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DESCRIPTION: 

This register provides a mechanism to specify the priority associated with an interrupt bit. In addition, this 
register controls the enable and software generated interrupt. WARNING: Modifying the priority of an 
enabled interrupt may result in undefined behavior. You should always disable an interrupt prior to 
changing its priority.

EXAMPLE: 
HW_ICOLL_INTERRUPT84_SET(0,0x00000001);

5.4.95 Interrupt Collector Interrupt Register 85 Description
This register provides a mechanism to specify the priority level for an interrupt source. It also provides an 
enable and software interrupt for each one, as well as security designation.

HW_ICOLL_INTERRUPT85 0x670
HW_ICOLL_INTERRUPT85_SET 0x674
HW_ICOLL_INTERRUPT85_CLR 0x678
HW_ICOLL_INTERRUPT85_TOG 0x67C

Table 5-189. HW_ICOLL_INTERRUPT84 Bit Field Descriptions

BITS LABEL RW RESET DEFINITION
31:5 RSRVD1 RO 0x0 Always write zeroes to this bitfield.
4 ENFIQ RW 0x0 Set this to 1 to steer this interrupt to the non-vectored 

FIQ line. When set to 0 the interrupt will pass through 
the main IRQ FSM and priority logic.
DISABLE = 0x0 Disable
ENABLE = 0x1 Enable

3 SOFTIRQ RW 0x0 Set this bit to one to force a software interrupt.
NO_INTERRUPT = 0x0 turn off the software interrupt request.
FORCE_INTERRUPT = 0x1 force a software interrupt

2 ENABLE RW 0x0 Enable the interrupt bit through the collector.
DISABLE = 0x0 Disable
ENABLE = 0x1 Enable

1:0 PRIORITY RW 0x0 Set the priority level for this interrupt, 0x3 is highest, 
0x0 is lowest (weakest).
LEVEL0 = 0x0 level 0, lowest or weakest priority
LEVEL1 = 0x1 level 1
LEVEL2 = 0x2 level 2
LEVEL3 = 0x3 level 3, highest or strongest priority

Table 5-190. HW_ICOLL_INTERRUPT85
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EXAMPLE: 
pCurCmd = (hw_apbh_chn_cmd_t *) HW_APBH_CHn_CURCMDAR_RD(1); // read the whole register, since there
is only one field
pCurCmd = (hw_apbh_chn_cmd_t *) BF_RDn(APBH_CHn_CURCMDAR, 1, CMD_ADDR); // or, use multi-register
bitfield read macro
pCurCmd = (hw_apbh_chn_cmd_t *) HW_APBH_CHn_CURCMDAR(1).CMD_ADDR; // or, assign from bitfield of
indexed register's struct

10.5.13 APBH DMA Channel 1 Next Command Address Register Description
The APBH DMA Channel 1 Next Command Address register contains the address of the next multiword 
command to be executed. Commands are threaded on the command address. Set CHAIN to 1 in the DMA 
command word to process command lists.

HW_APBH_CH1_NXTCMDAR 0x0C0

DESCRIPTION: 

APBH DMA Channel 1 is controlled by a variable sized command structure. Software loads this register 
with the address of the first command structure to process and increments the Channel 1 semaphore to start 
processing. This register points to the next command structure to be executed when the current command 
is completed.

EXAMPLE: 
HW_APBH_CHn_NXTCMDAR_WR(1, (reg32_t) pCommandTwoStructure); // write the entire register, since
there is only one field
BF_WRn(APBH_CHn_NXTCMDAR, 1, (reg32_t) pCommandTwoStructure); // or, use multi-register bitfield
write macro
HW_APBH_CHn_NXTCMDAR(1).CMD_ADDR = (reg32_t) pCommandTwoStructure; // or, assign to bitfield of
indexed register's struct

10.5.14 APBH DMA Channel 1 Command Register Description
The APBH DMA Channel 1 command register specifies the cycle to perform for the current command 
chain item.

HW_APBH_CH1_CMD 0x0D0

Table 10-28. HW_APBH_CH1_NXTCMDAR
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Table 10-29. HW_APBH_CH1_NXTCMDAR Bit Field Descriptions

BITS LABEL RW RESET DEFINITION
31:0 CMD_ADDR RW 0x00000000 Pointer to next command structure for channel 1.
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DESCRIPTION: 

APBX DMA Channel 12 is controlled by a variable sized command structure. This register points to the 
command structure currently being executed.

EXAMPLE: 
Empty example.

11.5.91 APBX DMA Channel 12 Next Command Address Register 
Description

The APBX DMA Channel 12 next command address register points to the next multiword command to be 
executed. Commands are threaded on the command address. Set CHAIN to one to process command lists.

HW_APBX_CH12_NXTCMDAR 0x650

DESCRIPTION: 

APBX DMA Channel 12 is controlled by a variable sized command structure. Software loads this register 
with the address of the first command structure to process and increments the Channel 12 semaphore to 
start processing. This register points to the next command structure to be executed when the current 
command is completed.

EXAMPLE: 
Empty example.

11.5.92 APBX DMA Channel 12 Command Register Description
The APBX DMA Channel 12 command register specifies the cycle to perform for the current command 
chain item.

HW_APBX_CH12_CMD 0x660

Table 11-184. HW_APBX_CH12_NXTCMDAR
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Table 11-185. HW_APBX_CH12_NXTCMDAR Bit Field Descriptions

BITS LABEL RW RESET DEFINITION
31:0 CMD_ADDR RW 0x00000000 Pointer to next command structure for Channel 12.
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If a different LOWPOWER_CONTROL bit is set to 1 while in one of the low-power modes, or on clear-
ing of the original bit to 0, the memory controller exits the current low-power mode. There will be at least 
a 15 cycle delay before the memory controller is fully operational or enters the new low-power mode.

