AMD Xilinx - XC2V8000-5FF1517I Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Obsolete
Number of LABs/CLBs	11648
Number of Logic Elements/Cells	-
Total RAM Bits	3096576
Number of I/O	1108
Number of Gates	800000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	1517-BBGA, FCBGA
Supplier Device Package	1517-FCBGA (40x40)
Purchase URL	https://www.e-xfl.com/product-detail/xilinx/xc2v8000-5ff1517i

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 42: Virtex-II BUFGCE Function

If the CE input is inactive (Low) prior to the incoming rising clock edge, the following clock pulse does not pass through the clock buffer, and the output stays Low. Any level change of CE during the incoming clock High time has no effect. CE must not change during a short setup window just prior to the rising clock edge on the BUFGCE input I. Violating this setup time requirement can result in an undefined runt pulse output.

BUFGMUX

BUFGMUX can switch between two unrelated, even asynchronous clocks. Basically, a Low on S selects the I0 input, a High on S selects the I1 input. Switching from one clock to the other is done in such a way that the output High and Low time is never shorter than the shortest High or Low time of either input clock. As long as the presently selected clock is High, any level change of S has no effect.

Figure 43: Virtex-II BUFGMUX Function

If the presently selected clock is Low while S changes, or if it goes Low after S has changed, the output is kept Low until the other ("to-be-selected") clock has made a transition from High to Low. At that instant, the new clock starts driving the output.

The two clock inputs can be asynchronous with regard to each other, and the S input can change at any time, except for a short setup time prior to the rising edge of the presently selected clock (I0 or I1). Violating this setup time requirement can result in an undefined runt pulse output.

All Virtex-II devices have 16 global clock multiplexer buffers.

Figure 44 shows a switchover from I0 to I1.

- The current clock is CLK0.
- S is activated High.
- If CLK0 is currently High, the multiplexer waits for CLK0 to go Low.
- Once CLK0 is Low, the multiplexer output stays Low

until CLK1 transitions High to Low.

- When CLK1 transitions from High to Low, the output switches to CLK1.
- No glitches or short pulses can appear on the output.

Figure 44: Clock Multiplexer Waveform Diagram

Local Clocking

In addition to global clocks, there are local clock resources in the Virtex-II devices. There are more than 72 local clocks in the Virtex-II family. These resources can be used for many different applications, including but not limited to memory interfaces. For example, even using only the left and right I/O banks, Virtex-II FPGAs can support up to 50 local clocks for DDR SDRAM. These interfaces can operate beyond 200 MHz on Virtex-II devices.

Digital Clock Manager (DCM)

The Virtex-II DCM offers a wide range of powerful clock management features.

- **Clock De-skew**: The DCM generates new system clocks (either internally or externally to the FPGA), which are phase-aligned to the input clock, thus eliminating clock distribution delays.
- Frequency Synthesis: The DCM generates a wide range of output clock frequencies, performing very flexible clock multiplication and division.
- Phase Shifting: The DCM provides both coarse phase shifting and fine-grained phase shifting with dynamic phase shift control.

The DCM utilizes fully digital delay lines allowing robust high-precision control of clock phase and frequency. It also utilizes fully digital feedback systems, operating dynamically to compensate for temperature and voltage variations during operation.

Up to four of the nine DCM clock outputs can drive inputs to global clock buffers or global clock multiplexer buffers simultaneously (see Figure 45). All DCM clock outputs can simultaneously drive general routing resources, including routes to output buffers.

XILINX[®]

Creating a Design

Creating Virtex-II designs is easy with Xilinx Integrated Synthesis Environment (ISE) development systems, which support advanced design capabilities, including ProActive Timing Closure, integrated logic analysis, and the fastest place and route runtimes in the industry. ISE solutions enable designers to get the performance they need, quickly and easily.

As a result of the ongoing cooperative development efforts between Xilinx and EDA Alliance partners, designers can take advantage of the benefits provided by EDA technologies in the programmable logic design process. Xilinx development systems are available in a number of easy to use configurations, collectively known as the ISE Series.

ISE Alliance

The ISE Alliance solution is designed to plug and play within an existing design environment. Built using industry standard data formats and netlists, these stable, flexible products enable Alliance EDA partners to deliver their best design automation capabilities to Xilinx customers, along with the time to market benefits of ProActive Timing Closure.

