	F24		
2	IO_L22N_2	F23		
2	IO_L22P_2	G23		
2	IO_L24N_2	G21		
2	IO_L24P_2	G22		
2	IO_L43N_2	H19		
2	IO_L43P_2	H20		
2	IO_L45N_2	J18		
2	IO_L45P_2/VREF_2	J19		
2	IO_L46N_2	K17		
2	IO_L46P_2	K18		
2	IO_L48N_2	H23		
2	IO_L48P_2	H24		
2	IO_L49N_2	H21		
2	IO_L49P_2	H22		
2	IO_L51N_2	J24		
2	IO_L51P_2/VREF_2	K24		
2	IO_L52N_2	J22		
2	IO_L52P_2	J23		
2	IO_L54N_2	J20		
2	IO_L54P_2	J21		
2	IO_L67N_2	K19	NC	
2	IO_L67P_2	K20	NC	
2	IO_L69N_2	L17	NC	

Table 9: BG575/BGG575 BGA — XC2V1000, XC2V1500, and XC2V2000

Bank	Pin Description	Pin Number	No Connect in XC2V1000	No Connect in XC2V1500
NA	GND	D15		
NA	GND	D10		
NA	GND	D4		
NA	GND	C22		
NA	GND	C3		
NA	GND	B24		
NA	GND	B23		
NA	GND	B2		
NA	GND	B1		
NA	GND	A24		
NA	GND	A23		
NA	GND	A18		
NA	GND	A7		
NA	GND	A2		

Notes:

1. See Table 4 for an explanation of the signals available on this pin.

Table 10: BG728 BGA — XC2V3000

Bank	Pin Description	Pin Number
0	IO_L52P_0	E10
0	IO_L54N_0	D10
0	IO_L54P_0	C10
0	IO_L67N_0	B10
0	IO_L67P_0	A10
0	IO_L69N_0	G11
0	IO_L69P_0/VREF_0	H11
0	IO_L70N_0	F11
0	IO_L70P_0	F12
0	IO_L72N_0	D11
0	IO_L72P_0	C11
0	IO_L73N_0	B11
0	IO_L73P_0	A11
0	IO_L75N_0	H12
0	IO_L75P_0/VREF_0	J12
0	IO_L76N_0	E12
0	IO_L76P_0	D12
0	IO_L78N_0	B12
0	IO_L78P_0	A12
0	IO_L91N_0/VREF_0	J13
0	IO_L91P_0	H13
0	IO_L92N_0	G13
0	IO_L92P_0	F13
0	IO_L93N_0	E13
0	IO_L93P_0	D13
0	IO_L94N_0/VREF_0	B13
0	IO_L94P_0	A13
0	IO_L95N_0/GCLK7P	C13
0	IO_L95P_0/GCLK6S	C14
0	IO_L96N_0/GCLK5P	F14
0	IO_L96P_0/GCLK4S	E14
		·
1	IO_L96N_1/GCLK3P	G14
1	IO_L96P_1/GCLK2S	H14
1	IO_L95N_1/GCLK1P	A15
1	IO_L95P_1/GCLK0S	B15