NOTE: There is a deadlock possibility that exists when using the manual low-power mode entry. If a read 
cycle from the ARM core occurs to the DRAM when a manual low-power mode is active, the ARM cycle 
does not complete. There is no other device within the SOC that can deactivate the low-power mode. 
Thus, the system will be deadlocked. The same can occur with multiple write cycles that will fill the 
two-command deep write buffer of the memory controller.

12.2.6.5 Register Programming 

The low-power modes of the memory controller are controlled through the LOWPOWER_CONTROL 
and LOWPOWER_AUTO_ENABLE bit fields in HW_DRAM_CTL16. These five-bit bit fields each 
contain one bit for controlling each low-power mode. The LOWPOWER_CONTROL bit field enables 
the associated low-power mode, and the LOWPOWER_AUTO_ENABLE bit field sets the entry method 
into that mode as manual or automatic. Table 12-1 shows the relationship between the five bits of the 
lowpower_control and lowpower_auto_enable bit fields and the various low-power modes. 

When a LOWPOWER_CONTROL bit field bit is set to 1 by the user, the memory controller checks the 
LOWPOWER_AUTO_ENABLE bit field.

• If the associated bit in the LOWPOWER_AUTO_ENABLE bit field is set to 1, then the memory 
controller watches the associated counter for expiration, and then enters that low-power 
mode.Table 12-2 shows the correlation between the low-power modes and the counters that control 
each mode’s automatic entry.

Table 12-1. Low-Power Mode Bit Fields

Low-Power Mode Enable Entry

Memory Power-Down 
(Mode 1)

LOWPOWER_CONTROL [4] =1 LOWPOWER_AUTO_ENABLE [4] 
• 0 = Manual 
• 1 = Automatic 

Memory Power-Down with Memory Clock Gating 
(Mode 2) 

LOWPOWER_CONTROL [3] =1 LOWPOWER_AUTO_ENABLE [3]
• 0 = Manual
• 1 = Automatic 

Memory Self-Refresh
(Mode 3) 

LOWPOWER_CONTROL [2] =1 LOWPOWER_AUTO_ENABLE [2] 
• 0 = Manual 
• 1 = Automatic 

Memory Self-Refresh with Memory Clock Gating 
(Mode 4) 

LOWPOWER_CONTROL [1] =1 LOWPOWER_AUTO_ENABLE [1] 
• 0 = Manual 
• 1 = Automatic 

Memory Self-Refresh with Memory and Controller 
Clock Gating 
(Mode 5) 

LOWPOWER_CONTROL [0] =1 LOWPOWER_AUTO_ENABLE [0] 
• 0 = Manual
• 1 = Automatic
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Table 14-6. HW_ECC8_STATUS1 Bit Field Descriptions

BITS LABEL RW RESET DEFINITION
31:28 STATUS_PAYLOAD7 RO 0xc Count of symbols in error during processing of payload 

area 7. 0xF indicates uncorrectable.
NO_ERRORS = 0x0 No errors occurred.
ONE_CORRECTABLE = 0x1 One correctable error occurred.
TWO_CORRECTABLE = 0x2 Two correctable errors occurred.
THREE_CORRECTABLE = 0x3 Three correctable errors occurred.
FOUR_CORRECTABLE = 0x4 Four correctable errors occurred.
FIVE_CORRECTABLE = 0x5 Five correctable errors occurred.
SIX_CORRECTABLE = 0x6 Six correctable errors occurred.
SEVEN_CORRECTABLE = 0x7 Seven correctable errors occurred.
EIGHT_CORRECTABLE = 0x8 Eight correctable errors occurred.
NOT_CHECKED = 0xC This block was not examined by the ECC8.
UNCORRECTABLE = 0xE Errors occurred that were uncorrectable.
ALL_ONES = 0xF All bits are 1.

27:24 STATUS_PAYLOAD6 RO 0xc Count of symbols in error during processing of payload 
area 6. 0xF indicates uncorrectable.
NO_ERRORS = 0x0 No errors occurred.
ONE_CORRECTABLE = 0x1 One correctable error occurred.
TWO_CORRECTABLE = 0x2 Two correctable errors occurred.
THREE_CORRECTABLE = 0x3 Three correctable errors occurred.
FOUR_CORRECTABLE = 0x4 Four correctable errors occurred.
FIVE_CORRECTABLE = 0x5 Five correctable errors occurred.
SIX_CORRECTABLE = 0x6 Six correctable errors occurred.
SEVEN_CORRECTABLE = 0x7 Seven correctable errors occurred.
EIGHT_CORRECTABLE = 0x8 Eight correctable errors occurred.
NOT_CHECKED = 0xC This block was not examined by the ECC8.
UNCORRECTABLE = 0xE Errors occurred that were uncorrectable.
ALL_ONES = 0xF All bits are 1.

23:20 STATUS_PAYLOAD5 RO 0xc Count of symbols in error during processing of payload 
area 5. 0xF indicates uncorrectable.
NO_ERRORS = 0x0 No errors occurred.
ONE_CORRECTABLE = 0x1 One correctable error occurred.
TWO_CORRECTABLE = 0x2 Two correctable errors occurred.
THREE_CORRECTABLE = 0x3 Three correctable errors occurred.
FOUR_CORRECTABLE = 0x4 Four correctable errors occurred.
FIVE_CORRECTABLE = 0x5 Five correctable errors occurred.
SIX_CORRECTABLE = 0x6 Six correctable errors occurred.
SEVEN_CORRECTABLE = 0x7 Seven correctable errors occurred.
EIGHT_CORRECTABLE = 0x8 Eight correctable errors occurred.
NOT_CHECKED = 0xC This block was not examined by the ECC8.
UNCORRECTABLE = 0xE Errors occurred that were uncorrectable.
ALL_ONES = 0xF All bits are 1.