ISE Foundation

The ISE Foundation solution delivers the benefits of true HDL-based design in a seamlessly integrated design environment. An intuitive project navigator, as well as powerful HDL design and two HDL synthesis tools, ensure that high-quality results are achieved quickly and easily. The ISE Foundation product includes:

- State Diagram entry using Xilinx StateCAD
- Automatic HDL Testbench generation using Xilinx
 HDLBencher
- HDL Simulation using ModelSim XE

Design Flow

Virtex-II design flow proceeds as follows:

- Design Entry
- Synthesis
- Implementation
- Verification

Most programmable logic designers iterate through these steps several times in the process of completing a design.

Design Entry

All Xilinx ISE development systems support the mainstream EDA design entry capabilities, ranging from schematic design to advanced HDL design methodologies. Given the high densities of the Virtex-II family, designs are created most efficiently using HDLs. To further improve their time to market, many Xilinx customers employ incremental, modular, and Intellectual Property (IP) design techniques. When properly used, these techniques further accelerate the logic design process. To enable designers to leverage existing investments in EDA tools, and to ensure high performance design flows, Xilinx jointly develops tools with leading EDA vendors, including:

- Aldec[®]
- Cadence[®]
- Exemplar[®]
- Mentor Graphics[®]
- Model Technology[®]
- Synopsys[®]
- Synplicity[®]

Complete information on Alliance Series partners and their associated design flows is available at <u>www.xilinx.com</u> on the Xilinx Alliance Series web page.

The ISE Foundation product offers schematic entry and HDL design capabilities as part of an integrated design solution - enabling one-stop shopping. These capabilities are powerful, easy to use, and they support the full portfolio of Xilinx programmable logic devices. HDL design capabilities include a color-coded HDL editor with integrated language templates, state diagram entry, and Core generation capabilities.

Synthesis

The ISE Alliance product is engineered to support advanced design flows with the industry's best synthesis tools. Advanced design methodologies include:

- Physical Synthesis
- Incremental synthesis
- RTL floorplanning
- Direct physical mapping

The ISE Foundation product seamlessly integrates synthesis capabilities purchased directly from Exemplar, Synopsys, and Synplicity. In addition, it includes the capabilities of Xilinx Synthesis Technology.

A benefit of having two seamlessly integrated synthesis engines within an ISE design flow is the ability to apply alternative sets of optimization techniques on designs, helping to ensure that designers can meet even the toughest timing requirements.

Design Implementation

The ISE Series development systems include Xilinx timing-driven implementation tools, frequently called "place and route" or "fitting" software. This robust suite of tools enables the creation of an intuitive, flexible, tightly integrated design flow that efficiently bridges "logical" and "physical" design domains. This simplifies the task of defining a design, including its behavior, timing requirements, and optional layout (or floorplanning), as well as simplifying the task of analyzing reports generated during the implementation process. The Virtex-II implementation process is comprised of Synthesis, translation, mapping, place and route, and configuration file generation. While the tools can be run individually, many designers choose to run the entire implementation process with the click of a button. To assist those who prefer to script their design flows, Xilinx provides Xflow, an automated single command line process.

Design Verification

In addition to conventional design verification using static timing analysis or simulation techniques, Xilinx offers powerful in-circuit debugging techniques using ChipScope ILA (Integrated Logic Analysis). The reconfigurable nature of Xilinx FPGAs means that designs can be verified in real time without the need for extensive sets of software simulation vectors.

For simulation, the system extracts post-layout timing information from the design database, and back-annotates this information into the netlist for use by the simulator. The back annotation features a variety of patented Xilinx techniques, resulting in the industry's most powerful simulation flows. Alternatively, timing-critical portions of a design can be verified using the Xilinx static timing analyzer or a third party static timing analysis tool like Synopsys Prime Time[™], by exporting timing data in the STAMP data format.

For in-circuit debugging, ChipScope ILA enables designers to analyze the real-time behavior of a device while operating at full system speeds. Logic analysis commands and captured data are transferred between the ChipScope software and ILA cores within the Virtex-II FPGA, using industry standard JTAG protocols. These JTAG transactions are driven over an optional download cable (MultiLINX or JTAG), connecting the Virtex device in the target system to a PC or workstation.

ChipScope ILA was designed to look and feel like a logic analyzer, making it easy to begin debugging a design immediately. Modifications to the desired logic analysis can be downloaded directly into the system in a matter of minutes.

