E·XFL

AMD Xilinx - XC2V80-4FGG256I Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Obsolete
Number of LABs/CLBs	128
Number of Logic Elements/Cells	
Total RAM Bits	147456
Number of I/O	120
Number of Gates	80000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-BGA
Supplier Device Package	256-FBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc2v80-4fgg256i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device		CLB (1 CLB = 4 slices = Max 128 bits)			SelectF	AM Blocks			
	System Gates	Array Row x Col.	Slices	Maximum Distributed RAM Kbits	Multiplier Blocks	18 Kbit Blocks	Max RAM (Kbits)	DCMs	Max I/O Pads ⁽¹⁾
XC2V40	40K	8 x 8	256	8	4	4	72	4	88
XC2V80	80K	16 x 8	512	16	8	8	144	4	120
XC2V250	250K	24 x 16	1,536	48	24	24	432	8	200
XC2V500	500K	32 x 24	3,072	96	32	32	576	8	264
XC2V1000	1M	40 x 32	5,120	160	40	40	720	8	432
XC2V1500	1.5M	48 x 40	7,680	240	48	48	864	8	528
XC2V2000	2M	56 x 48	10,752	336	56	56	1,008	8	624
XC2V3000	ЗM	64 x 56	14,336	448	96	96	1,728	12	720
XC2V4000	4M	80 x 72	23,040	720	120	120	2,160	12	912
XC2V6000	6M	96 x 88	33,792	1,056	144	144	2,592	12	1,104
XC2V8000	8M	112 x 104	46,592	1,456	168	168	3,024	12	1,108

Table 1: Virtex-II Field-Programmable Gate Array Family Members

Notes:

1. See details in Table 2, "Maximum Number of User I/O Pads".

General Description

The Virtex-II family is a platform FPGA developed for high performance from low-density to high-density designs that are based on IP cores and customized modules. The family delivers complete solutions for telecommunication, wireless, networking, video, and DSP applications, including PCI, LVDS, and DDR interfaces.

The leading-edge 0.15 μ m / 0.12 μ m CMOS 8-layer metal process and the Virtex-II architecture are optimized for high speed with low power consumption. Combining a wide variety of flexible features and a large range of densities up to 10 million system gates, the Virtex-II family enhances programmable logic design capabilities and is a powerful alternative to mask-programmed gates arrays. As shown in Table 1, the Virtex-II family comprises 11 members, ranging from 40K to 8M system gates.

Packaging

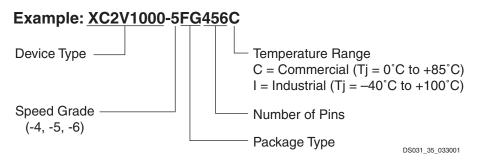
Offerings include ball grid array (BGA) packages with 0.80 mm, 1.00 mm, and 1.27 mm pitches. In addition to traditional wire-bond interconnects, flip-chip interconnect is used in some of the BGA offerings. The use of flip-chip interconnect offers more I/Os than is possible in wire-bond versions of the similar packages. Flip-chip construction offers the combination of high pin count with high thermal capacity. Wire-bond packages CS, FG, and BG are optionally availabe in Pb-free versions CSG, FGG, and BGG. See Virtex-II Ordering Examples, page 6.

Table 2 shows the maximum number of user I/Os available. The Virtex-II device/package combination table (Table 6 at the end of this section) details the maximum number of I/Os for each device and package using wire-bond or flip-chip technology.

Table 2: Maximum Number of User I/O Pads

Device	Wire-Bond	Flip-Chip
XC2V40	88	-
XC2V80	120	-
XC2V250	200	-
XC2V500	264	-
XC2V1000	328	432
XC2V1500	392	528
XC2V2000	-	624
XC2V3000	516	720
XC2V4000	-	912
XC2V6000	-	1,104
XC2V8000	-	1,108

		Available I/Os									
Package ^(1,2)	XC2V 40	XC2V 80	XC2V 250	XC2V 500	XC2V 1000	XC2V 1500	XC2V 2000	XC2V 3000	XC2V 4000	XC2V 6000	XC2V 8000
CS144/CSG144	88	92	92	-	-	-	-	-	-	-	-
FG256/FGG256	88	120	172	172	172	-	-	-	-	-	-
FG456/FGG456	-	-	200	264	324	-	-	-	-	-	-
FG676/FGG676	-	-	-	-	-	392	456	484	-	-	-
FF896	-	-	-	-	432	528	624	-	-	-	-
FF1152	-	-	-	-	-	-	-	720	824	824	824
FF1517	-	-	-	-	-	-	-	-	912	1,104	1,108
BG575/BGG575	-	-	-	-	328	392	408	-	-	-	-
BG728/BGG728	-	-	-	-	-	-	-	516	-	-	-
BF957	-	-	-	-	-	-	624	684	684	684	-


Table 6: Virtex-II Device/Package Combinations and Maximum Number of Available I/Os (Advance Information)

Notes:

1. All devices in a particular package are pinout (footprint) compatible. In addition, the FG456/FGG456 and FG676/FGG676 packages are compatible, as are the FF896 and FF1152 packages.

