
NXP USA Inc. - MCIMX233DAG4C Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing
chips designed to perform specific tasks within an
embedded system. Unlike general-purpose
microprocessors found in personal computers, embedded
microprocessors are tailored for dedicated functions within
larger systems, offering optimized performance, efficiency,
and reliability. These microprocessors are integral to the
operation of countless electronic devices, providing the
computational power necessary for controlling processes,
handling data, and managing communications.

Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad
spectrum of applications, making them indispensable in
modern technology. In consumer electronics, they power
devices such as smartphones, tablets, and smart home
appliances, enabling advanced features and connectivity.
In the automotive industry, embedded microprocessors are
critical for engine control units (ECUs), infotainment
systems, and advanced driver-assistance systems (ADAS).
Industrial automation relies on these microprocessors for
controlling machinery, managing production lines, and
ensuring safety protocols. Medical devices, including
diagnostic equipment and patient monitoring systems,
depend on embedded microprocessors for accurate data
processing and reliable performance. Additionally,
embedded microprocessors are used in
telecommunications, aerospace, and defense applications,
where precision and dependability are paramount.

Common Subcategories of Embedded -
Microprocessors

Embedded microprocessors can be categorized into
several common subcategories based on their
architecture, performance, and intended application.
These include:

General-Purpose Microprocessors: Designed for
a wide range of applications, offering a balance of
performance and flexibility.

Application-Specific Integrated Circuits
(ASICs): Custom-designed for specific tasks,
providing optimal performance for particular
applications.

Digital Signal Processors (DSPs): Specialized for
real-time signal processing tasks, ideal for audio,
video, and communication systems.

System on Chip (SoC): Integrates the
microprocessor with other system components, such
as memory and peripherals, on a single chip for
compact and efficient designs.

Types of Embedded - Microprocessors

Details

Product Status Active

Core Processor ARM926EJ-S

Number of Cores/Bus Width 1 Core, 32-Bit

Speed 454MHz

Co-Processors/DSP Data; DCP

RAM Controllers DRAM

Graphics Acceleration No

Display & Interface Controllers LCD, Touchscreen

Ethernet -

SATA -

USB USB 2.0 + PHY (1)

Voltage - I/O 2.0V, 2.5V, 2.7V, 3.0V, 3.3V

Operating Temperature -10°C ~ 70°C (TA)

Security Features Cryptography, Hardware ID

Package / Case 128-LQFP

Supplier Device Package 128-LQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/mcimx233dag4c

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mcimx233dag4c-4469702
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors
https://www.e-xfl.com/product/filter/embedded-microprocessors

Product Overview

i.MX23 Applications Processor Reference Manual, Rev. 1

Freescale Semiconductor 1-17
 Preliminary—Subject to Change Without Notice

The BCH sits on the AXI fabric with close coupling to both the GPMI and external memory controller.

See Chapter 15, “20-BIT Correcting ECC Accelerator (BCH).”

1.2.13 Data Co-Processor (DCP)—Memory Copy, Crypto,
and Color-Space Converter

The i.MX23 SOC contains a data co-processor consisting of four virtual channels. Each channel is essen-
tially a memory-to-memory copy engine. The linked list control structure can be used to move
byte-aligned blocks of data from a source to a destination. In the process of copying from one place to
another, the DCP can be programmed to encrypt or decrypt the block using AES-128 in one of several
chaining modes. An SHA-1 hash can be calculated as part of the memory-copy operation.

See Chapter 16, “Data Co-Processor (DCP),” for more information.

1.2.14 Mixed Signal Audio Subsystem

The i.MX23 contains an integrated high-quality mixed signal audio subsystem, including high-quality
sigma delta D/A and A/D converters, as shown in Figure 1-4.

The chip includes a low-noise headphone driver that allows it to directly drive low-impedance (16Ω)
headphones. The direct drive, or “capless” mode, removes the need for large expensive DC blocking
capacitors in the headphone circuit. The headphone power amplifier can detect headphone shorts and
report them via the interrupt collector. A digitally programmable master volume control allows user con-
trol of the headphone volume. Use of the headphone amplifier volume control is recommended as the
digital control may reduce SNR performance. Annoying clicks and pops are eliminated by zero-crossing
updates in the volume/mute circuits and by headphone driver startup and shutdown circuits.

The microphone circuit has a mono-to-stereo programmable gain pre-amp and an optional microphone
bias generator.

Also integrated is a class A-B mono speaker amplifier which must be powered from a sufficiently
high-enough current 4.2V source such as the battery. The speaker amplifier can support up to 2W rms of
output assuming a 4.2V supply and a 4Ω speaker load.

These features are described in Chapter 28, “AUDIOIN/ADC,” and Chapter 29, “AUDIOOUT/DAC.”

Clock Generation and Control

i.MX23 Applications Processor Reference Manual, Rev. 1

Freescale Semiconductor 4-15
 Preliminary—Subject to Change Without Notice

DESCRIPTION:

This register controls the clock divider that generates the CLK_H, the clock used by the AHB and APBH
buses, when HW_CLKCTRL_EMI_SYNC_MODE_EN = 0.

Note: Do not write register space when busy bit(s) are high.

Table 4-9. HW_CLKCTRL_HBUS Bit Field Descriptions

BITS LABEL RW RESET DEFINITION
31:30 RSRVD4 RO 0x0 Reserved
29 BUSY RO 0x0 This read-only bit field returns a one when the clock

divider is busy transfering a new divider value across
clock domains.

28 DCP_AS_ENABLE RW 0x0 Enable auto-slow mode based on DCP activity. 0 =
Run at the programmed CLK_H frequency.

27 PXP_AS_ENABLE RW 0x0 Enable auto-slow mode based on PXP activity. 0 =
Run at the programmed CLK_H frequency.

26 APBHDMA_AS_ENABLE RW 0x0 Enable auto-slow mode based on APBH DMA activity.
0 = Run at the programmed CLK_H frequency.

25 APBXDMA_AS_ENABLE RW 0x0 Enable auto-slow mode based on APBX DMA activity.
0 = Run at the programmed CLK_H frequency.

24 TRAFFIC_JAM_AS_ENABLE RW 0x0 Enable auto-slow mode when less than three masters
are trying to use the AHB. More than three active
masters will engage the default mode. 0 = Run at the
programmed CLK_H frequency.