Other Unique Features of Virtex-II Design Flow

Xilinx design flows feature a number of unique capabilities. Among these are efficient incremental HDL design flows; a robust capability that is enabled by Xilinx exclusive hierarchical floorplanning capabilities. Another powerful design capability only available in the Xilinx design flow is "Modular Design", part of the Xilinx suite of team design tools, which enables autonomous design, implementation, and verification of design modules.

Incremental Synthesis

Xilinx unique hierarchical floorplanning capabilities enable designers to create a programmable logic design by isolating design changes within one hierarchical "logic block", and perform synthesis, verification and implementation processes on that specific logic block. By preserving the logic in unchanged portions of a design, Xilinx incremental design makes the high-density design process more efficient.

Xilinx hierarchical floorplanning capabilities can be specified using the high-level floorplanner or a preferred RTL floorplanner (see the Xilinx web site for a list of supported EDA partners). When used in conjunction with one of the EDA partners' floorplanners, higher performance results can be achieved, as many synthesis tools use this more predictable detailed physical implementation information to establish more aggressive and accurate timing estimates when performing their logic optimizations.

Modular Design

Xilinx innovative modular design capabilities take the incremental design process one step further by enabling the designer to delegate responsibility for completing the design, synthesis, verification, and implementation of a hierarchical "logic block" to an arbitrary number of designers assigning a specific region within the target FPGA for exclusive use by each of the team members.

This team design capability enables an autonomous approach to design modules, changing the hand-off point to the lead designer or integrator from "my module works in simulation" to "my module works in the FPGA". This unique design methodology also leverages the Xilinx hierarchical floorplanning capabilities and enables the Xilinx (or EDA partner) floorplanner to manage the efficient implementation of very high-density FPGAs.

Table 4: Quiescent Supply Current

Symbol	Description	Device	Min	Typical	Max	Units
		XC2V40		3	125	
		XC2V80		5	125	
		XC2V250	Min Typical Max Units 3 125 5 125 5 125 8 150 10 200 12 250 12 250 mA 20 400 27 500 35 650 45 800 60 1100 100 100 1 2 1 2 1 2 1 2 1 2 4 mA 2 4 mA 2 1 2 4 2 4 2 4 2 4 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2			
		XC2V500		10	200	
		XC2V1000		12	250	
ICCINTQ	Quiescent V _{CCINT} supply current	XC2V1500		15	350	mA
		XC2V2000		20	400	
		XC2V3000		27	500	
		XC2V4000		35	650	
		XC2V6000		45	800	
		XC2V8000		60	1100	
		XC2V40		1	2	
		XC2V80		1	2	
		XC2V250		1	1 2 1 2	
		XC2V500		1	2	
		XC2V1000		1	2	
ICCOQ	Quiescent V _{CCO} supply current ^(1,2)	XC2V1500		2	4	mA
		XC2V2000		2	4	
		XC2V3000		2	4	
		XC2V4000		2	4	
		XC2V6000		2	4	
		XC2V8000		2	4	
		XC2V40		5	25	
		XC2V80		5	25	
		XC2V250		5	25	
		XC2V500		5	25	
		XC2V1000		5	25	
ICCAUXQ	Quiescent V _{CCAUX} supply current ^(1,2)	XC2V1500		7.5	50	mA
		XC2V2000		7.5	50	
		XC2V3000		10	75	
		XC2V4000		10	75	
		XC2V6000		12.5	100	
		XC2V8000		12.5	100	

Notes:

1. With no output current loads, no active input pull-up resistors, all I/O pins are 3-state and floating.

2. If DCI or differential signaling is used, more accurate values can be obtained by using the Power Estimator or XPOWER™.

- 3. Data are retained even if V_{CCO} drops to 0 V.
- 4. Values specified for quiescent supply current parameters are Commercial Grade. For Industrial Grade values, multiply Commercial Grade values by 1.25.

Power-On Power Supply Requirements

Xilinx FPGAs require a certain amount of supply current during power-on to insure proper device operation. The actual current consumed depends on the power-on ramp rate of the power supply.

The $V_{CCINT}\!$, $V_{CCAUX}\!$, and V_{CCO} power supplies shall each ramp on, monotonically, no faster than 200 μs and no slower than 50 ms. Ramp on is defined as: 0 V_{DC} to minimum supply voltages.