Wire-bond packages CS144, FG256, FG456, FG676, BG575, and BG728 are also available in Pb-free versions CSG144, FGG256, FGG456, FGG676, BGG575, and BGG728. See Virtex-II Ordering Examples for details on how to order.

Virtex-II Ordering Examples

Example: XC2V3000-6BGG728C Device Type - Temperature Range $C = Commercial (Tj = 0^{\circ}C to +85^{\circ}C)$ $I = Industrial (Tj = -40^{\circ}C to +100^{\circ}C)$ Number of Pins Pb-Free Package Package Type

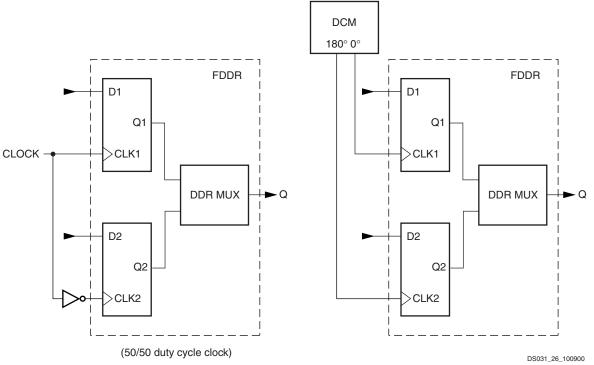


Figure 3: Double Data Rate Registers

The DDR mechanism shown in Figure 3 can be used to mirror a copy of the clock on the output. This is useful for propagating a clock along the data that has an identical delay. It is also useful for multiple clock generation, where there is a unique clock driver for every clock load. Virtex-II devices can produce many copies of a clock with very little skew.

Each group of two registers has a clock enable signal (ICE for the input registers, OCE for the output registers, and TCE for the 3-state registers). The clock enable signals are active High by default. If left unconnected, the clock enable for that storage element defaults to the active state.

Each IOB block has common synchronous or asynchronous set and reset (SR and REV signals).

SR forces the storage element into the state specified by the SRHIGH or SRLOW attribute. SRHIGH forces a logic "1". SRLOW forces a logic "0". When SR is used, a second input (REV) forces the storage element into the opposite state. The reset condition predominates over the set condition. The initial state after configuration or global initialization state is defined by a separate INITO and INIT1 attribute. By default, the SRLOW attribute forces INIT0, and the SRHIGH attribute forces INIT1. For each storage element, the SRHIGH, SRLOW, INITO, and INIT1 attributes are independent. Synchronous or asynchronous set / reset is consistent in an IOB block.

All the control signals have independent polarity. Any inverter placed on a control input is automatically absorbed.

Each register or latch (independent of all other registers or latches) (see Figure 4) can be configured as follows:

- No set or reset
- Synchronous set
- Synchronous reset
- Synchronous set and reset
- Asynchronous set (preset)
- Asynchronous reset (clear)
- Asynchronous set and reset (preset and clear)

The synchronous reset overrides a set, and an asynchronous clear overrides a preset.

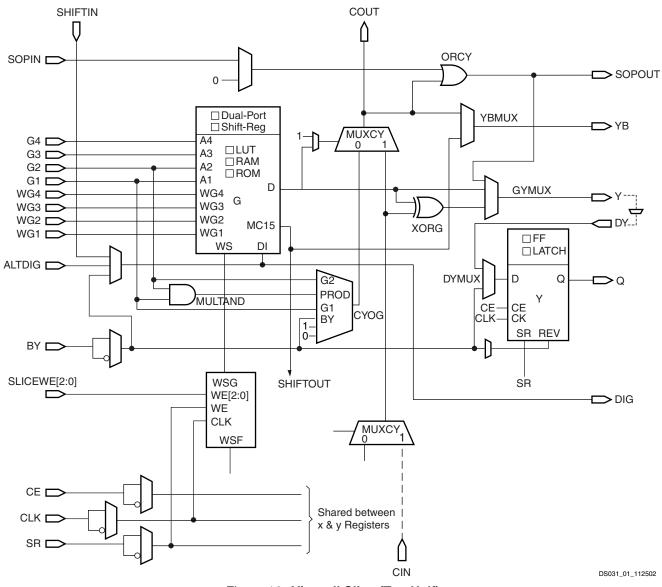


Figure 16: Virtex-II Slice (Top Half)

3-State Buffers

Introduction

Each Virtex-II CLB contains two 3-state drivers (TBUFs) that can drive on-chip busses. Each 3-state buffer has its own 3-state control pin and its own input pin.

Each of the four slices have access to the two 3-state buffers through the switch matrix, as shown in Figure 27. TBUFs in neighboring CLBs can access slice outputs by direct connects. The outputs of the 3-state buffers drive horizontal routing resources used to implement 3-state busses.