19:16 STATUS_PAYLOAD4 RO 0xc Count of symbols in error during processing of payload 
area 4. 0xF indicates uncorrectable.
NO_ERRORS = 0x0 No errors occurred.
ONE_CORRECTABLE = 0x1 One correctable error occurred.
TWO_CORRECTABLE = 0x2 Two correctable errors occurred.
THREE_CORRECTABLE = 0x3 Three correctable errors occurred.
FOUR_CORRECTABLE = 0x4 Four correctable errors occurred.
FIVE_CORRECTABLE = 0x5 Five correctable errors occurred.
SIX_CORRECTABLE = 0x6 Six correctable errors occurred.
SEVEN_CORRECTABLE = 0x7 Seven correctable errors occurred.
EIGHT_CORRECTABLE = 0x8 Eight correctable errors occurred.
NOT_CHECKED = 0xC This block was not examined by the ECC8.
UNCORRECTABLE = 0xE Errors occurred that were uncorrectable.
ALL_ONES = 0xF All bits are 1.

15:12 STATUS_PAYLOAD3 RO 0xc Count of symbols in error during processing of payload 
area 3. 0xF indicates uncorrectable.
NO_ERRORS = 0x0 No errors occurred.
ONE_CORRECTABLE = 0x1 One correctable error occurred.
TWO_CORRECTABLE = 0x2 Two correctable errors occurred.
THREE_CORRECTABLE = 0x3 Three correctable errors occurred.
FOUR_CORRECTABLE = 0x4 Four correctable errors occurred.
FIVE_CORRECTABLE = 0x5 Five correctable errors occurred.
SIX_CORRECTABLE = 0x6 Six correctable errors occurred.
SEVEN_CORRECTABLE = 0x7 Seven correctable errors occurred.
EIGHT_CORRECTABLE = 0x8 Eight correctable errors occurred.
NOT_CHECKED = 0xC This block was not examined by the ECC8.
UNCORRECTABLE = 0xE Errors occurred that were uncorrectable.
ALL_ONES = 0xF All bits are 1.
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detected within a block, the BCH hardware activates the error correction logic to determine where bit 
errors have occurred and ultimately correct them in the data buffer in system memory. After an entire 
flash page has been read and corrected, the BCH will signal an interrupt to the CPU.

Figure 15-2 indicates how data read from the GPMI is operated on within the BCH hardware. As the 
BCH receives data from the GPMI (top row) it is written to memory by the BCH’s Bus Interface Unit 
(BIU) (second row). For blocks requiring correction, the KES logic will be activated after the entire block 
has been received. Once the error locator polynomial has been computed, the corrections are determined 
by the Chien Search and fed back to the BIU, which performs a read/modify/write operation on the buffer 
in memory to correct the data.

15.2.1 BCH Limitations and Assumptions
• The BCH is programmable to support 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20 bit error correction. 

ECC0 is supported as a passthrough, non-correcting mode.

• Data block sizes must be a multiple of 4 bytes and must be 4-byte aligned in system memory.

• The BCH supports a programmable number of metadata/auxiliary data bytes, from 0 to 255. 

• Metadata will be written at the beginning of the flash page to facilitate fast access for filesystem 
operations.

• Metadata may be treated as an independent block for ECC purposes or combined with the first data 
block to conserve bits in the flash.

• The BCH does not support a partial page write.

• Flash read operations can read the entire page or the first block on the page.

• The BCH also supports a memory-to-memory mode of operation that does not require the use of 
DMA or the GPMI.

15.2.2 Flash Page Layout

The BCH supports a fully programmable flash page layout, versus the hardwired modes supported in the 
former ECC8 engine. The BCH maintains 4 independent layout registers that can describe four com-
pletely different NAND devices or layouts. When the BCH initiates an operation, it selects one of the lay-
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<code>

typedef struct _dcp_descriptor
{
    u32              *next;
    hw_dcp_packet1_t  ctrl0;
    hw_dcp_packet2_t  ctrl1;
    u32              *src,
                     *dst,
                      buf_size,
                     *payload,
                      stat;
}  DCP_DESCRIPTOR;

  DCP_DESCRIPTOR dcp1;
  u32 *srcbuffer, *dstbuffer;

  // set up control packet
  dcp1.next = 0;                   // single packet in chain
  dcp1.ctrl0.U = 0;                // clear ctrl0 field
  dcp1.ctrl0.B.ENABLE_MEMCOPY = 1; // enable memcopy
  dcp1.ctrl0.B.DECR_SEMAPHORE = 1; // decrement semaphore
  dcp1.ctrl0.B.INTERRUPT = 1;      // interrupt
  dcp1.ctrl1.U = 0;                // clear ctrl1
  dcp1.src = srcbuffer;            // source buffer
  dcp1.dst = dstbuffer;            // destination buffer
  dcp1.buf_size = 512;             // 512 bytes
  dcp1.payload = NULL;             // not required
  dcp1.status = 0;                 // clear status

  // Enable channel 0
  HW_DCP_CHnCMDPTR_WR(0, dcp1);    // write packet address to pointer register
  HW_DCP_CHnSEMA_WR(0, 1);         // increment semaphore by 1

  // now wait for interrupt or poll
  // polling code
  while ( (HW_DCP_STAT_RD() & 0x01) == 0x00 );

  // now check/clear channel status
  if ( (HW_DCP_CHnSTAT_RD(0) & 0xFF) != 0 ) {
    // an error occurred
    HW_DCP_CHnSTAT_CLR(0, 0xff);
  }
  // clear interrupt register
  HW_DCP_STAT_CLR(1);

</code>

16.2.6.2 Basic Hash Operation Programming Example

To perform a basic hash operation, only a single descriptor is required. The DCP simply reads data from 
the source buffer and computes the hash value on the contents. This process is illustrated in Figure 16-7.
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Figure 16-6. Basic Memory Copy Operation
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DESCRIPTION: 

This register shows the contents of the Source Address register from the packet being processed. When the 
CONSTANT_FILL bit in the Control 0 field is set, this field contains the data written to the destination 
buffer.

EXAMPLE: 
Empty Example.

16.3.13 DCP Work Packet 4 Status Register Description
This register displays the values for the current work packet offset 0x10 (Destination Address) field.