Table 5 shows the minimum current required by Virtex-IIdevices for proper power on and configuration.

Power supplies can be turned on in any sequence.⁽¹⁾

If any V_{CCO} bank powers up before V_{CCAUX}, then each bank draws up to 300 mA, worst case, until the V_{CCAUX} powers up.⁽²⁾ This does not harm the device. If the current is limited to the minimum value above, or larger, the device powers on properly after all three supplies have passed through their power-on reset threshold voltages.

Once initialized and configured, use the power calculator to estimate current drain on these supplies.

Notes:

- 1. If the V_{CCINT} ramp rate is longer than 10 ms, then V_{CCINT} must be applied before V_{CCO} and V_{CCAUX}. The device will not be damaged if this requirement is violated, but configuration will probably fail.
- 2. The 300 mA is transient current (peak); it eventually disappears even if V_{CCAUX} does not power up.

Table 47: Sample Window

				Speed Grade	9	
Description	Symbol	Device	-6	-5	-4	Units
Sampling Error at Receiver Pins ⁽¹⁾	T _{SAMP}	XC2V40	500	500	550	ps
		XC2V80	500	500	550	ps
		XC2V250	500	500	550	ps
		XC2V500 500	500	550	ps	
		XC2V1000	500	500	550	ps
		XC2V1500	500	500	550	ps
		XC2V2000	500	500	550	ps
		XC2V3000	500	500	550	ps
		XC2V4000	500	500	550	ps
		XC2V6000	500	500	550	ps
		XC2V8000		500	550	ps

Notes:

1. This parameter indicates the total sampling error of Virtex-II DDR input registers across voltage, temperature, and process. The characterization methodology uses the DCM to capture the DDR input registers' edges of operation. These measurements include:

- CLK0 and CLK180 DCM jitter

- Worst-case Duty-Cycle Distortion - T_{DCD_CLK180}

- DCM accuracy (phase offset)

- DCM phase shift resolution.

These measurements do not include package or clock tree skew.

Table 48: Pin-to-Pin Setup/Hold: Source-Synchronous Configuration

			5	Speed Grad	е	
Description	Symbol	Device	-6	-5	-4	Units
Data Input Set-Up and Hold Times Relative to a Forwarded Clock Input Pin, Using DCM and Global Clock Buffer.						
For situations where clock and data inputs conform to different standards, adjust the setup and hold values accordingly using the values shown in IOB Input Switching Characteristics Standard Adjustments, page 11.						
No Delay	T _{PSDCM} /	XC2V40	0.2/0.5	0.2/0.5	0.2/0.5	ns
Global Clock and IFF with DCM	T _{PHDCM}	XC2V80	0.2/0.5	0.2/0.5	0.2/0.5	ns
		XC2V250	0.2/0.5	0.2/0.5	0.2/0.5	ns
		XC2V500	0.2/0.5	0.2/0.5	0.2/0.5	ns
		XC2V1000	0.2/0.5	0.2/0.5	0.2/0.5	ns
		XC2V1500	0.2/0.5	0.2/0.5	0.2/0.5	ns
		XC2V2000	0.2/0.5	0.2/0.5	0.2/0.5	ns
		XC2V3000	0.2/0.5	0.2/0.5	0.2/0.6	ns
		XC2V4000	0.2/0.5	0.2/0.6	0.2/0.6	ns
		XC2V6000	0.2/0.5	0.2/0.6	0.2/0.6	ns
		XC2V8000		0.2/0.6	0.2/0.7	ns

Notes:

1. IFF = Input Flip-Flop

2. The timing values were measured using the fine-phase adjustment feature of the DCM.

3. The worst-case duty-cycle distortion and DCM jitter on CLK0 and CLK180 is included in these measurements.

FG676/FGG676 Fine-Pitch BGA Package Specifications (1.00mm pitch)

676-BALL FINE PITCH BGA (FG676/FGG676)