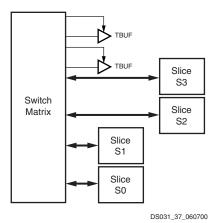
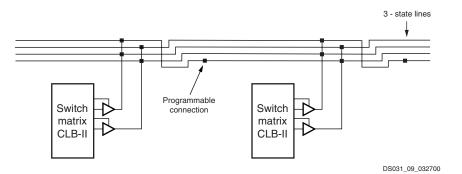


Figure 27: Virtex-II 3-State Buffers

The 3-state buffer logic is implemented using AND-OR logic rather than 3-state drivers, so that timing is more predictable and less load dependant especially with larger devices.

Locations / Organization

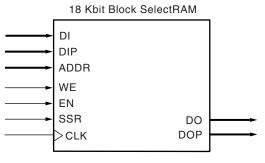

Four horizontal routing resources per CLB are provided for on-chip 3-state busses. Each 3-state buffer has access alternately to two horizontal lines, which can be partitioned as shown in Figure 28. The switch matrices corresponding to SelectRAM memory and multiplier or I/O blocks are skipped.

Number of 3-State Buffers

Table 11 shows the number of 3-state buffers available ineach Virtex-II device. The number of 3-state buffers is twicethe number of CLB elements.

Table	11:	Virtex-II 3-State Buffers
-------	-----	---------------------------

Device	3-State Buffers per Row	Total Number of 3-State Buffers
XC2V40	16	128
XC2V80	16	256
XC2V250	32	768
XC2V500	48	1,536
XC2V1000	64	2,560
XC2V1500	80	3,840
XC2V2000	96	5,376
XC2V3000	112	7,168
XC2V4000	144	11,520
XC2V6000	176	16,896
XC2V8000	208	23,296


Figure 28: **3-State Buffer Connection to Horizontal Lines**

CLB/Slice Configurations

Table 12 summarizes the logic resources in one CLB. All of the CLBs are identical and each CLB or slice can be implemented in one of the configurations listed. Table 13 shows the available resources in all CLBs.

Table 12: Logic Resources in One CLB

SI	lices	LUTs	Flip-Flops	MULT_ANDs	Arithmetic & Carry-Chains	SOP Chains	Distributed SelectRAM	Shift Registers	TBUF
	4	8	8	8	2	2	128 bits	128 bits	2

DS031_10_071602

Figure 29: 18 Kbit Block SelectRAM Memory in Single-Port Mode

Dual-Port Configuration

As a dual-port RAM, each port of block SelectRAM has access to a common 18 Kbit memory resource. These are fully synchronous ports with independent control signals for each port. The data widths of the two ports can be configured independently, providing built-in bus-width conversion.

Table 15 illustrates the different configurations available onports A and B.

If both ports are configured in either 2K x 9-bit, 1K x 18-bit, or 512 x 36-bit configurations, the 18 Kbit block is accessible from port A or B. If both ports are configured in either 16K x 1-bit, 8K x 2-bit. or 4K x 4-bit configurations, the 16 K-bit block is accessible from Port A or Port B. All other configurations result in one port having access to an 18 Kbit memory block and the other port having access to a 16 K-bit subset of the memory block equal to 16 Kbits.

Port A	16K x 1					
Port B	16K x 1	8K x 2	4K x 4	2K x 9	1K x 18	512 x 36
Port A	8K x 2					
Port B	8K x 2	4K x 4	2K x 9	1K x 18	512 x 36]
Port A	4K x 4	4K x 4	4K x 4	4K x 4		<u>,</u>
Port B	4K x 4	2K x 9	1K x 18	512 x 36		
Port A	2K x 9	2K x 9	2K x 9		2	
Port B	2K x 9	1K x 18	512 x 36]		
Port A	1K x 18	1K x 18		2		
Port B	1K x 18	512 x 36				
Port A	512 x 36					
Port B	512 x 36					

Table	15:	Dual-Port	Mode	Configurations
-------	-----	-----------	------	----------------

XILINX[®]

Creating a Design

Creating Virtex-II designs is easy with Xilinx Integrated Synthesis Environment (ISE) development systems, which support advanced design capabilities, including ProActive Timing Closure, integrated logic analysis, and the fastest place and route runtimes in the industry. ISE solutions enable designers to get the performance they need, quickly and easily.

As a result of the ongoing cooperative development efforts between Xilinx and EDA Alliance partners, designers can take advantage of the benefits provided by EDA technologies in the programmable logic design process. Xilinx development systems are available in a number of easy to use configurations, collectively known as the ISE Series.

ISE Alliance

The ISE Alliance solution is designed to plug and play within an existing design environment. Built using industry standard data formats and netlists, these stable, flexible products enable Alliance EDA partners to deliver their best design automation capabilities to Xilinx customers, along with the time to market benefits of ProActive Timing Closure.