Table 10: BG728 BGA — XC2V3000

Bank	Pin Description	Pin Number
4	IO_L27P_4/VREF_4	AG19
4	IO_L28N_4	AB19
4	IO_L28P_4	AA19
4	IO_L30N_4	AC19
4	IO_L30P_4	AD19
4	IO_L49N_4	AE19
4	IO_L49P_4	AF19
4	IO_L51N_4	AA18
4	IO_L51P_4/VREF_4	Y18
4	IO_L52N_4	AB18
4	IO_L52P_4	AC18
4	IO_L54N_4	AD18
4	IO_L54P_4	AE18
4	IO_L67N_4	AF18
4	IO_L67P_4	AG18
4	IO_L69N_4	AA17
4	IO_L69P_4/VREF_4	Y17
4	IO_L70N_4	AB17
4	IO_L70P_4	AB16
4	IO_L72N_4	AD17
4	IO_L72P_4	AE17
4	IO_L73N_4	AF17
4	IO_L73P_4	AG17
4	IO_L75N_4	Y16
4	IO_L75P_4/VREF_4	W16
4	IO_L76N_4	AC16
4	IO_L76P_4	AD16
4	IO_L78N_4	AF16
4	IO_L78P_4	AG16
4	IO_L91N_4/VREF_4	W15
4	IO_L91P_4	Y15
4	IO_L92N_4	AB15
4	IO_L92P_4	AA15
4	IO_L93N_4	AC15
4	IO_L93P_4	AD15
4	IO_L94N_4/VREF_4	AE15

Bank	Pin Description	Pin Number	No Connect in the XC2V1000	No Connect in the XC2V1500
5	IO_L23N_5	AD20		
5	IO_L23P_5	AD21		
5	IO_L22N_5	AK25		
5	IO_L22P_5	AK24		
5	IO_L21N_5/VREF_5	AH24		
5	IO_L21P_5	AH25		
5	IO_L20N_5	AE21		
5	IO_L20P_5	AD22		
5	IO_L19N_5	AJ25		
5	IO_L19P_5	AJ24		
5	IO_L06N_5	AG25		
5	IO_L06P_5	AG24		
5	IO_L05N_5/VRP_5	AC20		
5	IO_L05P_5/VRN_5	AC21		
5	IO_L04N_5	AK26		
5	IO_L04P_5/VREF_5	AK27		
5	IO_L03N_5/D4/ALT_VRP_5	AH26		
5	IO_L03P_5/D5/ALT_VRN_5	AJ27		
5	IO_L02N_5/D6	AE22		
5	IO_L02P_5/D7	AE23		
5	IO_L01N_5/RDWR_B	AJ28		
5	IO_L01P_5/CS_B	AK29		
	-		-	
6	IO_L01P_6	AC22		
6	IO_L01N_6	AB23		
6	IO_L02P_6/VRN_6	AG28		
6	IO_L02N_6/VRP_6	AF28		
6	IO_L03P_6	AJ30		
6	IO_L03N_6/VREF_6	AH30		
6	IO_L04P_6	AD23		
6	IO_L04N_6	AC23		
6	IO_L05P_6	AF27		
6	IO_L05N_6	AE27		
6	IO_L06P_6	AG29		
6	IO_L06N_6	AH29		
6	IO_L19P_6	AE24		
6	IO_L19N_6	AD24		

Table 11: FF896 BGA — XC2V1000, XC2V1500, and XC2V2000

Table 11: FF896 BGA — XC2V1000, XC2V1500, and XC2V2000

Bank	Pin Description	Pin Number	No Connect in the XC2V1000	No Connect in the XC2V1500
6	IO_L20P_6	AE26		
6	IO_L20N_6	AD26		
6	IO_L21P_6	AG30		
6	IO_L21N_6/VREF_6	AF30		
6	IO_L22P_6	AD25		
6	IO_L22N_6	AC25		
6	IO_L23P_6	AE28		
6	IO_L23N_6	AD28		
6	IO_L24P_6	AD29		
6	IO_L24N_6	AE29		
6	IO_L43P_6	AC24		
6	IO_L43N_6	AB24		
6	IO_L44P_6	AD27		
6	IO_L44N_6	AC27		
6	IO_L45P_6	AC26		
6	IO_L45N_6/VREF_6	AB26		
6	IO_L46P_6	AA23		
6	IO_L46N_6	Y23		
6	IO_L47P_6	AC28		
6	IO_L47N_6	AB28		
6	IO_L48P_6	AD30		
6	IO_L48N_6	AE30		
6	IO_L49P_6	AB25		
6	IO_L49N_6	AA25		
6	IO_L50P_6	AA24		
6	IO_L50N_6	Y24		
6	IO_L51P_6	AC29		
6	IO_L51N_6/VREF_6	AB30		
6	IO_L52P_6	Y25		
6	IO_L52N_6	W25		
6	IO_L53P_6	AB27		
6	IO_L53N_6	AA27		
6	IO_L54P_6	AA29		
6	IO_L54N_6	AB29		
6	IO_L67P_6	W23	NC	
6	IO_L67N_6	V23	NC	
6	IO_L68P_6	AA26	NC	