Figure 4: FG676/FGG676 Fine-Pitch BGA Package Specifications

www.xilinx.com

Table 9: BG575/BGG575 BGA — XC2V1000, XC2V1500, and XC2V2000

Bank	Pin Description	Pin Number	No Connect in XC2V1000	No Connect in XC2V1500
7	VCCO_7	F3		
NA	CCLK	AB23		
NA	PROG_B	C1		
NA	DONE	AB21		
NA	MO	AC4		
NA	M1	AB4		
NA	M2	AD3		
NA	HSWAP_EN	C2		
NA	ТСК	C23		
NA	TDI	D1		
NA	TDO	C24		
NA	TMS	C21		
NA	PWRDWN_B	AC21		
NA	DXN	B4		
NA	DXP	C4		
NA	VBATT	B21		
NA	RSVD	A22		
NA	VCCAUX	AD13		
NA	VCCAUX	AC22		
NA	VCCAUX	AC3		
NA	VCCAUX	N1		
NA	VCCAUX	M24		
NA	VCCAUX	B22		
NA	VCCAUX	B3		
NA	VCCAUX	A12		
NA	VCCINT	U17		
NA	VCCINT	U8		
NA	VCCINT	T16		
NA	VCCINT	Т9		
NA	VCCINT	R15		
NA	VCCINT	R14		
NA	VCCINT	R13		
NA	VCCINT	R12		
NA	VCCINT	R11		

Table 9: BG575/BGG575 BGA — XC2V1000, XC2V1500, and XC2V2000

Bank	Pin Description	Pin Number	No Connect in XC2V1000	No Connect in XC2V1500
NA	GND	D15		
NA	GND	D10		
NA	GND	D4		
NA	GND	C22		
NA	GND	C3		
NA	GND	B24		
NA	GND	B23		
NA	GND	B2		
NA	GND	B1		
NA	GND	A24		
NA	GND	A23		
NA	GND	A18		
NA	GND	A7		
NA	GND	A2		

Notes:

1. See Table 4 for an explanation of the signals available on this pin.

Table 10: BG728 BGA — XC2V3000

Bank	Pin Description	Pin Number
6	IO_L01N_6	AD1
6	IO_L02P_6/VRN_6	AD3
6	IO_L02N_6/VRP_6	AD2
6	IO_L03P_6	AC4
6	IO_L03N_6/VREF_6	AC3
6	IO_L04P_6	AC2
6	IO_L04N_6	AC1
6	IO_L06P_6	AB5
6	IO_L06N_6	AB4
6	IO_L19P_6	AB3
6	IO_L19N_6	AB2
6	IO_L21P_6	AB1
6	IO_L21N_6/VREF_6	AA1
6	IO_L22P_6	AA5
6	IO_L22N_6	AA6
6	IO_L24P_6	AA3
6	IO_L24N_6	AA2
6	IO_L25P_6	Y5
6	IO_L25N_6	Y6
6	IO_L27P_6	Y4
6	IO_L27N_6/VREF_6	Y3
6	IO_L28P_6	Y1
6	IO_L28N_6	W1
6	IO_L43P_6	W8
6	IO_L43N_6	W9
6	IO_L45P_6	W6
6	IO_L45N_6/VREF_6	W7
6	IO_L46P_6	W5
6	IO_L46N_6	W4
6	IO_L48P_6	W3
6	IO_L48N_6	W2
6	IO_L49P_6	V7
6	IO_L49N_6	V8
6	IO_L51P_6	V5
6	IO_L51N_6/VREF_6	V6
6	IO_L52P_6	V4

Table 10: BG728 BGA — XC2V3000

Bank	Pin Description	Pin Number
NA	VCCAUX	P26
NA	VCCAUX	P2
NA	VCCAUX	C26
NA	VCCAUX	C2
NA	VCCAUX	B14
NA	VCCINT	V18
NA	VCCINT	V14
NA	VCCINT	V10
NA	VCCINT	U17
NA	VCCINT	U16
NA	VCCINT	U15
NA	VCCINT	U14
NA	VCCINT	U13
NA	VCCINT	U12
NA	VCCINT	U11
NA	VCCINT	T17
NA	VCCINT	T11
NA	VCCINT	R17
NA	VCCINT	R11
NA	VCCINT	P18
NA	VCCINT	P17
NA	VCCINT	P11
NA	VCCINT	P10
NA	VCCINT	N17
NA	VCCINT	N11
NA	VCCINT	M17
NA	VCCINT	M11
NA	VCCINT	L17
NA	VCCINT	L16
NA	VCCINT	L15
NA	VCCINT	L14
NA	VCCINT	L13
NA	VCCINT	L12
NA	VCCINT	L11
NA	VCCINT	K18
NA	VCCINT	K14