HW_DCP_PACKET4 0x0C0

DESCRIPTION: 

This register shows the contents of the Destination Address register from the packet being processed.

EXAMPLE: 
Empty Example.

16.3.14 DCP Work Packet 5 Status Register Description
This register displays the values for the current work packet offset 0x14 (Buffer Size) field.

HW_DCP_PACKET5 0x0D0

Table 16-36. HW_DCP_PACKET3 Bit Field Descriptions

BITS LABEL RW RESET DEFINITION
31:0 ADDR RO 0x0 Source Buffer Address Pointer. This value is the 

working value and will update as the operation 
proceeds.

Table 16-37. HW_DCP_PACKET4
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Table 16-38. HW_DCP_PACKET4 Bit Field Descriptions

BITS LABEL RW RESET DEFINITION
31:0 ADDR RO 0x0 Destination Buffer Address Pointer. This value is the 

working value and will update as the operation 
proceeds.

Table 16-39. HW_DCP_PACKET5
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18.2.3 LCDIF Interrupts

The LCDIF supports a number of interrupts to aid controlling and status reporting of the block. All the 
interrupts have individual mask bits for enabling or disabling each of them. They all get funneled through 
a single interrupt line connected to the interrupt collector (ICOLL). The following list describes the dif-
ferent interrupts supported by the LCDIF:

• Underflow interrupt is asserted when the clock domain crossing FIFO (TXFIFO) becomes empty 
but the block is in active display portion at that time. Software should take corrective action to 
make sure that this does not happen. This interrupt is of value only in DOTCLK and DVI modes.

• Overflow interrupt will be asserted in PIO mode if software writes to LFIFO while it is full.

A15–A0

WORD_LENGTH = 0

HW_LCDIF_DATA B15–B0

A15–A0

BYTE_PACKING_FORMAT[3:0] = 1100

X

X

DATA_SWIZZLE[1:0] = 01

A15–A0

X

SHIFT_DIR = 1, SHIFT_NUM_BITS[1:0] = 00

NEW_A23 – NEW_A0

LCD_D[23:0] Pins NEW_A23 - NEW_A0

LCD_DATABUS_WIDTH = 3

{A15 - A11, 
A15 - A13}

RGB-TO-RGB CSC

X
{A10 - A5, 
A10 - A9}

{A4 – A0, 
A4 – A2}

NEW_A

Figure 18-6. 16-Bit LCDIF Register Programming—Example B
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Figure 22-7 shows that each detected edge causes a transition in the decoder state machine. Not all transi-
tions are legal (see Table 22-2). For example, there is no legal way to transition directly from state 11 to 
00 using normal inputs. In the cases where this occurs, the state machine goes to an alternate set of states 
and follows the input sequence until a valid sequence leading to state 00 is detected. No increment or dec-
rement action is taken from the alternate state sequence.

22.3.1 Testing the Rotary Decoder

To test the rotary decoder, select PWM1 and PWM2 as inputs to ROTARYA and ROTARYB. Since 
PWM1 and PWM2 can be started with known phase offsets and duty cycles, a continuous increment or 
decrement stream can be generated. Since PWM1 and PWM2 can be used as GPIO devices, the final part 
of the test is to generate and test a sequence of clockwise and counter-clockwise rotations to cover the 
entire state machine transitions, including the error conditions.

22.3.2 Behavior During Reset

A soft reset (SFTRST) can take multiple clock periods to complete, so do NOT set CLKGATE when set-
ting SFTRST. The reset process gates the clocks automatically. See Section 39.3.10, “Correct Way to Soft 
Reset a Block,” for additional information on using the SFTRST and CLKGATE bit fields.

22.4 Programmable Registers
The following registers describe the programming interface for the timers and the rotary decoder.

Table 22-2. Rotary Decoder State Machine Transitions

CURRENT STATE “INPUT” BA=00 “INPUT” BA=01 “INPUT” BA=10 “INPUT” BA=11

00 00 01 10 error

01 00, dec 01 error 11

10 00, inc error 10 11

11 error 01 10 11

Input A

Input B

11

10

00
inc 10

11

01

00
dec

01

Figure 22-7. Rotary Decoding Mode—Input Transitions
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Table 22-20. HW_TIMROT_TIMCTRL3 Bit Field Descriptions

BITS LABEL RW RESET DEFINITION
31:20 RSRVD2 RO 0x0 Always write zeroes to this bit field.
19:16 TEST_SIGNAL RW 0x0 Selects the source of the signal to be measured in duty 

cycle mode.
NEVER_TICK = 0x0 Never tick. Freeze the count.
PWM0 = 0x1 Input from PWM0.
PWM1 = 0x2 Input from PWM1.
PWM2 = 0x3 Input from PWM2.
PWM3 = 0x4 Input from PWM3.
PWM4 = 0x5 Input from PWM4.
ROTARYA = 0x6 Input from Rotary A.
ROTARYB = 0x7 Input from Rotary B.
32KHZ_XTAL = 0x8 Input from 32-kHz crystal.
8KHZ_XTAL = 0x9 Input from 8 kHz (divided from 32-kHz crystal).
4KHZ_XTAL = 0xA Input from 4 kHz (divided from 32-kHz crystal).
1KHZ_XTAL = 0xB Input from 1 kHz (divided from 32-kHz crystal).
TICK_ALWAYS = 0xC Always tick.

15 IRQ RW 0x0 This bit is set to one when Timer 3 decrements to zero. 
Write a zero to clear it or use Clear SCT mode.

14 IRQ_EN RW 0x0 Set this bit to one to enable the generation of a CPU 
interrupt when the count reaches zero in normal 
counter mode.

13:11 RSRVD1 RO 0x0 Always write zeroes to this bit field.
10 DUTY_VALID RO 0x0 This bit is set and cleared by the hardware. It is set 

only when in duty cycle measuring mode and the 
HW_TIMROT_TIMCOUNT3 has valid duty cycle data 
to be read. This register will be cleared if not in duty 
cycle mode or on writes to this register. In the case that 
it is written while in duty cycle mode, this bit will clear 
but will again be set at the appropriate time for reading 
the count register.