ISE Foundation

The ISE Foundation solution delivers the benefits of true HDL-based design in a seamlessly integrated design environment. An intuitive project navigator, as well as powerful HDL design and two HDL synthesis tools, ensure that high-quality results are achieved quickly and easily. The ISE Foundation product includes:

- State Diagram entry using Xilinx StateCAD
- Automatic HDL Testbench generation using Xilinx
 HDLBencher
- HDL Simulation using ModelSim XE

Design Flow

Virtex-II design flow proceeds as follows:

- Design Entry
- Synthesis
- Implementation
- Verification

Most programmable logic designers iterate through these steps several times in the process of completing a design.

Design Entry

All Xilinx ISE development systems support the mainstream EDA design entry capabilities, ranging from schematic design to advanced HDL design methodologies. Given the high densities of the Virtex-II family, designs are created most efficiently using HDLs. To further improve their time to market, many Xilinx customers employ incremental, modular, and Intellectual Property (IP) design techniques. When properly used, these techniques further accelerate the logic design process. To enable designers to leverage existing investments in EDA tools, and to ensure high performance design flows, Xilinx jointly develops tools with leading EDA vendors, including:

- Aldec[®]
- Cadence[®]
- Exemplar[®]
- Mentor Graphics[®]
- Model Technology[®]
- Synopsys[®]
- Synplicity[®]

Complete information on Alliance Series partners and their associated design flows is available at <u>www.xilinx.com</u> on the Xilinx Alliance Series web page.

The ISE Foundation product offers schematic entry and HDL design capabilities as part of an integrated design solution - enabling one-stop shopping. These capabilities are powerful, easy to use, and they support the full portfolio of Xilinx programmable logic devices. HDL design capabilities include a color-coded HDL editor with integrated language templates, state diagram entry, and Core generation capabilities.

Synthesis

The ISE Alliance product is engineered to support advanced design flows with the industry's best synthesis tools. Advanced design methodologies include:

- Physical Synthesis
- Incremental synthesis
- RTL floorplanning
- Direct physical mapping

The ISE Foundation product seamlessly integrates synthesis capabilities purchased directly from Exemplar, Synopsys, and Synplicity. In addition, it includes the capabilities of Xilinx Synthesis Technology.

A benefit of having two seamlessly integrated synthesis engines within an ISE design flow is the ability to apply alternative sets of optimization techniques on designs, helping to ensure that designers can meet even the toughest timing requirements.

Design Implementation

The ISE Series development systems include Xilinx timing-driven implementation tools, frequently called "place and route" or "fitting" software. This robust suite of tools enables the creation of an intuitive, flexible, tightly integrated design flow that efficiently bridges "logical" and "physical" design domains. This simplifies the task of defining a design, including its behavior, timing requirements, and optional layout (or floorplanning), as well as simplifying the task of analyzing reports generated during the implementation process. ments to begin changing state in response to the logic and the user clock.

The relative timing of these events can be changed via configuration options in software. In addition, the GTS and GWE events can be made dependent on the DONE pins of multiple devices all going High, forcing the devices to start synchronously. The sequence can also be paused at any stage, until lock has been achieved on any or all DCMs, as well as the DCI.

Readback

In this mode, configuration data from the Virtex-II FPGA device can be read back. Readback is supported only in the SelectMAP (master and slave) and Boundary-Scan mode.

Along with the configuration data, it is possible to read back the contents of all registers, distributed SelectRAM, and block RAM resources. This capability is used for real-time debugging. For more detailed configuration information, see the Virtex-II *Platform FPGA User Guide*.

Bitstream Encryption

Virtex-II devices have an on-chip decryptor using one or two sets of three keys for triple-key Data Encryption Standard (DES) operation. Xilinx software tools offer an optional encryption of the configuration data (bitstream) with a triple-key DES determined by the designer. The keys are stored in the FPGA by JTAG instruction and retained by a battery connected to the V_{BATT} pin, when the device is not powered. Virtex-II devices can be configured with the corresponding encrypted bitstream, using any of the configuration modes described previously.

A detailed description of how to use bitstream encryption is provided in the *Virtex-II Platform FPGA User Guide*. For devices that support this feature, please contact your sales representative for specific ordering part number.

Partial Reconfiguration

Partial reconfiguration of Virtex-II devices can be accomplished in either Slave SelectMAP mode or Boundary-Scan mode. Instead of resetting the chip and doing a full configuration, new data is loaded into a specified area of the chip, while the rest of the chip remains in operation. Data is loaded on a column basis, with the smallest load unit being a configuration "frame" of the bitstream (device size dependent).

Partial reconfiguration is useful for applications that require different designs to be loaded into the same area of a chip, or that require the ability to change portions of a design without having to reset or reconfigure the entire chip.

Revision History

This section records the change history for this module of the data sheet.