23 TRAFFIC_AS_ENABLE RW 0x0 Enable auto-slow mode based on AHB master activity.
0 = Run at the programmed CLK_H frequency.

22 CPU_DATA_AS_ENABLE RW 0x0 Enable auto-slow mode based on with CPU Data
access to AHB. 0 = Run at the programmed CLK_H
frequency.

21 CPU_INSTR_AS_ENABLE RW 0x0 Enable auto-slow mode based on with CPU Instruction
access to AHB. 0 = Run at the programmed CLK_H
frequency.

20 AUTO_SLOW_MODE RW 0x0 Enable CLK_H auto-slow mode. When this is set, then
CLK_H will run at the slow rate until one of the fast
mode events has occurred. Note: The
AUTO_SLOW_MODE bit must be cleared before
writing to the SLOW_DIV bitfield.

19 RSRVD2 RO 0x0 Reserved
18:16 SLOW_DIV RW 0x0 Slow mode divide ratio. Sets the ratio of CLK_H fast

rate to the slow rate. Note: The AUTO_SLOW_MODE
bit must be cleared before writing to the SLOW_DIV
bitfield.
BY1 = 0x0 Slow mode divide ratio = 1
BY2 = 0x1 Slow mode divide ratio = 2
BY4 = 0x2 Slow mode divide ratio = 4
BY8 = 0x3 Slow mode divide ratio = 8
BY16 = 0x4 Slow mode divide ratio = 16
BY32 = 0x5 Slow mode divide ratio = 32

15:6 RSRVD1 RO 0x0 Reserved
5 DIV_FRAC_EN RW 0x0 1 = Enable fractional divide. 0 = Enable integer divide.
4:0 DIV RW 0x01 CLK_P-to-CLK_H divide ratio.

NOTE: The divider is set to divide by 1 at power-on
reset. Do NOT divide by 0.

Clock Generation and Control

i.MX23 Applications Processor Reference Manual, Rev. 1

4-18 Freescale Semiconductor
 Preliminary—Subject to Change Without Notice

DESCRIPTION:

This register controls the divider that generates the PIX (LCDIF) clock.

Note: Do not write register space when busy bit(s) are high.

EXAMPLE:
HW_CLKCTRL_PIX_WR(BF_CLKCTRL_PIX_DIV(40));

4.8.8 Synchronous Serial Port Clock Control Register Description
The SSP control register provides control for SSP clock generation.

HW_CLKCTRL_SSP 0x070

Table 4-14. HW_CLKCTRL_PIX

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

C
L

K
G

A
T

E

R
S

R
V

D
2

B
U

S
Y

R
S

R
V

D
1

D
IV

_F
R

A
C

_E
N

D
IV

Table 4-15. HW_CLKCTRL_PIX Bit Field Descriptions

BITS LABEL RW RESET DEFINITION
31 CLKGATE RW 0x1 CLK_PIX Gate. If set to 1, CLK_PIX is gated off. 0:

CLK_PIX is not gated. When this bit is modified, or
when it is high, the DIV field should not change its
value. The DIV field can change ONLY when this clock
gate bit field is low.

30 RSRVD2 RO 0x0 Always set to zero (0).
29 BUSY RO 0x0 This read-only bit field returns a one when the clock

divider is busy transfering a new divider value across
clock domains.

28:13 RSRVD1 RO 0x0 Always set to zero (0).
12 DIV_FRAC_EN RW 0x0 Reserved - Always set to zero (0).
11:0 DIV RW 0x1 The Pixel clock frequency is determined by dividing the

selected reference clock (ref_xtal or ref_pix) by the
value in this bit field. This field can be programmed
with a new value only when CLKGATE = 0.
NOTE: The divider is set to divide by 1 at power-on
reset. Do NOT divide by 0. Do not divide by more than
255.

Interrupt Collector

i.MX23 Applications Processor Reference Manual, Rev. 1

5-104 Freescale Semiconductor
 Preliminary—Subject to Change Without Notice

DESCRIPTION:

This register provides a mechanism to specify the priority associated with an interrupt bit. In addition, this
register controls the enable and software generated interrupt. WARNING: Modifying the priority of an
enabled interrupt may result in undefined behavior. You should always disable an interrupt prior to
changing its priority.

EXAMPLE:
HW_ICOLL_INTERRUPT86_SET(0,0x00000001);

5.4.97 Interrupt Collector Interrupt Register 87 Description
This register provides a mechanism to specify the priority level for an interrupt source. It also provides an
enable and software interrupt for each one, as well as security designation.

HW_ICOLL_INTERRUPT87 0x690
HW_ICOLL_INTERRUPT87_SET 0x694
HW_ICOLL_INTERRUPT87_CLR 0x698
HW_ICOLL_INTERRUPT87_TOG 0x69C

Table 5-193. HW_ICOLL_INTERRUPT86 Bit Field Descriptions

BITS LABEL RW RESET DEFINITION
31:5 RSRVD1 RO 0x0 Always write zeroes to this bitfield.
4 ENFIQ RW 0x0 Set this to 1 to steer this interrupt to the non-vectored

FIQ line. When set to 0 the interrupt will pass through
the main IRQ FSM and priority logic.
DISABLE = 0x0 Disable
ENABLE = 0x1 Enable

3 SOFTIRQ RW 0x0 Set this bit to one to force a software interrupt.
NO_INTERRUPT = 0x0 turn off the software interrupt request.
FORCE_INTERRUPT = 0x1 force a software interrupt

2 ENABLE RW 0x0 Enable the interrupt bit through the collector.
DISABLE = 0x0 Disable
ENABLE = 0x1 Enable

1:0 PRIORITY RW 0x0 Set the priority level for this interrupt, 0x3 is highest,
0x0 is lowest (weakest).
LEVEL0 = 0x0 level 0, lowest or weakest priority
LEVEL1 = 0x1 level 1
LEVEL2 = 0x2 level 2
LEVEL3 = 0x3 level 3, highest or strongest priority

Table 5-194. HW_ICOLL_INTERRUPT87

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
S

R
V

D
1

E
N

F
IQ

S
O

F
T

IR
Q

E
N

A
B

L
E

P
R

IO
R

IT
Y

Digital Control and On-Chip RAM

i.MX23 Applications Processor Reference Manual, Rev. 1

Freescale Semiconductor 6-5
 Preliminary—Subject to Change Without Notice

Table 6-3. HW_DIGCTL_CTRL Bit Field Descriptions

BITS LABEL RW RESET DEFINITION
31 RSVD3 RO 0x0 Reserved.
30 XTAL24M_GATE RW 0x0 If set to 1, disable the Digital Control Microseconds

counter, STRB1MHZ. If set to 0, enable the Digital
Control Microseconds counter..