9 DUTY_CYCLE RW 0x0 Set this bit to one to cause the timer to operate in duty 
cycle measuring mode.

8 POLARITY RW 0x0 Set this bit to one to invert the input to the edge 
detector.
0: Positive edge detection.
1: Invert to negative edge detection.

7 UPDATE RW 0x0 Set this bit to one to cause the running count to be 
written from the CPU at the same time a new fixed 
count register value is written.

6 RELOAD RW 0x0 Set this bit to one to cause the timer to reload its 
current count from its fixed count value whenever the 
current count decrements to zero. When set to zero, 
the timer enters a mode that freezes at a count of zero. 
When the fixed count is zero, setting this bit to one 
causes a continuous reload of the fixed count register 
so that writting a non-zero value will start the timer.
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DESCRIPTION: 

This register contains the programming paramters for multi-chip attachment mode, clock divider value, 
active high, low values and period for channel 4.

EXAMPLE: 
HW_PWM_PERIODn_WR(4, 0x00000b1f); // Set up period and active/inactive output states

24.4.12 PWM Version Register Description
This register indicates the version of the block for debug purposes.

HW_PWM_VERSION 0x0b0

22:20 CDIV RW 0x0 Clock divider ratio to apply to the crystal clock 
frequency (24.0 MHz) that times the PWM output 
signal.
DIV_1 = 0x0 Divide by 1.
DIV_2 = 0x1 Divide by 2.
DIV_4 = 0x2 Divide by 4.
DIV_8 = 0x3 Divide by 8.
DIV_16 = 0x4 Divide by 16.
DIV_64 = 0x5 Divide by 64.
DIV_256 = 0x6 Divide by 256.
DIV_1024 = 0x7 Divide by 1024.

19:18 INACTIVE_STATE RW 0x0 The logical inactive state that is mapped to the PWM 
output signal. Note that the undefined state of 0x1 is 
mapped to high-impedance.
HI_Z = 0x0 Inactive state sets PWM output to high-impedance.
0 = 0x2 Inactive state sets PWM output to 0 (low).
1 = 0x3 Inactive state sets PWM output to 1 (high).

17:16 ACTIVE_STATE RW 0x0 The logical active state is mapped to the PWM output 
signal. Note that the undefined state of 0x1 is mapped 
to high-impedance.
HI_Z = 0x0 Active state sets PWM output to high-impedance.
0 = 0x2 Active state sets PWM output to 0 (low).
1 = 0x3 Active state sets PWM output to 1 (high).

15:0 PERIOD RW 0x0 Number of divided XTAL clock cycles in the entire 
period of the PWM waveform, minus 1. For example, 
to obtain 6 clock cycles in the actual period, set this 
field to 5.

Table 24-23. HW_PWM_VERSION
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Table 24-22. HW_PWM_PERIOD4 Bit Field Descriptions

BITS LABEL RW RESET DEFINITION
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dropped (decimated) to find the next sample at which to produce a filtered multibit sigma delta A/D value 
to send to the DMA. Whenever the whole number part (bits 23:16) is zero, then a sample is produced. 

The range of values of the samples stored into the on-chip RAM is proportional to the square of the 
over-sample rate (OSR) used in the capture process. The larger the OSR, the longer period the integrators 
run in the ADC. As a result, the range of values seen for the same signal wave form captured at the same 
sample rate but with two different OSR will be different. 

For example: 

• An 8-kHz microphone captured at FADC = 6.0 MHz will be 36 times smaller than the values 
resulting from capturing the same source signal at FADC = 1.0 MHz. 

• The peak range of values seen in a capture of a signal at 44.1 kHz with FanalogADC = 6.0 MHz is 
±3200. 

• The oversample ratio in this case is OSR= 136.054. 

• Calculate a magnitude constant, Kfilter for ADC’s filter from this as 
Kfilter = OSR2/Peak Value = (136.054)2/3200 = 5.7846. 

• For any OSR in any sample rate, the peak value can be approximated by Valuepeak = OSR2 /Kfilter.

1-Bit
A/D

XTAL 
OSC

analog_L lsamp_in

÷AD_DIV

24.0 MHz

HW_AUDIOIN_ANACLKCTRL_ADCDIV

XTAL_CLK

CIC Filter and
Interpolators

AD_DIV
table

CIC
State 

Matchine

6.0-MHz
sample strobe

+/- 1
Integrator

Variable Rate 
Decimator

31
Position Reg

16 15
1

1

samp_strobe

pos_zero=
(position_reg[31:16] == 16'h0000)

position_reg[31:0]

+
HW_AUDIOIN_ADCSRR

24'hFF0000 whole 
#

fraction

Variable Rate Decimator

pos_zero

frac[15:0]

lsamp_out[23:0]

DMA_request

1-Bit
A/D

analog_R rsamp_in
CIC Filter and
Interpolators

+/- 1
Integrator

rsamp_out[23:0]High-Pass 
Filter

High-Pass 
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Figure 28-3. Variable-Rate A/D Converter
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shots them and starts a new conversion operation for all scheduled channels. Thus, one can set the sched-
ule bits for four channels on the same clock edge. The channel with the largest channel number is 
converted last and has its interrupt status bit set last. If that channel is the only one of the four with an 
interrupt enable bit set, then it interrupts the ARM after all four channels have been converted, effectively 
ganging four channels together.

33.2.4 Delay Channels

To minimize the interrupt load on the ARM processor, four delay channels are provided. Each has an 
11-bit counter that increments at 2 kHz. A delay channel can be kicked off either by an ARM store 
instruction or at the completion of a delay channel time-out. At time-out, each channel has the option of 
kicking off any combination of LRADC conversions, as well as any combination of delay channels.

