

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

EXF

Product Status	Obsolete
Core Processor	ARM926EJ-S
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	454MHz
Co-Processors/DSP	Data; DCP
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	LCD, Touchscreen
Ethernet	-
SATA	-
USB	USB 2.0 + PHY (1)
Voltage - I/O	2.0V, 2.5V, 2.7V, 3.0V, 3.3V
Operating Temperature	-10°C ~ 70°C (TA)
Security Features	Cryptography, Hardware ID
Package / Case	169-LFBGA
Supplier Device Package	169-MAPBGA (11x11)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcimx233djm4b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Paragraph Number	Title	Page Number
13.3	Behavior During Reset	
13.4	Programmable Registers	

Chapter 14 8-Symbol Correcting ECC Accelerator (ECC8)

14.1	Overview	
14.2	Operation	
14.2.1	Reed-Solomon ECC Accelerator	
14.2.2	Reed-Solomon ECC Encoding for NAND Writes	
14.2.2.1	DMA Structure Code Example	
14.2.2.2	Using the ECC8 Encoder	
14.2.3	Reed-Solomon ECC Decoding for NAND Reads	14-19
14.2.3.1	DMA Structure Code Example	
14.2.3.2	Using the Decoder	
14.2.4	Interrupts	
14.3	Behavior During Reset	
14.4	Programmable Registers	

Chapter 15 20-BIT Correcting ECC Accelerator (BCH)

15.1	Overview
15.2	Operation
15.2.1	BCH Limitations and Assumptions
15.2.2	Flash Page Layout15-4
15.2.3	Determining the ECC layout for a device
15.2.3.1	4K+218 flash, 10 bytes metadata, 512 byte data blocks, separate metadata 15-6
15.2.3.2	4K+128 flash, 10 bytes metadata, 512 byte data blocks, separate metadata 15-6
15.2.4	Data buffers in system memory 15-7
15.3	Memory to Memory (Loopback) Operation 15-9
15.4	Programming the BCH/GPMI Interfaces
15.4.1	BCH Encoding for NAND Writes
15.4.1.1	DMA Structure Code Example15-13
15.4.1.2	Using the BCH Encoder15-16
15.4.2	BCH Decoding for NAND Reads15-17
15.4.2.1	DMA Structure Code Example15-20
15.4.2.2	Using the Decoder 15-23
15.4.3	Interrupts 15-25
15.5	Behavior During Reset15-26
15.6	Programmable Registers

- ITU-R BT.656 compliant D1 digital video output mode with on-the-fly RGB to YCbCr color-space-conversion. This output also feeds the integrated TV-Encoder
- Supports wide variety of input and output formats allowing for conversion between input and output (e.g., RGB565 input to RGB888 output). Also supports packed pixel formats.

See Chapter 18, "LCD Interface (LCDIF)," for more information.

1.2.19.2 Pixel Processing Pipeline (PXP)

The PXP performs all necessary post display frame pre-processing in hardware with minimal memory overhead. In a video-centric system such as the i.MX23, this allows for the CPU to have maximum processing bandwidth for video-decode operation. The PXP operation and features can be described as follows:

- The *background* image (e.g. decoded video frames) is read from external memory into separate Y/U/V buffers as 8x8 pixel macroblocks. These buffers are then fed into a color-space converter (e.g. YUV to RGB) followed by the scaling engine which utilizes an advanced bi-linear weighted scaling algorithm. The scaling operation is defined in terms of the output image (via programmable offsets and cropping registers). The output of the scaler is fed into yet another internal buffer called S0. If the background image is already in the RGB color-space it is assumed to be scaled appropriately for the required output format and can thus be read directly into the internal S0 buffer. In order to maintain efficient use of external memory, only the relevant (visible) portion of the background image is fetched.
- The scaled RGB image (in the internal S0 buffer) can be blended with up to eight programmable *overlays*. The co-ordinates of the overlays can once again be described in terms of the resultant output image. Each overlay can have a either a global programmable opacity or a per-pixel resolution if constructed with ARGB color-space. In addition to this, each overlay can have a relative priority level such that when constructing the output image, the PXP only fetches the visible overlay in the current 8x8 macroblock. The overlays are fetched into the internal S1 buffer. Alpha blending is performed on the S0 and S1 buffers to generate the blended output into the internal S3 buffer. Other operations such as BITBLT and color-keying can also be performed at this stage.
- The final stage of the PXP operation is the rotator which can perform flips and 90, 180 and 270 rotations. The rotator operates on the 8x8 pixel macroblocks in the S3 buffer to maximize external memory fetch efficiency. It writes 8x8 macroblocks to external memory in this final stage.