29 TRAP_IRQ RW 0x0 This bit is set when an AHB access occurs to the range
defined by the TRAP_ADDR registers below and the
trap function is enabled with the TRAP_ENABLE bit.

28:27 RSVD2 RO 0x0 Reserved.
26 CACHE_BIST_TMODE RW 0x0 Set this bit to enable the Cache BIST test mode.
25 LCD_BIST_CLKEN RW 0x0 Set this bit to enable the LCD memory BIST clock.
24 LCD_BIST_START RW 0x0 Set this bit to start the LCD memory BIST.
23 DCP_BIST_CLKEN RW 0x0 Set this bit to enable the DCP memory BIST clock.
22 DCP_BIST_START RW 0x0 Set this bit to start the DCP memory BIST.
21 ARM_BIST_CLKEN RW 0x0 Set this bit to enable the ARM BIST clock.
20 USB_TESTMODE RW 0x0 Set this bit to get into USB test mode.
19 ANALOG_TESTMODE RW 0x0 Set this bit to get into analog test mode.
18 DIGITAL_TESTMODE RW 0x0 Set this bit to get into digital test mode.
17 ARM_BIST_START RW 0x0 Set this bit to start the ARM cache BIST controller.
16 UART_LOOPBACK RW 0x0 Set this bit to loop the two AUARTs back on

themselves in a null modem configuration (as well as
connect AUART1 to DUART).
NORMAL = 0x0 No loopback.
LOOPIT = 0x1 Internally connect AUART1 TX to AUART2 RX and
DUART RX, also connect AUART2 TX to AUART1 RX (note that
DUART TX is unaffected).

15 SAIF_LOOPBACK RW 0x0 Set this bit to loop SAIF1 to SAIF2 and SAIF2 to
SAIF1. To use SAIF loopback, configure one SAIF for
transmit and the other for receive. Because this bit
connects SAIF1 output to SAIF2 input and SAIF2
output to SAIF1 input, it does not matter which of the
two ports is configured for TX and the other for RX.
Either configuration will produce an internal TX to RX
loopback. Note that SAIF_CLKMST_SEL is ignored
when loopback is enabled.
NORMAL = 0x0 No loopback.
LOOPIT = 0x1 Loop SAIF1 and SAIF2 back to each other.

USB High-Speed Host/Device Controller

i.MX23 Applications Processor Reference Manual, Rev. 1

8-28 Freescale Semiconductor
 Preliminary—Subject to Change Without Notice

DESCRIPTION:

status

EXAMPLE:
Empty Example.

4 SEI RW 0x0 System Error.
This bit is not used in this implementation and will
always be set to 0.

3 FRI RW 0x0 Frame List Rollover.
The Host Controller sets this bit to a 1 when the Frame
List Index rolls over from its maximum value to 0. The
exact value at which the rollover occurs depends on
the frame list size. For example. If the frame list size
(as programmed in the Frame List Size field of the
USBCMD register) is 1024, the Frame Index Register
rolls over every time FRINDEX [13] toggles. Similarly, if
the size is 512, the Host Controller sets this bit to a 1
every time FHINDEX [12] toggles.
Only used by the host controller.

2 PCI RW 0x0 Port Change Detect.
The Host Controller sets this bit to a 1 when on any
port a Connect Status occurs, a Port Enable/Disable
Change occurs, or the Force Port Resume bit is set as
the result of a J-K transition on the suspended port.
The Device Controller sets this bit to a 1 when the port
controller enters the full or high-speed operational
state. When the port controller exits the full or
highspeed operation states due to Reset or Suspend
events, the notification mechanisms are the USB
Reset Received bit and the DCSuspend bits
respectively.
This bit is not EHCI compatible.

1 UEI RW 0x0 USB Error Interrupt (USBERRINT).
When completion of a USB transaction results in an
error condition, this bit is set by the Host/Device
Controller. This bit is set along with the USBINT bit, if
the TD on which the error interrupt occurred also had
its interrupt on complete (IOC) bit set. See Section
4.15.1 in the EHCI specification for a complete list of
host error interrupt conditions.
The device controller detects resume signaling only.

0 UI RW 0x0 USB Interrupt (USBINT).
This bit is set by the Host/Device Controller when the
cause of an interrupt is a completion of a USB
transaction where the Transfer Descriptor (TD) has an
interrupt on complete (IOC) bit set.
This bit is also set by the Host/Device Controller when
a short packet is detected. A short packet is when the
actual number of bytes received was less than the
expected number of bytes.

Table 8-36. HW_USBCTRL_USBSTS Bit Field Descriptions

BITS LABEL RW RESET DEFINITION

AHB-to-APBX Bridge with DMA

i.MX23 Applications Processor Reference Manual, Rev. 1

11-26 Freescale Semiconductor
 Preliminary—Subject to Change Without Notice

DESCRIPTION:

The command register controls the overall operation of each DMA command for this channel. It includes
the number of bytes to transfer to or from the device, the number of APB PIO command words included
with this command structure, whether to interrupt at command completion, whether to chain an additional
command to the end of this one and whether this transfer is a read or write DMA transfer.

EXAMPLE:
Empty Example.