NOTE: The DELAY fields in HW_LRADC_DELAY0, HW_LRADC_DELAY1, 
HW_LRADC_DELAY2, and HW_LRADC_DELAY3 must be non-zero; otherwise, the LRADC will not 
trigger the delay group. The ACCUMULATE bit in the appropriate channel register HW_LRADC_CHn 
must be set to 1 if NUM_SAMPLES is greater then 0; otherwise, the IRQs will not fire. 

Consider the case of a touch-screen that requires 4x oversampling of its coordinate values. Further, sup-
pose you wish to receive an oversampled X or Y coordinate approximately every 5 ms and that the over-
sampling should be spaced at 1-ms intervals. 

• In the touch-screen, first select either X or Y drive, then set up the appropriate LRADC. 

• In setting up the LRADC, clear the accumulator associated with it by setting the ACCUMULATE 
bit and set the NUM_SAMPLES field to 3 (4 samples before interrupt request). 

• Next, set up two delay channels. 

— Delay Channel 1 is set to delay 1 ms (DELAY = 1, two ticks) and then kick the schedule bit for 
LRADC 4. Its LOOP_COUNT bit field is also set to 3, so that four kicks of LRADC 4 occur, 
each spaced by 1 ms.

— Delay Channel 0 is set to delay 1 ms with LOOP_COUNT = 0, i.e., one time. Its 
TRIGER_DELAYS field is set to trigger Delay Channel 1 when it times out. The ISR routine 
kicks off Delay Channel 0 immediately before it does its return from interrupt. Another 
interrupt (LRADC4_IRQ) is asserted once the entire 4x oversample data capture is complete. 
A sample timeline for such a sequence is shown in Figure 33-3.

NOTE: If a delay group schedules channels to be sampled and a manual write to the schedule field in 
CTRL0 occurs while the block is discarding samples, the LRADC will switch to the new schedule and 
will not sample the channels that were previously scheduled. The time window for this to happen is very 
small and lasts only while the LRADC is discarding samples.

WARNING: The pad ESD protection limits the voltage on the LRADC0-LRADC6 inputs to VDDIO. 
The BATT and 5V inputs to the LRADC have built-in dividers to handle the higher voltages.



Low-Resolution ADC and Touch-Screen Interface

i.MX23 Applications Processor Reference Manual, Rev. 1

33-30 Freescale Semiconductor
 Preliminary—Subject to Change Without Notice

DESCRIPTION: 

The LRADC Delay Channel provides control by which LRADC channels and delay channels (including 
itself) may be triggered. The triggering of the selected delay and LRADC channel(s) is delayed by the 
DELAY field value which counts down on a 2 kHz clock. It is possible to use delay channels chained 
together to configure dependent timing of channel conversions as in the example provided in introduction 
to this block. A delay channel may also be configured to trigger itself. In this case, it could be used to 
simultaneously trigger an LRADC channel, providing continuous acquisitions of the conversions 
executed, delayed by the value specified in the DELAY field. The delay channel is started by setting the 
KICK bit to one.

EXAMPLE: 
HW_LRADC_DELAYn_WR(0, (BF_LRADC_DELAYn_TRIGGER_LRADCS(0x05) | // LRADC channel 0 and 2
BF_LRADC_DELAYn_KICK(1) | // Start the Delay channel
BF_LRADC_DELAYn_TRIGGER_DELAYS(0x1) | // restart delay channel 0 each time
BF_LRADC_DELAYn_DELAY(0x0E45) ) ); // delay 3653 periods of 2 kHz clock
// ... do other things until the triggered LRADC channels report an interrupt.

33.4.15 LRADC Scheduling Delay 1 Description
The LRADC scheduling delay 1 register controls one delay operation. At the end of this delay, this channel 
can trigger one or more LRADC channels or one or more Scheduling delay channels .

HW_LRADC_DELAY1 0x0E0
HW_LRADC_DELAY1_SET 0x0E4
HW_LRADC_DELAY1_CLR 0x0E8
HW_LRADC_DELAY1_TOG 0x0EC

19:16 TRIGGER_DELAYS RW 0x0 Setting a bit in this bit field to one causes the delay 
controller to trigger the corresponding delay channel. 
This trigger occurs when the delay count of this delay 
channel reaches zero. Note that all four delay channels 
can be triggered at the same time, including the one 
that issues the trigger. This can have the effect of 
automatically retriggering a delay channel.

15:11 LOOP_COUNT RW 0x00 This bit field specifies the number of times this delay 
counter will count down and then trigger its designated 
targets. This is particularly useful for scheduling 
multiple samples of an LRADC channel set. If this field 
is set to 0x0, then exactly one delay loop will be 
generated with exactly one event triggering the target 
LRADC and/or delay channels. Note setting the loop 
count to 0x01 will yield two conversions.

10:0 DELAY RW 0x000 This 11-bit field counts down to zero. At zero it triggers 
either a set of LRADC channel conversions or another 
delay channel, or both. It can trigger up to all eight 
LRADCs and all four delay channels in a single even. 
This counter operates on a 2KHz clock derived from 
crystal clock.

Table 33-28. HW_LRADC_DELAY0 Bit Field Descriptions

BITS LABEL RW RESET DEFINITION
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• When the synchronized edge is recognized by the on-chip SJTAG controller, it pulls the DEBUG 
line back down clock to Q to pad after the rising edge of its 24-MHz clock. This is the critical 
timing mark that is detected in the FPGA/CPLD and used to time data in next phase. 

• The timing mark phase ends when the on-chip SJTAG stops driving the serial JTAG wire low for 
one cycle.

34.2.3 Debugger Send TDI, Mode Phase
• During the first 24-MHz clock period of this phase, the FPGA/CPLD sends a one clock-wide signal 

that either tells the on-chip SJTAG that it is present and a JTAG clock begins, or it tells the on-chip 
SJTAG to do a JTAG reset operation to the ARM JTAG TAP controller. 

• If a noise glitch falsely triggered the ASYNC Start Phase, then the on-chip SJTAG will treat it as 
a TAP controller reset in most cases. 