Date	Version	Revision
11/07/00	1.0	Early access draft.
12/06/00	1.1	Initial release.
01/15/01	1.2	Added values to the tables in the Virtex-II Performance Characteristics and Virtex-II Switching Characteristics sections.
01/25/01	1.3	The data sheet was divided into four modules (per the current style standard). A note was added to Table 1.
04/02/01	1.5	 Under Input/Output Individual Options, the range of values for optional pull-up and pull-down resistors was changed to 10 - 60 KΩ from 50 - 100 KΩ. Skipped v1.4 to sync up modules. Reverted to traditional double-column format.
07/30/01	1.6	 Added Table 6. Changed definition of multiply and divide integer ranges under Digital Clock Manager (DCM). Made numerous minor edits throughout this module.
10/02/01	1.7	Updated descriptions under Digitally Controlled Impedance (DCI), Global Clock Multiplexer Buffers, Digital Clock Manager (DCM), and Creating a Design.
10/12/01	1.8	Made clarifying edits under Digital Clock Manager (DCM).
11/29/01	1.9	Changed bitstream lengths for each device in Table 26.

Virtex-II Platform FPGAs: DC and Switching Characteristics

DS031-3 (v3.5) November 5, 2007

Product Specification

Virtex-II Electrical Characteristics

Virtex-II[™] devices are provided in -6, -5, and -4 speed grades, with -6 having the highest performance.

Virtex-II DC and AC characteristics are specified for both commercial and industrial grades. Except the operating temperature range or unless otherwise noted, all the DC and AC electrical parameters are the same for a particular speed grade (that is, the timing characteristics of a -4 speed grade industrial device are the same as for a -4 speed grade

commercial device). However, only selected speed grades and/or devices might be available in the industrial range.

All supply voltage and junction temperature specifications are representative of worst-case conditions. The parameters included are common to popular designs and typical applications. Contact Xilinx for design considerations requiring more detailed information.

All specifications are subject to change without notice.

Virtex-II DC Characteristics

Table 1: Absolute Maximum Ratings

Symbol	Desc		Units			
V _{CCINT}	Internal supply voltage relative to GNE	Internal supply voltage relative to GND				
V _{CCAUX}	Auxiliary supply voltage relative to GN	D	-0.5 to 4.0	V		
V _{CCO}	Output drivers supply voltage relative	to GND	-0.5 to 4.0	V		
V _{BATT}	Key memory battery backup supply	-0.5 to 4.0	V			
V _{REF}	Input reference voltage	-0.5 to V _{CCO} + 0.5	V			
V _{IN} ⁽³⁾	Input voltage relative to GND (user an	-0.5 to V _{CCO} + 0.5	V			
V _{TS}	Voltage applied to 3-state output (user	-0.5 to 4.0	V			
T _{STG}	Storage temperature (ambient)		-65 to +150	°C		
		All regular FF/BF flip-chip and FG/BG/CS wire-bond packages	+220	°C		
T _{SOL}	Maximum soldering temperature ⁽²⁾	Pb-free FGG456, FGG676, BGG575, and BGG728 wire-bond packages	+250	°C		
		Pb-free FGG256 and CSG144 wire-bond packages	+260	°C		
TJ	Maximum junction temperature ⁽²⁾	+125	°C			

Notes:

. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.

2. For soldering guidelines and thermal considerations, see the <u>Device Packaging and Thermal Characteristics Guide</u> information on the Xilinx website.

3. Inputs configured as PCI are fully PCI compliant. This statement takes precedence over any specification that would imply that the device is not PCI compliant.

© 2000–2007 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks are the property of their respective owners.

Virtex-II Pin-to-Pin Output Parameter Guidelines

All devices are 100% functionally tested. Listed below are representative values for typical pin locations and normal clock loading. Values are expressed in nanoseconds unless otherwise noted.

Global Clock Input to Output Delay for LVTTL, 12 mA, Fast Slew Rate, With DCM

Table 34: Global Clock Input to Output Delay for LVTTL, 12 mA, Fast Slew Rate, With DCM

Description	Symbol	Device	-6	-5	-4	Units
LVTTL Global Clock Input to Output delay using Output flip-flop, 12 mA, Fast Slew Rate, <i>with</i> DCM.						
For data <i>output</i> with different standards, adjust the delays with the values shown in IOB Output Switching Characteristics Standard Adjustments, page 14.						
Global Clock and OFF with DCM	T _{ICKOFDCM}	XC2V40	1.10	1.28	1.48	ns
		XC2V80	1.10	1.28	1.48	ns
		XC2V250	1.10	1.28	1.48	ns
		XC2V500	1.10	1.28	1.48	ns
		XC2V1000	1.10	1.28	1.48	ns
		XC2V1500	1.10	1.28	1.48	ns
		XC2V2000	1.10	1.28	1.48	ns
		XC2V3000	1.19	1.38	1.59	ns
		XC2V4000	1.19	1.38	1.59	ns
		XC2V6000	1.64	1.88	2.17	ns
		XC2V8000		1.88	2.17	ns

Notes:

1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.