11.5.16 APBX DMA Channel 1 Buffer Address Register Description

The APBX DMA Channel 1 buffer address register contains a pointer to the data buffer for the transfer.
For immediate forms, the data is taken from this register. This is a byte address which means transfers can
start on any byte boundary.

HW_APBX_CH1_BAR 0x1A0

2 CHAIN RO 0x0 A value of one indicates that another command is
chained onto the end of the current command
structure. At the completion of the current command,
this channel will follow the pointer in
HW_APBX_CH1_CMDAR to find the next command.

1:0 COMMAND RO 0x00 This bitfield indicates the type of current command:
00- NO DMA TRANSFER
01- write transfers, i.e. data sent from the APBX device
(APB PIO Read) to the system memory (AHB master
write).
10- read transfer
11- reserved
NO_DMA_XFER = 0x0 Perform any requested PIO word transfers but
terminate command before any DMA transfer.
DMA_WRITE = 0x1 Perform any requested PIO word transfers and
then perform a DMA transfer from the peripheral for the specified
number of bytes.
DMA_READ = 0x2 Perform any requested PIO word transfers and
then perform a DMA transfer to the peripheral for the specified number
of bytes.

Table 11-34. HW_APBX_CH1_BAR

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

ADDRESS

Table 11-35. HW_APBX_CH1_BAR Bit Field Descriptions

BITS LABEL RW RESET DEFINITION
31:0 ADDRESS RO 0x00000000 Address of system memory buffer to be read or written

over the AHB bus.

Table 11-33. HW_APBX_CH1_CMD Bit Field Descriptions

BITS LABEL RW RESET DEFINITION

External Memory Interface (EMI)

i.MX23 Applications Processor Reference Manual, Rev. 1

12-8 Freescale Semiconductor
 Preliminary—Subject to Change Without Notice

Figure 12-7. DQS Gating

The timing of when to start gating the DQS depends on the design itself, the flight time of the clock to
memory, and the flight time of the data/DQS to the memory controller, as follows:

• If the round trip time is between ½ cycle and 1½ cycles, program the caslat_lin parameter equal to the
caslat parameter.

• If the round trip time is less than ½ cycle, program the caslat_lin parameter one value less (which
translates to ½ cycle) than the caslat parameter to open the gate ½ cycle sooner.

• If the round trip time is longer than 1½ cycles, program the caslat_lin parameter one value more (which
translates to ½ cycle) than the caslat parameter to open the gate ½ cycle later.

In addition, the caslat_lin_gate parameter controls the opening of the gating signal. Nominally,
caslat_lin_gate should have the same value as the caslat_lin parameter. However, to accommodate the
skew of the memory devices, it may be necessary to open the gate a 1/2-cycle sooner or later. Adjusting
the value of caslat_lin_gate modifies the gate opening by this factor.

There is a requirement that the DQS signals must be known and low when the memory controller is not
driving. Because of the large variance in access times for the mobile devices, the gate for the DQS
received by the memory controller must be active for longer than the period of time that the memory
drives the DQS. Maintaining the DQS bus low when neither the memory controller nor the memory is
driving ensures a clean DQS received by the memory controller.

12.2.3.2 mDDR Read Data Timing Registers

When using an mDDR external DRAM device, control of the read data timing is provided through multi-
ple registers, as shown in Figure 12-8. First, the HW_DRAM_CTL04_DLL_BYPASS_MODE selects
whether the DCC DLL circuitry is enabled or bypassed. Programming a 1 into this register disables the
DLL auto-sync functionality and instead uses a fixed delay-chain select point programmed into the
HW_DRAM_CTL19_DLL_DQS_DELAY_BYPASS1 and 0 bit fields. Programming a 0 into the
DLL_BYPASS_MODE field enables the DLL auto-sync mode, utilizing the
HW_DRAM_CTL18_DLL_DQS_DELAY_BYPASS1 and 0 values to define the percentage of the clock
period of delay to add to the DQS inputs before being used as data capture controls.

The BYPASS_MODE or control bit is set based on the desired EMI_CLK frequency. At frequencies
above 80 MHz, the BYPASS_MODE should be disabled, allowing the DLL to auto-sync. Frequencies
below this point show enable the BYPASS_MODE.

DQS

Gate

Gated DQS

Write Command Read Command...

General-Purpose Media Interface (GPMI)

i.MX23 Applications Processor Reference Manual, Rev. 1

Freescale Semiconductor 13-21
 Preliminary—Subject to Change Without Notice

DESCRIPTION:

The GPMI control and status register provides a read back path for various operational states of the GPMI
controller.

EXAMPLE:
No Example.

13.4.12 GPMI Debug Information Register Description
The GPMI debug information register provides a read back path for diagnostics to determine the current
operating state of the GPMI controller.

HW_GPMI_DEBUG 0x0C0

2 DEV2_ERROR RO 0x0 0= No error condition present on NAND Device 2.
1= An Error has occurred on NAND Device 2 (Timeout
or compare failure, depending on
COMMAND_MODE).

1 DEV1_ERROR RO 0x0 0= No error condition present on NAND Device 1.
1= An Error has occurred on NAND Device 1 (Timeout
or compare failure, depending on
COMMAND_MODE).

0 DEV0_ERROR RO 0x0 0= No error condition present on NAND Device 0.
1= An Error has occurred on NAND Device 0 (Timeout
or compare failure, depending on
COMMAND_MODE).

Table 13-24. HW_GPMI_DEBUG

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
E

A
D

Y
3

R
E

A
D

Y
2

R
E

A
D

Y
1

R
E

A
D

Y
0

W
A

IT
_F

O
R

_R
E

A
D

Y
_E

N
D

3

W
A

IT
_F

O
R

_R
E

A
D

Y
_E

N
D

2

W
A

IT
_F

O
R

_R
E

A
D

Y
_E

N
D

1

W
A

IT
_F

O
R

_R
E

A
D

Y
_E

N
D

0

S
E

N
S

E
3

S
E

N
S

E
2

S
E

N
S

E
1

S
E

N
S

E
0

D
M

A
R

E
Q

3

D
M

A
R

E
Q

2

D
M

A
R

E
Q

1

D
M

A
R

E
Q

0

C
M

D
_E

N
D

U
D

M
A

_S
TA

T
E

B
U

S
Y

P
IN

_S
TA

TE

M
A

IN
_S

TA
T

E

Table 13-25. HW_GPMI_DEBUG Bit Field Descriptions

BITS LABEL RW RESET DEFINITION
31 READY3 RO 0x0 Read-only view of Ready Line 3.
30 READY2 RO 0x0 Read-only view of Ready Line 2.
29 READY1 RO 0x0 Read-only view of Ready Line 1.
28 READY0 RO 0x0 Read-only view of Ready Line 0.