• If the debugger is performing a JTAG clock cycle operation then, it next sends the state of the 
debugger TDI and MODE pins sequentially on the wire, i.e., one in each of the following two 
24-MHz clocks. Notice that for this phase, the FPGA/CPLD knows the correct timing to change 
these three data elements on the wire because of the timing information it learned from the Timing 
Mark Phase. 

• This phase ends after the FPGA/CPLD drives the serial wire low on the fourth 24-MHz clock of 
this phase. 

To review, the first data element sent is the signal that distinguishes clock cycles from TAP reset cycles. 
The next two bits sent are the JTAG MODE and TDI bits from the debugger. Finally, the line is driven 
low and pulled down for half a 24-MHz clock and the driver is turned off and the pulldown left on. This 
phase ends when the half-clock pulldown is complete. The rising edge of the JTAG clock is sent to the 
ARM TAP controller during this phase.

34.2.4 i.MX23 Wait For Return Clock Phase

During this phase:

• The on-chip SJTAG controller waits for the ARM TAP controller to send back the return clock. 
This is an asynchronous event for both the on-chip TAP controller and the FPGA/CPLD controller.

• The on-chip controller drives the serial wire high for one 24-MHz clock period to tell the 
FPGA/CPLD that the variable length wait for return clock period is complete. 

• This phase ends when the on-chip SJTAG detects the return clock going high and drives the serial 
high for one 24-MHz clock. 

34.2.5 i.MX23 Sends TDO and Return Clock Timing Phase

During this phase:

• The on-chip SJTAG controller sends the value of the ARM TAP controller’s TDO signal on the 
wire for one full 24-MHz period that begins on the rising edge of the on-chip 24-MHz clock. 

• This phase ends when the TDO value has been sent.
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35.8.3.1 NAND Config Block

The primary NAND Config Block (NCB) resides on the NAND attached to GPMI_CE0.   The NCB is 
the first sector in the first good block.   In the single NAND configuration, a copy of the NCB also resides 
on the NAND—its location is immediately after NCB1 - 2nd search area. In the case of multiple NAND 
devices, copies of the NCB, LDLB, and DBBT are located on the first two NANDs. This case is shown in 
more detail in Section 35.8.3.4, “Firmware Layout on the NAND.”

The layout of first good page containing NCB is described in Figure 35-6.

The NCB is located on the first good page of the NAND; minimum size of a page is 2112 bytes. The first 
12 bytes of NCB page are reserved and left blank (all 0s), next 512 bytes are reserved for NCB data. The 
remaining 512 bytes are available for software ECC and the rest are all 0s. NCB is protected using 
SEC-DED Hamming codes.

35.8.3.2 Single Error Correct and Double Error Detect (SEC-DED) Hamming

For each 8 bits of data in 512 byte NCB, 5-bit parity is used. Each byte of parity area contains 5 parity 
bits (LSB) and 3 unused bits (MSB). 

For each 8 bits of NCB data, parity is calculated and compared with corresponding parity bits read from 
the parity area of NCB page to detect errors and correct single error. 

If errors are more than one then flag shall be raised against the block.

To determine a good NCB, all three fingerprints must match and the ECC must not fail.

2111

1036

Spare

Parity Bits for NCB Data 

NCB Data

Bytes Left

524

12

0
Figure 35-6. Layout of Boot Page Containing NCB
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A11 BATT DCDC A Battery Input

B11 DCDC_BATTERY DCDC A DCDC Battery

A13 DCDC_GND DCDC A DCDC Ground

B13 DCDC_LN1 DCDC A DCDC Inductor N 1

A12 DCDC_LP DCDC A DCDC Inductor P

B12 DCDC_VDDA DCDC A DCDC Analog Power

D13 DCDC_VDDD DCDC A DCDC Digital Core Power

C13 DCDC_VDDIO DCDC A DCDC I/O Power

E12 DEBUG SYSTEM DIO 1-Wire Debug Port

K13 EMI_A00 EMI DIO EMI Address 0

K12 EMI_A01 EMI DIO EMI Address 1

J13 EMI_A02 EMI DIO EMI Address 2

K11 EMI_A03 EMI DIO EMI Address 3

G10 EMI_A04 EMI DIO EMI Address 4

G12 EMI_A05 EMI DIO EMI Address 5

F12 EMI_A06 EMI DIO EMI Address 6

G11 EMI_A07 EMI DIO EMI Address 7

G13 EMI_A08 EMI DIO EMI Address 8

F13 EMI_A09 EMI DIO EMI Address 9

J12 EMI_A10 EMI DIO EMI Address 10

H10 EMI_A11 EMI DIO EMI Address 11

H13 EMI_A12 EMI DIO EMI Address 12

L13 EMI_BA0 EMI DIO DRAM Bank Address 0

L12 EMI_BA1 EMI DIO DRAM Bank Address 1

M13 EMI_CASN EMI DIO EMI Column Address Strobe#

J10 EMI_CE0N EMI DIO EMI Chip Enable 0#

H12 EMI_CE1N EMI DIO EMI Chip Enable 1#

F11 EMI_CKE EMI DIO EMI Clock Enable

M6 EMI_CLK EMI DIO EMI Clock

N6 EMI_CLKN EMI DIO EMI Clock#

K10 EMI_D00 EMI DIO EMI Data 0

M10 EMI_D01 EMI DIO EMI Data 1

N11 EMI_D02 EMI DIO EMI Data 2

N10 EMI_D03 EMI DIO EMI Data 3

M11 EMI_D04 EMI DIO EMI Data 4

K9 EMI_D05 EMI DIO EMI Data 5

L11 EMI_D06 EMI DIO EMI Data 6

L9 EMI_D07 EMI DIO EMI Data 7

N9 EMI_D08 EMI DIO EMI Data 8

N8 EMI_D09 EMI DIO EMI Data 9

M8 EMI_D10 EMI DIO EMI Data 10

K7 EMI_D11 EMI DIO EMI Data 11

L7 EMI_D12 EMI DIO EMI Data 12

K6 EMI_D13 EMI DIO EMI Data 13

N7 EMI_D14 EMI DIO EMI Data 14

M7 EMI_D15 EMI DIO EMI Data 15

Table 36-5. 169-Pin BGA Pin Definitions by Pin Name (continued)