2. Output timing is measured at 50% V_{CC} threshold with test setup shown in Figure 1. For other I/O standards, see Table 19.

Table 8: FG676/FGG676 BGA — XC2V1500, XC2V2000, and XC2V3000

Bank	Pin Description	Pin Number	No Connect in XC2V1500	No Connect in XC2V2000
NA	VCCINT	H19		
NA	VCCINT	H8		
NA	GND	AF26		
NA	GND	AF1		
NA	GND	AE25		
NA	GND	AE14		
NA	GND	AE13		
NA	GND	AE2		
NA	GND	AD24		
NA	GND	AD3		
NA	GND	AC23		
NA	GND	AC4		
NA	GND	AB22		
NA	GND	AB5		
NA	GND	AA21		
NA	GND	AA6		
NA	GND	U17		
NA	GND	U16		
NA	GND	U15		
NA	GND	U14		
NA	GND	U13		
NA	GND	U12		
NA	GND	U11		
NA	GND	U10		
NA	GND	T17		
NA	GND	T16		
NA	GND	T15		
NA	GND	T14		
NA	GND	T13		
NA	GND	T12		
NA	GND	T11		
NA	GND	T10		
NA	GND	R17		
NA	GND	R16		
NA	GND	R15		
NA	GND	R14		
NA	GND	R13		

Table 9: BG575/BGG575 BGA — XC2V1000, XC2V1500, and XC2V2000

Bank	Pin Description	Pin Number	No Connect in XC2V1000	No Connect in XC2V1500
4	IO_L02P_4/D1	AB20		
4	IO_L03N_4/D2/ALT_VRP_4	Y19		
4	IO_L03P_4/D3/ALT_VRN_4	AA19		
4	IO_L04N_4/VREF_4	W18		
4	IO_L04P_4	Y18		
4	IO_L05N_4/VRP_4	U16		
4	IO_L05P_4/VRN_4	V17		
4	IO_L06N_4	AD20		
4	IO_L06P_4	AD19		
4	IO_L19N_4	AC20		
4	IO_L19P_4	AC19		
4	IO_L21N_4	AA18		
4	IO_L21P_4/VREF_4	AB18		
4	IO_L22N_4	AC18		
4	IO_L22P_4	AC17		
4	IO_L24N_4	AA17		
4	IO_L24P_4	AB17		
4	IO_L49N_4	Y17		
4	IO_L49P_4	W17		
4	IO_L51N_4	V16		
4	IO_L51P_4/VREF_4	W16		
4	IO_L52N_4	AD17		
4	IO_L52P_4	AD16		
4	IO_L54N_4	AB16		
4	IO_L54P_4	AC16		
4	IO_L67N_4	Y16	NC	
4	IO_L67P_4	AA16	NC	
4	IO_L69N_4	W15	NC	
4	IO_L69P_4/VREF_4	Y15	NC	
4	IO_L70N_4	U15	NC	
4	IO_L70P_4	V15	NC	
4	IO_L72N_4	AD15	NC	
4	IO_L72P_4	AD14	NC	
4	IO_L73N_4	AB15	NC	NC
4	IO_L73P_4	AC15	NC	NC
4	IO_L91N_4/VREF_4	AA14		

Table 9: BG575/BGG575 BGA — XC2V1000, XC2V1500, and XC2V2000

Bank	Pin Description	Pin Number	No Connect in XC2V1000	No Connect in XC2V1500
NA	GND	D15		
NA	GND	D10		
NA	GND	D4		
NA	GND	C22		
NA	GND	C3		
NA	GND	B24		
NA	GND	B23		
NA	GND	B2		
NA	GND	B1		
NA	GND	A24		
NA	GND	A23		
NA	GND	A18		
NA	GND	A7		
NA	GND	A2		

Notes:

1. See Table 4 for an explanation of the signals available on this pin.

Table 10: BG728 BGA — XC2V3000

Bank	Pin Description	Pin Number
NA	VCCINT	K10
NA	GND	AG27
NA	GND	AG26
NA	GND	AG14
NA	GND	AG2
NA	GND	AG1
NA	GND	AF27
NA	GND	AF26
NA	GND	AF20
NA	GND	AF8
NA	GND	AF2
NA	GND	AF1
NA	GND	AE25
NA	GND	AE3
NA	GND	AD24
NA	GND	AD14
NA	GND	AD4
NA	GND	AC23
NA	GND	AC17
NA	GND	AC11
NA	GND	AC5
NA	GND	AB22
NA	GND	AB6
NA	GND	AA21
NA	GND	AA7
NA	GND	Y26
NA	GND	Y20
NA	GND	Y8
NA	GND	Y2
NA	GND	W14
NA	GND	U23
NA	GND	U5
NA	GND	T16
NA	GND	T15
NA	GND	T14
NA	GND	T13