It should be noted that the PXP supersedes all pixel operations of the DCP.

See Chapter 17, "Pixel Pipeline (PXP)," for more information on the PXP.

1.2.19.3 PAL/NTSC TV-Encoder

The PAL/NTSC TV-Encoder is part of the integrated TV-Out functionality of i.MX23. The encoder takes input directly from the LCDIF without intermediate memory access. In order to utilize the TV-Out path, the LCDIF must be configured to output the ITU-R BT.656/BT.601 D1 digital video stream mode. This stream is synchronized to the internal 108MHz clock of the TV-Encoder. After this point, the block

BITS	LABEL	RW	RESET	DEFINITION
6	CPU_STABLE	RO	0x0	This read-only bitfield is for DIAGNOSTIC PURPOSES ONLY since the fractional divide should become stable quickly enough that this field will never need to be used by either device driver or application code. The value inverts when the new programmed fractional divide value has taken effect. Read this bit, program the new value, and when this bit inverts, the phase divider clock output is stable. Note that the value will not invert when the fractional divider is taken out of or placed into clock-gated state.
5:0	CPUFRAC	RW	0x12	This field controls the CPU clock fractional divider. The resulting frequency shall be 480 * (18/CPUFRAC) where CPUFRAC = 1-35.

Table 4-31. HW_CLKCTRL_FRAC Bit Field Descriptions

DESCRIPTION:

This register controls the 9-phase fractional clock dividers. The fractional clock frequencies are a product of the values in these registers.

EXAMPLE:

HW_CLKCTRL_FRAC_WR(BF_CLKCTRL_FRAC_CPUFRAC(4));

4.8.16 Fractional Clock Control Register 1 Description

The FRAC1 control register provides control for PFD clock generation.

HW_CLKCTRL_FRAC1	0x100
HW_CLKCTRL_FRAC1_SET	0x104
HW_CLKCTRL_FRAC1_CLR	0x108
HW_CLKCTRL_FRAC1_TOG	0x10C

Table 4-32. HW_CLKCTRL_FRAC1 7 5 4 2 CLKGATEVID 1 6 0 0 VID_STABLE **RSRVD1**

On-Chip OTP (OCOTP) Controller

7.4.10 Value of OTP Bank0 Word7 (Crypto Key) Description

OTP banks must be open via HW_OCOTP_CTRL[RD_BANK_OPEN] before reading this register. Reading this register without having HW_OCOTP_CTRL[RD_BANK_OPEN] set and HW_OCOTP_CTRL[BUSY] clear, will result in HW_OCOTP_CTRL[ERROR] being set and 0xBADA_BADA being returned.

HW_OCOTP_CRYPTO3

0x090

Table 7-19. HW_OCOTP_CRYPTO3

3 1	0	9	8	7	6	5	4	3	2	1	0	9	8	7	6	י 5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	Ì
2	2	c	2	2	2	2	2	2	2	2	S	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	6

Table 7-20. HW_OCOTP_CRYPTO3 Bit Field Descriptions

BITS	LABEL	RW	RESET	DEFINITION
31:0	BITS	RO	0x0	Reflects value of OTP Bank 0, word 7 (ADDR = 0x07). If LOCK[CRYPTOKEY] is set, returns 0xBADA_BADA and sets HW_OCOTP_CTRL[ERROR]

DESCRIPTION:

Non-shadowed memory mapped access to OTP Bank 0, word 7 (ADDR = 0x07).

EXAMPLE:

Empty Example.

7.4.11 HW Capability Shadow Register 0 Description

Copied from the OTP automatically after reset. Can be re-loaded by setting HW_OCOTP_CTRL[RELOAD_SHADOWS]

HW_OCOTP_HWCAP0

0x0A0

Table 7-21. HW_OCOTP_HWCAP0

		3 1	3 0	2 9	2 8	2 7	2 6	2 5	2 4	2 3	2 2	2 1	2 0	1 9	1 8	1 7	1 6	1 5	1 4	1 3	1 2	1 1	1 0	0 9	0 8	0 7	0 6	0 5	0 4	0 3	0 2	0 1	
--	--	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--------	--

Bire

Table 7-22. HW_OCOTP_HWCAP0 Bit Field Descriptions

BITS	LABEL	RW	RESET	DEFINITION
31:0	BITS	RW	0x0	Shadow register for HW capability bits 31:0 (copy of OTP bank 1, word 0 (ADDR = 0x08)). These bits become read-only after the HW_OCOTP_LOCK[HWSW_SHADOW] or HW_OCOTP_LOCK[HWSW_SHADOW_ALT] bit is set.