Table 13-23. HW_GPMI_STAT Bit Field Descriptions

BITS LABEL RW RESET DEFINITION

8-Symbol Correcting ECC Accelerator (ECC8)

i.MX23 Applications Processor Reference Manual, Rev. 1

14-34 Freescale Semiconductor
 Preliminary—Subject to Change Without Notice

Table 14-7. HW_ECC8_DEBUG0

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
S

R
V

D
1

K
E

S
_D

E
B

U
G

_S
Y

N
D

R
O

M
E

_S
Y

M
B

O
L

K
E

S
_D

E
B

U
G

_S
H

IF
T

_S
Y

N
D

K
E

S
_D

E
B

U
G

_P
A

Y
L

O
A

D
_F

L
A

G

K
E

S
_D

E
B

U
G

_M
O

D
E

4K

K
E

S
_D

E
B

U
G

_K
IC

K

K
E

S
_S

TA
N

D
A

L
O

N
E

K
E

S
_D

E
B

U
G

_S
T

E
P

K
E

S
_D

E
B

U
G

_S
TA

L
L

B
M

_K
E

S
_T

E
S

T
_B

Y
PA

S
S

R
S

R
V

D
0

D
E

B
U

G
_R

E
G

_S
E

L
E

C
T

Table 14-8. HW_ECC8_DEBUG0 Bit Field Descriptions

BITS LABEL RW RESET DEFINITION
31:25 RSRVD1 RO 0x0 Reserved.
24:16 KES_DEBUG_SYNDROME_S

YMBOL
RW 0x0 The 9-bit value in this bit field will be shifted into the

syndrome register array at the input of the KES engine
whenever
HW_ECC8_DEBUG0_KES_DEBUG_SHIFT_SYND is
toggled.
NORMAL = 0x0 Bus master address generator for synd_gen writes
operates normally.
TEST_MODE = 0x1 Bus master address generator always addresses
last four bytes in auxiliary block.

15 KES_DEBUG_SHIFT_SYND RW 0x0 Toggling this bit causes the value in
HW_ECC8_DEBUG0_KES_SYNDROME_SYMBOL
to be shifted into the syndrome register array at the
input to the KES engine. After shifting in 16 symbols,
one can kick off both KES and CF cycles by toggling
HW_ECC8_DEBUG0_KES_DEBUG_KICK. Be sure to
set KES_ECC8_DEBUG0_KES_STANDALONE mode
to 1 before kicking.

14 KES_DEBUG_PAYLOAD_FLA
G

RW 0x0 When running the standalone debug mode on the error
calculator, the state of this bit is presented to the KES
engine as the input payload flag.
DATA = 0x1 Payload is set for 512 byte data block.
AUX = 0x1 Payload is set for 65 or 19 byte auxiliary block.

13 KES_DEBUG_MODE4K RW 0x0 When running the standalone debug mode on the error
calculator, the state of this bit is presented to the KES
engine as the input mode (4K or 2K pages).
4k = 0x1 Mode is set for 4K NAND pages.
2k = 0x1 Mode is set for 2K NAND pages.

12 KES_DEBUG_KICK RW 0x0 Toggling causes KES engine FSM to start as if kicked
by the bus master. This allows standalone testing of
the KES and Chien Search engines. Be sure to set
KES_ECC8_DEBUG0_KES_STANDALONE mode to
1 before kicking.

8-Symbol Correcting ECC Accelerator (ECC8)

i.MX23 Applications Processor Reference Manual, Rev. 1

14-38 Freescale Semiconductor
 Preliminary—Subject to Change Without Notice

DESCRIPTION:

This register indicates the RTL version in use.

EXAMPLE:
if (HW_ECC8_VERSION.B.MAJOR != 1) Error();

ECC8 Block v1.1, Revision 2.5

Table 14-20. HW_ECC8_VERSION Bit Field Descriptions

BITS LABEL RW RESET DEFINITION
31:24 MAJOR RO 0x01 Fixed read-only value reflecting the MAJOR field of the

RTL version.
23:16 MINOR RO 0x0 Fixed read-only value reflecting the MINOR field of the

RTL version.
15:0 STEP RO 0x0000 Fixed read-only value reflecting the stepping of the

RTL version.

20-BIT Correcting ECC Accelerator (BCH)

i.MX23 Applications Processor Reference Manual, Rev. 1

Freescale Semiconductor 15-13
 Preliminary—Subject to Change Without Notice

15.4.1.1 DMA Structure Code Example

The following code sample illustrates the coding for one write transaction involving 4096 bytes of data
payload (eight 512-byte blocks) and 10 bytes of auxiliary payload (also referred to as metadata) to a 4K
NAND page sitting on GPMI CS2.