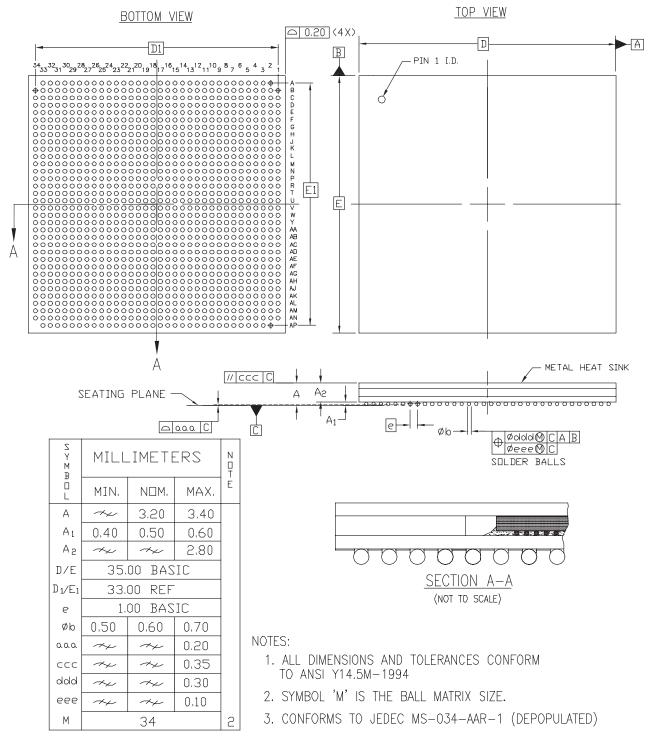

Bank	Pin Description	Pin Number	No Connect in the XC2V1000	No Connect in the XC2V1500
6	IO_L68N_6	Y26	NC	
6	IO_L69P_6	AA30	NC	
6	IO_L69N_6/VREF_6	Y30	NC	
6	IO_L70P_6	W24	NC	
6	IO_L70N_6	V24	NC	
6	IO_L71P_6	Y27	NC	
6	IO_L71N_6	W27	NC	
6	IO_L72P_6	W28	NC	
6	IO_L72N_6	Y28	NC	
6	IO_L73P_6	V25	NC	NC
6	IO_L73N_6	U25	NC	NC
6	IO_L74P_6	V26	NC	NC
6	IO_L74N_6	V27	NC	NC
6	IO_L75P_6	Y29	NC	NC
6	IO_L75N_6/VREF_6	W29	NC	NC
6	IO_L76P_6	U22	NC	NC
6	IO_L76N_6	T22	NC	NC
6	IO_L77P_6	U26	NC	NC
6	IO_L77N_6	T26	NC	NC
6	IO_L78P_6	V30	NC	NC
6	IO_L78N_6	W30	NC	NC
6	IO_L91P_6	U23		
6	IO_L91N_6	T23		
6	IO_L92P_6	U27		
6	IO_L92N_6	T27		
6	IO_L93P_6	V29		
6	IO_L93N_6/VREF_6	U29		
6	IO_L94P_6	T24		
6	IO_L94N_6	T25		
6	IO_L95P_6	U28		
6	IO_L95N_6	T28		
6	IO_L96P_6	T30		
6	IO_L96N_6	U30		
			·	
7	IO_L96P_7	P28		
7	IO_L96N_7	R28		
7	IO_L95P_7	R25		

Table 11: FF896 BGA — XC2V1000, XC2V1500, and XC2V2000

Bank	Pin Description	Pin Number	No Connect in the XC2V3000
3	IO_L83P_3	Y4	NC
3	IO_L82N_3	W11	NC
3	IO_L82P_3	V11	NC
3	IO_L81N_3/VREF_3	W8	NC
3	IO_L81P_3	Y8	NC
3	IO_L80N_3	W2	NC
3	IO_L80P_3	Y1	NC
3	IO_L79N_3	AA3	NC
3	IO_L79P_3	AB3	NC
3	IO_L78N_3	Y6	
3	IO_L78P_3	AA6	
3	IO_L77N_3	AA4	
3	IO_L77P_3	AB4	
3	IO_L76N_3	Y7	
3	IO_L76P_3	AA8	
3	IO_L75N_3/VREF_3	Y10	
3	IO_L75P_3	AA10	
3	IO_L74N_3	AA1	
3	IO_L74P_3	AB1	
3	IO_L73N_3	AA5	
3	IO_L73P_3	AB5	
3	IO_L72N_3	AA9	
3	IO_L72P_3	Y9	
3	IO_L71N_3	AA2	
3	IO_L71P_3	AB2	
3	IO_L70N_3	AB6	
3	IO_L70P_3	AC6	
3	IO_L69N_3/VREF_3	AD1	
3	IO_L69P_3	AC1	
3	IO_L68N_3	AC3	
3	IO_L68P_3	AD3	
3	IO_L67N_3	AC4	
3	IO_L67P_3	AD4	
3	IO_L54N_3	AB7	
3	IO_L54P_3	AC7	
3	IO_L53N_3	AC2	