Bank	Pin Description	Pin Number	No Connect in the XC2V3000
NA	GND	V19	
NA	GND	V18	
NA	GND	V17	
NA	GND	V16	
NA	GND	V15	
NA	GND	V14	
NA	GND	U21	
NA	GND	U20	
NA	GND	U19	
NA	GND	U18	
NA	GND	U17	
NA	GND	U16	
NA	GND	U15	
NA	GND	U14	
NA	GND	T26	
NA	GND	T21	
NA	GND	T20	
NA	GND	T19	
NA	GND	T18	
NA	GND	T17	
NA	GND	T16	
NA	GND	T15	
NA	GND	T14	
NA	GND	Т9	
NA	GND	R33	
NA	GND	R21	
NA	GND	R20	
NA	GND	R19	
NA	GND	R18	
NA	GND	R17	
NA	GND	R16	
NA	GND	R15	
NA	GND	R14	
NA	GND	R2	
NA	GND	P28	
NA	GND	P21	

Table 12: FF1152 BGA — XC2V3000, XC2V4000, XC2V6000, and XC2V8000

Bank	Pin Description	Pin Number	No Connect in the XC2V4000	No Connect in the XC2V6000
NA	GND	U4		
NA	GND	T23		
NA	GND	T22		
NA	GND	T21		
NA	GND	T20		
NA	GND	T19		
NA	GND	T18		
NA	GND	T17		
NA	GND	P35		
NA	GND	P5		
NA	GND	L38		
NA	GND	L29		
NA	GND	L11		
NA	GND	L2		
NA	GND	K30		
NA	GND	K20		
NA	GND	K10		
NA	GND	J31		
NA	GND	J9		
NA	GND	H32		
NA	GND	H23		
NA	GND	H17		
NA	GND	H8		
NA	GND	G33		
NA	GND	G20		
NA	GND	G7		
NA	GND	F34		
NA	GND	F6		
NA	GND	E35		
NA	GND	E26		
NA	GND	E14		
NA	GND	E5		
NA	GND	D36		
NA	GND	D23		
NA	GND	D20		
NA	GND	D17		

Table 13: FF1517 BGA — XC2V4000, XC2V6000, and XC2V8000

Table	14:	BF957 —	XC2V2000,	XC2V3000,	XC2V4000,	and XC2V6000
-------	-----	---------	-----------	-----------	-----------	--------------

Bank	Pin Description	Pin Number	No Connect in XC2V2000
NA	GND	D10	
NA	GND	D16	
NA	GND	D22	
NA	GND	D28	
NA	GND	E5	
NA	GND	E27	
NA	GND	F6	
NA	GND	F26	
NA	GND	G7	
NA	GND	G13	
NA	GND	G16	
NA	GND	G19	
NA	GND	G25	
NA	GND	H2	
NA	GND	H8	
NA	GND	H24	
NA	GND	H30	
NA	GND	J9	
NA	GND	J23	
NA	GND	K4	
NA	GND	K16	
NA	GND	K28	
NA	GND	N7	
NA	GND	N25	
NA	GND	P14	
NA	GND	P15	
NA	GND	P16	
NA	GND	P17	
NA	GND	P18	
NA	GND	R14	
NA	GND	R15	
NA	GND	R16	
NA	GND	R17	
NA	GND	R18	
NA	GND	T1	
NA	GND	T4	
NA	GND	T7	
NA	GND	T10	