//--
// generic DMA/GPMI/ECC descriptor struct, order sensitive!
//--
typedef struct {
 // DMA related fields
 unsigned int dma_nxtcmdar;
 unsigned int dma_cmd;
 unsigned int dma_bar;

 // GPMI related fields
 unsigned int gpmi_ctrl0;
 unsigned int gpmi_compare;
 unsigned int gpmi_eccctrl;
 unsigned int gpmi_ecccount;
 unsigned int gpmi_data_ptr;
 unsigned int gpmi_aux_ptr;
} GENERIC_DESCRIPTOR;

//--
// allocate 9 descriptors for doing a NAND ECC Write
//--
GENERIC_DESCRIPTOR write[9];

//--
// DMA descriptor pointer to handle error conditions from psense checks
//--
unsigned int * dma_error_handler;

//--
// 8 byte NAND command and address buffer
// any alignment is ok, it is read by the GPMI DMA
// byte 0 is write setup command
// bytes 1-5 is the NAND address
// byte 6 is write execute command
// byte 7 is status command
//--
unsigned char nand_cmd_addr_buffer[8];

//--
// 4096 byte payload buffer used for reads or writes
// needs to be word aligned
//--
unsigned int write_payload_buffer[(4096/4)];

//--
// 65 byte meta-data to be written to NAND
// needs to be word aligned
//--
unsigned int write_aux_buffer[65];

//--
// Descriptor 1: issue NAND write setup command (CLE/ALE)
//--
write[0].dma_nxtcmdar = &write[1]; // point to the next descriptor

write[0].dma_cmd = BF_APBH_CHn_CMD_XFER_COUNT (1 + 5)| // 1 byte command, 5 byte address
 BF_APBH_CHn_CMD_CMDWORDS (3) | // send 3 words to the GPMI
 BF_APBH_CHn_CMD_WAIT4ENDCMD (1) | // wait for command to finish before continuing
 BF_APBH_CHn_CMD_SEMAPHORE (0) |
 BF_APBH_CHn_CMD_NANDWAIT4READY(0) |
 BF_APBH_CHn_CMD_NANDLOCK (1) | // prevent other DMA channels from taking over
 BF_APBH_CHn_CMD_IRQONCMPLT (0) |
 BF_APBH_CHn_CMD_CHAIN (1) | // follow chain to next command
 BV_FLD(APBH_CHn_CMD, COMMAND, DMA_READ); // read data from DMA, write to NAND

write[0].dma_bar = &nand_cmd_addr_buffer; // byte 0 write setup, bytes 1 - 5 NAND address

// 3 words sent to the GPMI
write[0].gpmi_ctrl0 = BV_FLD(GPMI_CTRL0, COMMAND_MODE, WRITE) | // write to the NAND
 BV_FLD(GPMI_CTRL0, WORD_LENGTH, 8_BIT) |
 BV_FLD(GPMI_CTRL0, LOCK_CS, ENABLED) |
 BF_GPMI_CTRL0_CS (2) | // must correspond to NAND CS used
 BV_FLD(GPMI_CTRL0, ADDRESS, NAND_CLE) |
 BF_GPMI_CTRL0_ADDRESS_INCREMENT (1) | // send command and address
 BF_GPMI_CTRL0_XFER_COUNT (1 + 5); // 1 byte command, 5 byte address

write[0].gpmi_compare = NULL; // field not used but necessary to set eccctrl

Data Co-Processor (DCP)

i.MX23 Applications Processor Reference Manual, Rev. 1

Freescale Semiconductor 16-7
 Preliminary—Subject to Change Without Notice

16.2.3 Hashing

The hashing module implements the SHA-1 hashing algorithm and a modified CRC-32 checksum algo-
rithm. These algorithms produce a signature for a block of data that can be used to determine whether the
data is intact.

The CRC-32 algorithm implements a 32-bit CRC algorithm similar to the one used by Ethernet and many
other protocols. The CRC differs from the Unix cksum() function in three ways:

• The CRC is initialized as 0xFFFFFFFF instead of 0x00000000.

• Logic pads zeros to a 32-bit boundary for trailing bytes.

• Logic does not post-pend the file length.

The SHA-1 block implements a 160-bit hashing algorithm that operates on 512-bit (64-byte) blocks as
defined by US FIPS PUB 180-1 in 1995. The purpose of the hashing module is to generate a unique sig-
nature for a block of data that can be used to validate the integrity of the data by comparing the resulting
“digest” with the original digest.

Results from hash operations are written to the beginning of the payload for the descriptor. The DCP also
has the ability to check the resulting hash against a value in the payload and issue an interrupt if a mis-
match occurs.

16.2.4 Managing DCP Channel Arbitration and Performance

The DCP can have four channels compete for DCP resources to complete their operations. Depending on
the situation, critical operations may need to be prioritized above less important operations to ensure
smooth system operation. To help software achieve this goal, the DCP implements a programmable arbi-

Block Cipher
Decryption

Block Cipher
Decryption

Block Cipher
Decryption

Plaintext

Ciphertext

Initialization Vector (IV)

Key Key Key

Plaintext

Ciphertext Ciphertext

Plaintext

Figure 16-3. Cipher Block Chaining (CBC) Mode Decryption

Pixel Pipeline (PXP)

i.MX23 Applications Processor Reference Manual, Rev. 1

17-4 Freescale Semiconductor
 Preliminary—Subject to Change Without Notice

It is important to understand how the PXP renders each output macroblock to properly understand how it
accomplishes cropping, letterboxing, and overlay blending. The following sections will provide more
details on these operations.

The PXP also has the ability to rotate/flip images for cases when the pixel scan order is not in the tradi-
tional left-to-right/top-to-bottom raster scan (landscape raster). This can occur when a handheld device
with a traditional landscape scan is rotated into a portrait orientation (in which the scan order is now bot-
tom-to-top/left-to-right or vice versa) or when a cell phone oriented display (portrait raster) is rotated into
a landscape orientation for viewing videos. In these cases, the PXP still renders the image in scan-order
format (as sent to the device), but it will traverse the input images based on the transformations required.

The following sections detail each of the PXP’s functional capabilities.

17.2.1 Pixel Handling

All pixels are internally represented as 24-bit RGB values with an 8-bit alpha value at all stages in the
PXP after the colorspace converter. Input pixels are converted into this format using the following rules:

• 32-bit ARGB8888 pixels are read directly with no conversion for both the S0 and overlay images.

• 32-bit RGB888 pixels are assumed to have an alpha value of 0xFF (full opaque).