Table 12: FF1152 BGA — XC2V3000, XC2V4000, XC2V6000, and XC2V8000

Bank **Pin Description Pin Number** No Connect in the XC2V3000 7 IO L03N 7 F30 7 IO_L02P_7/VRN_7 K25 7 IO_L02N_7/VRP_7 J25 7 IO_L01P_7 D33 7 IO L01N 7 E33 0 VCCO_0 M22 0 VCCO_0 M21 0 VCCO 0 M20 0 VCCO_0 M19 0 VCCO_0 M18 VCCO_0 L23 0 VCCO_0 L22 0 0 VCCO_0 L21 VCCO_0 0 L20 0 VCCO 0 E20 0 VCCO_0 D28 0 VCCO_0 A25 VCCO_0 A19 0 1 VCCO_1 M17 1 VCCO_1 M16 1 VCCO_1 M15 1 VCCO_1 M14 VCCO_1 1 M13 1 VCCO_1 L15 1 VCCO_1 L14 1 VCCO 1 L13 1 VCCO_1 L12 1 VCCO_1 E15 1 VCCO_1 D7 1 VCCO_1 A16 1 VCCO_1 A10 2 VCCO 2 U12 2 VCCO_2 T12 2 VCCO 2 T1 2 VCCO_2 R12

FF1152 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch)

Figure 8: FF1152 Flip-Chip Fine-Pitch BGA Package Specifications

Bank	Pin Description	Pin Number	No Connect in the XC2V4000	No Connect in the XC2V6000
3	IO_L58N_3	AD5		
3	IO_L58P_3	AE5		
3	IO_L57N_3/VREF_3	AE11		
3	IO_L57P_3	AD11		
3	IO_L56N_3	AG1		
3	IO_L56P_3	AH1		
3	IO_L55N_3	AD6		
3	IO_L55P_3	AE6		
3	IO_L54N_3	AF10		
3	IO_L54P_3	AE10		
3	IO_L53N_3	AG2		
3	IO_L53P_3	AH2		
3	IO_L52N_3	AF4		
3	IO_L52P_3	AG4		
3	IO_L51N_3/VREF_3	AG8		
3	IO_L51P_3	AF8		
3	IO_L50N_3	AH3		
3	IO_L50P_3	AJ3		
3	IO_L49N_3	AE7		
3	IO_L49P_3	AF7		
3	IO_L48N_3	AG9		
3	IO_L48P_3	AF9		
3	IO_L47N_3	AF6		
3	IO_L47P_3	AG6		
3	IO_L46N_3	AG5		
3	IO_L46P_3	AH5		
3	IO_L45N_3/VREF_3	AF12		
3	IO_L45P_3	AE12		
3	IO_L44N_3	AJ1		
3	IO_L44P_3	AK1		
3	IO_L43N_3	AH4		
3	IO_L43P_3	AJ4		
3	IO_L36N_3	AG11	NC	
3	IO_L36P_3	AF11	NC	
3	IO_L35N_3	AK2	NC	
3	IO_L35P_3	AL2	NC	

Table 13: FF1517 BGA — XC2V4000, XC2V6000, and XC2V8000

Bank	Pin Description	Pin Number	No Connect in XC2V2000
7	IO_L96N_7	R27	
7	IO_L95P_7	R24	
7	IO_L95N_7	N24	
7	IO_L94P_7	T29	
7	IO_L94N_7	R29	
7	IO_L93P_7/VREF_7	R31	
7	IO_L93N_7	P31	
7	IO_L92P_7	R26	
7	IO_L92N_7	P26	
7	IO_L91P_7	R30	
7	IO_L91N_7	P30	
7	IO_L78P_7	R25	
7	IO_L78N_7	P25	
7	IO_L77P_7	R28	
7	IO_L77N_7	P28	
7	IO_L76P_7	N31	
7	IO_L76N_7	M31	
7	IO_L75P_7/VREF_7	R23	
7	IO_L75N_7	P23	
7	IO_L74P_7	N30	
7	IO_L74N_7	M30	
7	IO_L73P_7	P27	
7	IO_L73N_7	N27	
7	IO_L72P_7	P22	
7	IO_L72N_7	N22	
7	IO_L71P_7	N29	
7	IO_L71N_7	M29	
7	IO_L70P_7	N28	
7	IO_L70N_7	M28	
7	IO_L69P_7/VREF_7	N26	
7	IO_L69N_7	M26	
7	IO_L68P_7	L31	
7	IO_L68N_7	K31	
7	IO_L67P_7	M27	
7	IO_L67N_7	L27	
7	 IO_L54P_7	N23	
7	 IO_L54N_7	M23	
7	 IO_L53P_7	L30	

Table 14: BF957 — XC2V2000, XC2V3000, XC2V4000, and XC2V6000