Table 10: BG728 BGA — XC2V3000

Bank	Pin Description	Pin Number
NA	GND	T12
NA	GND	R16
NA	GND	R15
NA	GND	R14
NA	GND	R13
NA	GND	R12
NA	GND	P27
NA	GND	P24
NA	GND	P19
NA	GND	P16
NA	GND	P15
NA	GND	P14
NA	GND	P13
NA	GND	P12
NA	GND	P9
NA	GND	P4
NA	GND	P1
NA	GND	N16
NA	GND	N15
NA	GND	N14
NA	GND	N13
NA	GND	N12
NA	GND	M16
NA	GND	M15
NA	GND	M14
NA	GND	M13
NA	GND	M12
NA	GND	L23
NA	GND	L5
NA	GND	J14
NA	GND	H26
NA	GND	H20
NA	GND	H8
NA	GND	H2
NA	GND	G21
NA	GND	G7

Bank	Pin Description	Pin Number	No Connect in the XC2V1000	No Connect in the XC2V1500
2	VCCO_2	L10		
2	VCCO_2	L9		
2	VCCO_2	K9		
2	VCCO_2	E2		
3	VCCO_3	AF2		
3	VCCO_3	AA9		
3	VCCO_3	Y10		
3	VCCO_3	Y9		
3	VCCO_3	W10		
3	VCCO_3	W9		
3	VCCO_3	V10		
3	VCCO_3	V9		
3	VCCO_3	V3		
3	VCCO_3	U10		
3	VCCO_3	T10		
4	VCCO_4	AJ5		
4	VCCO_4	AH13		
4	VCCO_4	AB13		
4	VCCO_4	AB12		
4	VCCO_4	AB11		
4	VCCO_4	AB10		
4	VCCO_4	AA15		
4	VCCO_4	AA14		
4	VCCO_4	AA13		
4	VCCO_4	AA12		
4	VCCO_4	AA11		
5	VCCO_5	AJ26		
5	VCCO_5	AH18		
5	VCCO_5	AB21		
5	VCCO_5	AB20		
5	VCCO_5	AB19		
5	VCCO_5	AB18		
5	VCCO_5	AA20		
5	VCCO_5	AA19		
5	VCCO_5	AA18		
5	VCCO_5	AA17		
5	VCCO_5	AA16		

Table 11: FF896 BGA — XC2V1000, XC2V1500, and XC2V2000

Bank	Pin Description	Pin Number	No Connect in the XC2V4000	No Connect in the XC2V6000
0	IO_L52P_0	A30		
0	IO_L53N_0	G26		
0	IO_L53P_0	G25		
0	IO_L54N_0	D26		
0	IO_L54P_0	D27		
0	IO_L55N_0	B27		
0	IO_L55P_0	B28		
0	IO_L56N_0	H25		
0	IO_L56P_0	H24		
0	IO_L57N_0	F25		
0	IO_L57P_0/VREF_0	F26		
0	IO_L58N_0	A27		
0	IO_L58P_0	A28		
0	IO_L59N_0	K24		
0	IO_L59P_0	K23		
0	IO_L60N_0	E24		
0	IO_L60P_0	E25		
0	IO_L67N_0	C26		
0	IO_L67P_0	C27		
0	IO_L68N_0	J24		
0	IO_L68P_0	J23		
0	IO_L69N_0	D24		
0	IO_L69P_0/VREF_0	D25		
0	IO_L70N_0	A25		
0	IO_L70P_0	A26		
0	IO_L71N_0	M22		
0	IO_L71P_0	M21		
0	IO_L72N_0	G23		
0	IO_L72P_0	G24		
0	IO_L73N_0	B25		
0	IO_L73P_0	C25		
0	IO_L74N_0	L22		
0	IO_L74P_0	L21		
0	IO_L75N_0	F23		
0	IO_L75P_0/VREF_0	F24		
0	IO_L76N_0	C23		