• 16-bit RGB565 and RGB555 values are expanded into the corresponding 24-bit colorspace and
assigned an alpha value of 0xFF (opaque). The expansion process replicates the upper pixel bits

0 1 2

S0 image

OL1

OL0

A

B

E

C

D

cr
op

_h
ei

gh
t

crop_width

S
0_

yo
ff

se
t

S0_xoffset

8x8 macroblock
rendering order

Background (letterbox) region

rgb_width

rg
b_

he
ig

ht

0,1,2: Pixel blocks rendered with the background color . The numbering and arrow indicate the order of macroblock rendering .
A: S0 Image rendered
B: Overlay 1 blended with background
C: Overlay 1 blended with S0 image
D: Overlay 0 blended with S0 image
E: Overlay 0 blended with S0 image (OL0 takes precedence over OL1)

Figure 17-3. Pixel Pipeline (PXP) Macro Blocks

TV-Out NTSC/PAL Encoder

i.MX23 Applications Processor Reference Manual, Rev. 1

19-6 Freescale Semiconductor
 Preliminary—Subject to Change Without Notice

EXAMPLE:
Empty example.

19.4.2 TV Encoder Configuration Register Description
This is configuration register of the TV Encoder Block

HW_TVENC_CONFIG 0x010
HW_TVENC_CONFIG_SET 0x014
HW_TVENC_CONFIG_CLR 0x018
HW_TVENC_CONFIG_TOG 0x01C

Table 19-3. HW_TVENC_CONFIG

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
S

R
V

D
5

D
E

FA
U

LT
_P

IC
F

O
R

M

Y
D

E
L

_A
D

J

R
S

R
V

D
4

R
S

R
V

D
3

A
D

D
_Y

P
B

P
R

_P
E

D

PA
L

_S
H

A
P

E

N
O

_P
E

D

C
O

L
O

R
_B

A
R

_E
N

Y
G

A
IN

_S
E

L

C
G

A
IN

C
L

K
_P

H
S

R
S

R
V

D
2

F
S

Y
N

C
_E

N
B

L

F
S

Y
N

C
_P

H
S

H
S

Y
N

C
_P

H
S

V
S

Y
N

C
_P

H
S

S
Y

N
C

_M
O

D
E

R
S

R
V

D
1

E
N

C
D

_M
O

D
E

Table 19-4. HW_TVENC_CONFIG Bit Field Descriptions

BITS LABEL RW RESET DEFINITION
31:28 RSRVD5 RO 0x0 Always write zeroes to this bit field.
27 DEFAULT_PICFORM RW 0x1 Permits use of a set of default parameters, tailored to

the mode defined by T_ENCD_MODE, to
be used in place of the values in the LINEx registers.

26:24 YDEL_ADJ RW 0x4 Delays luma versus chroma for composite output.
Luma lags chroma by YDEL_ADJ-4 cycles of 27MHz
clock. For example, if YDEL_ADJ=0, the luma leads by
4 cycles. And if YDEL_ADJ=7, the luma lags by 3
cycles.

23 RSRVD4 RO 0x0 Always write zeroes to this bit field.
22 RSRVD3 RO 0x0 Enables Svideo output on DAC-B and DAC-D, not

available on HuaShan.
21 ADD_YPBPR_PED RW 0x0 Permits the insertion of a black pedestal when sync is

inserted on one or more component signals.
20 PAL_SHAPE RW 0x0 Set to impose a 250nS edge shape as required by

PAL, otherwise the steeper edges
as specified by NTSC are used.

19 NO_PED RW 0x0 Can be set to prevent insertion of a black pedestal as
required by NTSC-J.

18 COLOR_BAR_EN RW 0x0 Enable insertion of internally generated color bars.
17:16 YGAIN_SEL RW 0x0 Controls the luma gain:

00 : NTSC
01 : PAL
1x : no gain

I2C Interface

i.MX23 Applications Processor Reference Manual, Rev. 1

25-4 Freescale Semiconductor
 Preliminary—Subject to Change Without Notice

• When an address is sent, each device in the system compares the first seven bits after a start
condition with its address.

• If they match, the device considers itself addressed by the master.

Data transfer with acknowledge is obligatory.

• The transmitter must release the I2C_SDA line during the acknowledge pulse.

• The receiver must then pull the data line low, so that it remains stable low during the high period
of the acknowledge clock pulse.

• A receiver that has been addressed is obliged to generate an acknowledge after each byte of data
has been received.

• A slave device can terminate a transfer by withholding its acknowledgement.

The clock is generated by the master, according to parameters set in the HW_I2C_TIMINGn register.
This register also provides programmable timing for capturing received data, as well as for changing the
transmitted data bit.

8 Bits 8 Bits

SLAVE Address and R/W DATA

Acknowledge
Signal

Acknowledge
Signal

START
Condition

STOP
Condition

SCL

SDA

End of the
Slave Address
Search Engine
Processing

Beginning of DMA
Transfer Engine
Processing

I2C Clock Held

Figure 25-2. I2C Data and Clock Timing

Application UART

i.MX23 Applications Processor Reference Manual, Rev. 1

Freescale Semiconductor 26-15
 Preliminary—Subject to Change Without Notice

For received words: 1) If the FIFOs are enabled, the data byte and the 4-bit status (break, frame, parity,
and overrun) is pushed onto the 12-bit wide receive FIFO; 2) if the FIFOs are not enabled, the data byte
and status are stored in the receiving holding register (the bottom word of the receive FIFO). The received
data bytes (up to 4) are read by performing reads from the 32-bit DATA register. The status information
can be read by a read of the UART Status register.

The Overrun Error bit is set to 1 if data is received and the receive FIFO is already full. This is cleared to
0 once there is an empty space in the FIFO and a new character can be written to it. The Break Error bit is
set to 1 if a break condition was detected, indicating that the received data input was held LOW for longer
than a full-word transmission time (defined as start, data, parity and stop bits). In FIFO mode, this error is
associated with the character at the top of the FIFO. When a break occurs, only one 0 character is loaded
into the FIFO. The next character is only enabled after the receive data input goes to a 1 (marking state),
and the next valid start bit is received. When the Parity Error bit is set to 1, it indicates that the parity of
the received data character does not match the parity selected as defined by bits 2 and 7 of the LCR_H
register. In FIFO mode, this error is associated with the character at the top of the FIFO. When the Framing
Error bit is set to 1, it indicates that the received character did not have a valid stop bit (a valid stop bit is
1). In FIFO mode, this error is associated with the character at the top of the FIFO.