USB High-Speed Host/Device Controller

AHB-to-APBX Bridge with DMA

Table 11-194. HW_APBX_CH12_DEBUG2

Table 11-195. HW_APBX_CH12_DEBUG2 Bit Field Descriptions

BITS	LABEL	RW	RESET	DEFINITION
31:16	APB_BYTES	RO	0x0	This value reflects the current number of APB bytes remaining to be transfered in the current transfer.
15:0	AHB_BYTES	RO	0x0	This value reflects the current number of AHB bytes remaining to be transfered in the current transfer.

DESCRIPTION:

This register allows debug visibility of the APBX DMA Channel 12.

EXAMPLE:

Empty example.

11.5.97 APBX DMA Channel 13 Current Command Address Register Description

The APBX DMA Channel 13 current command address register points to the multiword command that is currently being executed. Commands are threaded on the command address.

HW_APBX_CH13_CURCMDAR 0x6B0

3 1	3 0	2 9	2 8	2 7	2 6	2 5	2 4	2 3	2 2	2 1	2 0	1 9	1 8	1 7	1 6	1 5	1 4	1 3	1 2	1 1	1 0	0 9	0 8	0 7	0 6	0 5	0 4	0 3	0 2	0 1	0 0
														CI	ND_	AD	DR														

Table 11-196. HW_APBX_CH13_CURCMDAR

Table 11-197. HW_APBX_CH13_CURCMDAR Bit Field Descriptions

BITS	LABEL	RW	RESET	DEFINITION
31:0	CMD_ADDR	RO	0x00000000	Pointer to command structure currently being processed for Channel 13.

DESCRIPTION:

APBX DMA Channel 13 is controlled by a variable sized command structure. This register points to the command structure currently being executed.

The S0 buffer and each overlay can be placed within the output buffer using their XBASE and YBASE registers and the dimensions of each region are set using their WIDTH and HEIGHT parameters. Overlay 0 has the highest priority (effectively it is the highest in the stacking order) and the S0 buffer and background color have the lowest priority.

Overlays can be blended with the background or S0 planes, but not with each other. Effectively only a single overlay is active for each 8x8 pixel block.

Figure 17-12. Pixel Pipeline Overlay Support

Each overlay can perform one of three classes of operations between the overlay and the underlying background (S0) image: alpha blending, color keying, or raster operations.

An overlay can be enabled by writing the address of the overlay image to the OLn register, the overlay's size and location information into the OLnSIZE register, and then setting the OLnPARAM_ENABLE bit. The OLnPARAM registers also contain further controls to select the modes of operation (below).

Pixel Pipeline (PXP)

Register	Value	Description
OL2PARAM	0x00000000	Overlay 2 disabled
OL3PARAM	0x0000000	Overlay 3 disabled
OL4PARAM	0x0000000	Overlay 4 disabled
OL5PARAM	0x00000000	Overlay 5 disabled
OL6PARAM	0x0000000	Overlay 6 disabled
OL7PARAM	0x0000000	Overlay 7 disabled
CTRL	0x000C9003	SCALE=1 CROP=1 S0_FORMAT=9 (YUV420) IRQ_ENABLE=1 ENABLE=1

Table 17-8. Register Use for Conversion (continued)

Note that the scaling factors are computed as (source/dest)*4096, thus in the horizontal direction 640/480*4096=5461=0x1555. In the vertical direction, the scaling factor is computed as 480/272*4096=7228=0x1C3C. The original source image and resulting scaled images are shown below:

Table 22-8. H	W_TIMROT	_TIMCTRL0 Bit	Field	Descriptions
---------------	----------	---------------	-------	--------------