Table 13: FF1517 BGA — XC2V4000, XC2V6000, and XC2V8000

Bank	Pin Description	Pin Number	No Connect in the XC2V4000	No Connect in the XC2V6000
3	IO_L34N_3	AH6	NC	
3	IO_L34P_3	AJ6	NC	
3	IO_L33N_3/VREF_3	AJ8	NC	
3	IO_L33P_3	AH8	NC	
3	IO_L32N_3	AL1	NC	
3	IO_L32P_3	AM1	NC	
3	IO_L31N_3	AH7	NC	
3	IO_L31P_3	AJ7	NC	
3	IO_L30N_3	AH10		
3	IO_L30P_3	AG10		
3	IO_L29N_3	AK3		
3	IO_L29P_3	AL3		
3	IO_L28N_3	AK4		
3	IO_L28P_3	AL4		
3	IO_L27N_3/VREF_3	AJ9		
3	IO_L27P_3	AH9		
3	IO_L26N_3	AM2		
3	IO_L26P_3	AN2		
3	IO_L25N_3	AK5		
3	IO_L25P_3	AL5		
3	IO_L24N_3	AK9		
3	IO_L24P_3	AK8		
3	IO_L23N_3	AN1		
3	IO_L23P_3	AP1		
3	IO_L22N_3	AK6		
3	IO_L22P_3	AL6		
3	IO_L21N_3/VREF_3	AH12		
3	IO_L21P_3	AG12		
3	IO_L20N_3	AM3		
3	IO_L20P_3	AN3		
3	IO_L19N_3	AM4		
3	IO_L19P_3	AN4		
3	IO_L12N_3	AJ12	NC	
3	IO_L12P_3	AH11	NC	
3	IO_L11N_3	AP2	NC	
3	IO_L11P_3	AR2	NC	

Table 13: FF1517 BGA — XC2V4000, XC2V6000, and XC2V8000

Bank	Pin Description	Pin Number	No Connect in the XC2V4000	No Connect in the XC2V6000
6	IO_L23N_6	AM38		
6	IO_L24P_6	AM36		
6	IO_L24N_6	AN36		
6	IO_L25P_6	AH30		
6	IO_L25N_6	AG30		
6	IO_L26P_6	AM37		
6	IO_L26N_6	AL37		
6	IO_L27P_6	AK34		
6	IO_L27N_6/VREF_6	AL34		
6	IO_L28P_6	AG29		
6	IO_L28N_6	AF29		
6	IO_L29P_6	AL35		
6	IO_L29N_6	AK35		
6	IO_L30P_6	AH33		
6	IO_L30N_6	AJ33		
6	IO_L31P_6	AJ32	NC	
6	IO_L31N_6	AH32	NC	
6	IO_L32P_6	AM39	NC	
6	IO_L32N_6	AL39	NC	
6	IO_L33P_6	AK36	NC	
6	IO_L33N_6/VREF_6	AL36	NC	
6	IO_L34P_6	AF28	NC	
6	IO_L34N_6	AE28	NC	
6	IO_L35P_6	AL38	NC	
6	IO_L35N_6	AK38	NC	
6	IO_L36P_6	AH34	NC	
6	IO_L36N_6	AJ34	NC	
6	IO_L43P_6	AG31		
6	IO_L43N_6	AF31		
6	IO_L44P_6	AK37		
6	IO_L44N_6	AJ37		
6	IO_L45P_6	AH36		
6	IO_L45N_6/VREF_6	AJ36		
6	IO_L46P_6	AF30		
6	IO_L46N_6	AE30		
6	IO_L47P_6	AK39		

Table 13: FF1517 BGA — XC2V4000, XC2V6000, and XC2V8000

Table 13: FF1517 BGA — XC2V4000, XC2V6000, and XC2V8000

Bank	Pin Description	Pin Number	No Connect in the XC2V4000	No Connect in the XC2V6000
NA	GND	AC20		
NA	GND	AC19		
NA	GND	AC18		
NA	GND	AC17		
NA	GND	AC16		
NA	GND	AC8		
NA	GND	AC4		
NA	GND	AB24		
NA	GND	AB23		
NA	GND	AB22		
NA	GND	AB21		
NA	GND	AB20		
NA	GND	AB19		
NA	GND	AB18		
NA	GND	AB17		
NA	GND	AB16		
NA	GND	AA24		
NA	GND	AA23		
NA	GND	AA22		
NA	GND	AA21		
NA	GND	AA20		
NA	GND	AA19		
NA	GND	AA18		
NA	GND	AA17		
NA	GND	AA16		
NA	GND	Y39		
NA	GND	Y36		
NA	GND	Y33		
NA	GND	Y30		
NA	GND	Y24		
NA	GND	Y23		
NA	GND	Y22		
NA	GND	Y21		
NA	GND	Y20		
NA	GND	Y19		
NA	GND	Y18		