EXAMPLE:
No Example.

26.4.8 UART Status Register Description
The UART Status Register contains the various flags and receive status. If the status is read from this
register, then the status information for break, framing and parity corresponds to the data character read
from the UART Data Register prior to reading the UART Status Register. The status information for
overrun is set immediately when an overrun condition occurs.

HW_UARTAPP_STAT 0x070

Table 26-16. HW_UARTAPP_STAT

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

P
R

E
S

E
N

T

H
IS

P
E

E
D

B
U

S
Y

C
T

S

TX
F

E

R
X

FF

TX
F

F

R
X

F
E

R
X

B
Y

TE
_I

N
VA

L
ID

O
E

R
R

B
E

R
R

P
E

R
R

F
E

R
R

R
X

C
O

U
N

T

Power Supply

i.MX23 Applications Processor Reference Manual, Rev. 1

Freescale Semiconductor 32-35
 Preliminary—Subject to Change Without Notice

DESCRIPTION:

Empty Description.

EXAMPLE:
Empty Example.

32.11.10 DC-DC Miscellaneous Register Description
This register contains controls that may need to be adjusted to optimize DC-DC converter performance
using the battery voltage information

HW_POWER_MISC 0x090

12:8 BO RW 0x0 Brownout voltage in 25mV steps for the DCDC_4P2
pin.
0b00000 : 3.6V
..
0b11111 : 4.375V

7:5 RSRVD1 RO 0x0 Empty Description.
4:0 CMPTRIP RW 0x18 Sets the trip point for the comparison between the

DCDC_4P2 and BATTERY pin. When the comparator
output is high then, the switching converter may use
the DCDC_4P2 pin as the source for the switching
converter, otherwise it will use the DCDC_BATT pin.
0b00000 DCDC_4P2 pin >= 0.85 * BATTERY pin
0b00001 DCDC_4P2 pin >= 0.86 * BATTERY pin
0b11000 DCDC_4P2 pin >= BATTERY pin (default)
0b11111 DCDC_4P2 pin >= 1.05 * BATTERY pin

Table 32-20. HW_POWER_MISC

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

0
9

0
8

0
7

0
6

0
5

0
4

0
3

0
2

0
1

0
0

R
S

R
V

D
2

F
R

E
Q

S
E

L

R
S

R
V

D
1

D
E

L
A

Y
_T

IM
IN

G

T
E

S
T

S
E

L
_P

L
LC

L
K

Table 32-19. HW_POWER_DCDC4P2 Bit Field Descriptions

BITS LABEL RW RESET DEFINITION

Boot Modes

i.MX23 Applications Processor Reference Manual, Rev. 1

Freescale Semiconductor 35-17
 Preliminary—Subject to Change Without Notice

Search areas are defined as 64 pages * efSearchSize. They are defined in such a way that there is at least
one extra block to hedge against a Boot Control Block (BCB) going bad during operation. If a Boot Con-
trol Block goes bad during operation, the data is copied from the original BCB to the extra BCB, and the
original BCB is written with zeros. Since we rely upon both the ECC being correct and the fingerprints,
overwriting the BCB with zeros should invalidate all the data. The search algorithm will search an entire
search area before looking for the backup or secondary Boot Control Block.

Alternate NCB (NCB2)
NAND Physical Params with

appropriate ECC
1. # of NANDs
2. Timing Parameters
Factory Marked Bad Block Table
Fingerprints for identification

Logical Drive Layout Block (LDLB1)
Infrequently written data with

appropriate ECC (4 bit or 8 bit)
Media Table (starting sectors of
each drive and size of drive)
Pointer to the Discovered Bad
Block Table (BB discovered
during operation)
Initial Boot Applet pointer (Chip
and sector)

Alternate LDLB (LDLB2)
Infrequently written data with

appropriate ECC (4 bit or 8 bit)
Media Table (starting sectors of
each drive and size of drive)
Pointer to the Discovered Bad
Block Table (BB discovered
during operation)
Initial Boot Applet pointer (Chip
and sector)

1st Search Block

2nd Search Block

3rd Search Block

4th Search Block

Discovered Bad Block Table (DBBT1)
Table of Bad Blocks discovered during

SDK operation. Fingerprints.

Discovered Bad Block Table (DBBT2)
Table of Bad Blocks discovered during

SDK operation. Fingerprints.

Boot Applet 1
Small boot image loaded from ROM

Alternate Boot Applet 1
Small boot image loaded from ROM

Boot Applet y
Small boot image loaded from ROM

And so on...

5th Search Block

NAND Control Block (NCB1)
NAND Physical Params with

appropriate ECC
1. # of NANDs
2. Timing Parameters
Factory Marked Bad Block Table
Fingerprints for identification

Figure 35-5. Expected NAND Layout

Pin Control and GPIO

i.MX23 Applications Processor Reference Manual, Rev. 1

Freescale Semiconductor 37-11
 Preliminary—Subject to Change Without Notice

37.2.3.2 Input Operation

Any (non-EMI high speed) digital pin may be used as a GPIO input by programming its
HW_PINCTRL_MUXSELx field to 3 to enable GPIO mode, programming its HW_PINCTRL_DOEx
field to 0 to disable output, and then reading from the HW_PINCTRL_DINx register, as shown in
Figure 37-3. Note that because of clock synchronization issues, the logic levels read from the
HW_PINCTRL_DINx registers are delayed from the pins by two APBX clock cycles.

Figure 37-2. GPIO Output Setup Flowchart

Write to HW_PINCTRL_MUXSELx
register bit to select pin as GPIO.

Write to HW_PINCTRL_DOUTx
register bit to set the output value to

drive on the pin.

Re-write the HW_PINCTRL_DOUTx
register bit to change the value driven

on the pin.

Write to HW_PINCTRL_DOEx
register bit to enable the data value to

be driven on the pin.

Write to HW_PINCTRL_DRIVEx
register bit to set current drive
strength. Set bits in
HW_PINCTRL_PULLx as
required to enable pullups.

Begin

End