Number Pin Name Group Type Description 1 Description 2 Description 3



Pin Descriptions

i.MX23 Applications Processor Reference Manual, Rev. 1

36-18 Freescale Semiconductor
 Preliminary—Subject to Change Without Notice

Table 36-7. 169-Pin BGA Ball Map

1 2 3 4 5 6 7 8 9 10 11 12 13

A USB_DP VSSA2 VAG XTALI XTALO LINE1_INR HP_VGND LRADC0 VDD4P2 LRADC4 BATT DCDC_LP DCDC_GND A

B VDDS USB_DM PSWITCH RTC_XTALI LINE1_INL MIC HPL HPR LRADC1 LRADC5 DCDC_BATTERY DCDC_VDDA DCDC_LN1 B

C SPEAKERP VDDXTAL PWM0 RTC_XTALO I2C_SCL I2C_SDA VDDA1 VSSA1 LRADC2 VDDM VDAC1 PWM4 DCDC_VDDIO C

D SPEAKERN PWM1 LCD_D00 VSSA5 VDDD1/3 VSSD1/5 ROTARYA VDDD1/3 LRADC3 SSP1_DETECT PWM3 SSP1_SCK DCDC_VDDD D

E LCD_D17 LCD_D01 LCD_D16 LCD_D02 LCD_D15 GPMI_RDY3 GPMI_WRN ROTARYB VSSD1/5 SSP1_DATA3 VDDIO33_1/2/3 DEBUG VDD5V E

F LCD_D03 LCD_D14 LCD_D04 LCD_D13 LCD_D05 GPMI_RDY2 GPMI_WPN GPMI_CE1N SSP1_DATA1 SSP1_DATA2 EMI_CKE EMI_A06 EMI_A09 F

G LCD_D12 LCD_D06 VDDIO33_1/2/3 LCD_D11 LCD_D07 GPMI_RDY0 AUART1_CTS GPMI_CE0N SSP1_DATA0 EMI_A04 EMI_A07 EMI_A05 EMI_A08 G

H LCD_D10 LCD_D08 LCD_D09 LCD_CS LCD_ENABLE GPMI_RDN AUART1_RTS AUART1_RX SSP1_CMD EMI_A11 PWM2 EMI_CE1N EMI_A12 H

J LCD_VSYNC LCD_HSYNC LCD_RS LCD_WR LCD_RESET GPMI_RDY1 VSSIO_EMI1/2 AUART1_TX VSSIO_EMI1/2 EMI_CE0N EMI_WEN EMI_A10 EMI_A02 J

K LCD_DOTCK GPMI_D00 GPMI_CLE GPMI_ALE GPMI_CE2N EMI_D13 EMI_D11 EMI_DQS1 EMI_D05 EMI_D00 EMI_A03 EMI_A01 EMI_A00 K

L GPMI_D01 GPMI_D02 GPMI_D03 GPMI_D05 GPMI_D04 VDDIO_EMIQ EMI_D12 VDDIO_EMI1/2 EMI_D07 VDDIO_EMI1/2 EMI_D06 EMI_BA1 EMI_BA0 L

M GPMI_D07 GPMI_D06 GPMI_D08 GPMI_D09 GPMI_D10 EMI_CLK EMI_D15 EMI_D10 EMI_DQM1 EMI_D01 EMI_D04 EMI_DQM0 EMI_CASN M

N GPMI_D11 GPMI_D12 GPMI_D13 GPMI_D14 GPMI_D15 EMI_CLKN EMI_D14 EMI_D09 EMI_D08 EMI_D03 EMI_D02 EMI_DQS0 EMI_RASN N

1 2 3 4 5 6 7 8 9 10 11 12 13
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27:26 BANK0_PIN29 RW 0x3 Pin 69, AUART1_TX pin function selection:
00= auart1_tx;
01= reserved;
10= ssp1_d7;
11= GPIO.

25:24 BANK0_PIN28 RW 0x3 Pin 68, AUART1_RX pin function selection:
00= auart1_rx;
01= reserved;
10= ssp1_d6;
11= GPIO.

23:22 BANK0_PIN27 RW 0x3 Pin 67, AUART1_RTS pin function selection:
00= auart1_rts;
01= reserved;
10= ssp1_d5;
11= GPIO.

21:20 BANK0_PIN26 RW 0x3 Pin 66, AUART1_CTS pin function selection:
00= auart1_cts;
01= reserved;
10= ssp1_d4;
11= GPIO.

19:18 BANK0_PIN25 RW 0x3 Pin 60, GPMI_RDN pin function selection:
00= gpmi_rdn;
01= reserved;
10= reserved;
11= GPIO.

17:16 BANK0_PIN24 RW 0x3 Pin 65, GPMI_WRN pin function selection:
00= gpmi_wrn;
01= reserved;
10= ssp2_sck;
11= GPIO.

15:14 BANK0_PIN23 RW 0x3 Pin 64, GPMI_WPN pin function selection:
00= gpmi_wpn;
01= reserved;
10= reserved;
11= GPIO.

13:12 BANK0_PIN22 RW 0x3 Pin 63, GPMI_RDY3 pin function selection:
00= gpmi_ready3;
01= reserved;
10= reserved;
11= GPIO.

11:10 BANK0_PIN21 RW 0x3 Pin 62, GPMI_RDY2 pin function selection:
00= gpmi_ready2;
01= reserved;
10= reserved;
11= GPIO.

9:8 BANK0_PIN20 RW 0x3 Pin 43, GPMI_RDY1 pin function selection:
00= gpmi_ready1;
01= reserved;
10= ssp2_cmd;
11= GPIO.

Table 37-10. HW_PINCTRL_MUXSEL1 Bit Field Descriptions

BITS LABEL RW RESET DEFINITION