Bank	Pin Description	Pin Number	No Connect in the XC2V4000	No Connect in the XC2V6000
NA	GND	U4		
NA	GND	T23		
NA	GND	T22		
NA	GND	T21		
NA	GND	T20		
NA	GND	T19		
NA	GND	T18		
NA	GND	T17		
NA	GND	P35		
NA	GND	P5		
NA	GND	L38		
NA	GND	L29		
NA	GND	L11		
NA	GND	L2		
NA	GND	K30		
NA	GND	K20		
NA	GND	K10		
NA	GND	J31		
NA	GND	J9		
NA	GND	H32		
NA	GND	H23		
NA	GND	H17		
NA	GND	H8		
NA	GND	G33		
NA	GND	G20		
NA	GND	G7		
NA	GND	F34		
NA	GND	F6		
NA	GND	E35		
NA	GND	E26		
NA	GND	E14		
NA	GND	E5		
NA	GND	D36		
NA	GND	D23		
NA	GND	D20		
NA	GND	D17		

Table 13: FF1517 BGA — XC2V4000, XC2V6000, and XC2V8000

FF1517 Flip-Chip Fine-Pitch BGA Package Specifications (1.00mm pitch)

Figure 9: FF1517 Flip-Chip Fine-Pitch BGA Package Specifications

Bank	Pin Description	Pin Number	No Connect in XC2V2000		
3	IO_L50P_3	AB3			
3	IO_L49N_3	AB5			
3	IO_L49P_3	AC5			
3	IO_L48N_3	W9			

Table 14: BF957 - XC2V2000, XC2V3000, XC2V4000, and XC2V6000

3	IO_L50F_5	ADS		
3	IO_L49N_3	AB5		
3	IO_L49P_3	AC5		
3	IO_L48N_3	W9		
3	IO_L48P_3	Y9		
3	IO_L47N_3	AC1		
3	IO_L47P_3	AD1		
3	IO_L46N_3	AC3		
3	IO_L46P_3	AD3		
3	IO_L45N_3/VREF_3	Y8		
3	IO_L45P_3	AA8		
3	IO_L44N_3	AC2		
3	IO_L44P_3	AE2		
3	IO_L43N_3	AB7		
3	IO_L43P_3	AC7		
3	IO_L27N_3/VREF_3	Y10	NC	
3	IO_L27P_3	AA10	NC	
3	IO_L25N_3	AE1	NC	
3	IO_L25P_3	AF1	NC	
3	IO_L24N_3	AF2		
3	IO_L24P_3	AG2		
3	IO_L23N_3	AA9		
3	IO_L23P_3	AB9		
3	IO_L22N_3	AD4		
3	IO_L22P_3	AE4		
3	IO_L21N_3/VREF_3	AD5		
3	IO_L21P_3	AE5		
3	IO_L20N_3	AB8		
3	IO_L20P_3	AC8		
3	IO_L19N_3	AG1		
3	IO_L19P_3	AH1		
3	IO_L06N_3	AF4		
3	IO_L06P_3	AG4		
3	IO_L05N_3	AB10		
3	IO_L05P_3	AB11		
3	IO_L04N_3	AF3		
3	IO_L04P_3	AG3		

Bank	Pin Description	Pin Number	No Connect in XC2V2000
NA	GND	T14	
NA	GND	T15	
NA	GND	T16	
NA	GND	T17	
NA	GND	T18	
NA	GND	T22	
NA	GND	T25	
NA	GND	T28	
NA	GND	T31	
NA	GND	U14	
NA	GND	U15	
NA	GND	U16	
NA	GND	U17	
NA	GND	U18	
NA	GND	V14	
NA	GND	V15	
NA	GND	V16	
NA	GND	V17	
NA	GND	V18	
NA	GND	W7	
NA	GND	W25	
NA	GND	AB4	
NA	GND	AB16	
NA	GND	AB28	
NA	GND	AC9	
NA	GND	AC23	
NA	GND	AD2	
NA	GND	AD8	
NA	GND	AD24	
NA	GND	AD30	
NA	GND	AE7	
NA	GND	AE13	
NA	GND	AE16	
NA	GND	AE19	
NA	GND	AE25	
NA	GND	AF6	
NA	GND	AF26	
NA	GND	AG5	

Table 14: BF957 — XC2V2000, XC2V3000, XC2V4000, and XC2V6000