BITS	LABEL	RW	RESET	DEFINITION
31:16	RSRVD2	RO	0x0	Always write zeroes to this bit field.
15	IRQ	RW	0x0	This bit is set to one when Timer 0 decrements to zero. Write a zero to clear it or use Clear SCT mode.
14	IRQ_EN	RW	0x0	Set this bit to one to enable the generation of a CPU interrupt when the count reaches zero in normal counter mode.
13:9	RSRVD1	RO	0x0	Always write zeroes to this bit field.
8	POLARITY	RW	0x0	Set this bit to one to invert the input to the edge detector. 0: Positive edge detection. 1: Invert to negative edge detection.
7	UPDATE	RW	0x0	Set this bit to one to cause the running count to be written from the CPU at the same time a new fixed count register value is written.
6	RELOAD	RW	0x0	Set this bit to one to cause the timer to reload its current count from its fixed count value whenever the current count decrements to zero. When set to zero, the timer enters a mode that freezes at a count of zero. When the fixed count is zero, setting this bit to one causes a continuous reload of the fixed count register so that writting a non-zero value will start the timer.
5:4	PRESCALE	RW	0x0	Selects the divisor used for clock generation. The APBX clock is divided by the following amount. Note the APBX clock itself is initially divided down from the 24.0-MHz crystal clock frequency. DIV_BY_1 = 0x0 PreScale: Divide the APBX clock by 1. DIV_BY_2 = 0x1 PreScale: Divide the APBX clock by 2. DIV_BY_4 = 0x2 PreScale: Divide the APBX clock by 4. DIV_BY_8 = 0x3 PreScale: Divide the APBX clock by 8.
3:0	SELECT	RW	0x0	Selects the source for the timer "tick" that decrements the free running counter. Note: programming an undefined value will result in "always tick" behavior. NEVER_TICK = 0x0 Never tick. PWM0 = 0x1 Input from PWM0. PWM1 = 0x2 Input from PWM1. PWM2 = 0x3 Input from PWM2. PWM3 = 0x4 Input from PWM3. PWM4 = 0x5 Input from PWM4. ROTARYA = 0x6 Input from Rotary A. ROTARYB = 0x7 Input from Rotary B. 32KHZ_XTAL = 0x8 Input from 32-kHz crystal. 8KHZ_XTAL = 0x8 Input from 4-kHz (divided from 32-kHz crystal). 1KHZ_XTAL = 0x8 Input from 1-kHz (divided from 32-kHz crystal). 1KHZ_XTAL = 0x8 Input from 1-kHz (divided from 32-kHz crystal).

DESCRIPTION:

This control register specifies control parameters, as well as interrupt status and the enable for Timer 0.

EXAMPLE:

HW_TIMROT_TIMCTRLn_WR(0, 0x0000008); // Set up control fields for timer0

22.4.4 Timer 0 Count Register Description

The Timer 0 Count Register contains the timer counter values for Timer 0.

HW_TIMROT_TIMCOUNT0

NT0 0x030

I2C Interface

25.2.3.2 Reading 256 Bytes from an EEPROM

Debug UART

the modem status interrupt bits (bits 3 to 0), are cleared to 0 when reset. The modem status interrupt bits are undefined after reset.

EXAMPLE:

No Example.

27.3.12 UART Masked Interrupt Status Register Description

The MIS register is the Masked Interrupt Status Register. It is a read-only register. On a read this register gives the current masked status value of the corresponding interrupt. A write has no effect. All the bits except for the modem status interrupt bits (bits 3 to 0) are cleared to 0 when reset. The modem status interrupt bits are undefined after reset.

HW_UARTDBGMIS

0x040

3	3	2	2	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
1	0	9	8	7	6	5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0	9	8	7	6	5	4	3	2	1	0
								UNAVAILABLE										RESERVED			OEMIS	BEMIS	PEMIS	FEMIS	RTMIS	TXMIS	RXMIS	DSRMMIS	DCDMMIS	CTSMMIS	RIMMIS

Table 27-24. HW_UARTDBGMIS

Table 27-25. HW_UARTDBGMIS Bit Field Descriptions

BITS	LABEL	RW	RESET	DEFINITION
31:16	UNAVAILABLE	RO	0x0	The UART IP only implements 16 and 8-bit registers,
				always unavailable.
15:11	RESERVED	RO	0x0	Reserved, read as zero, do not modify.
10	OEMIS	RO	0x0	Overrun Error Masked Interrupt Status.
9	BEMIS	RO	0x0	Break Error Masked Interrupt Status.
8	PEMIS	RO	0x0	Parity Error Masked Interrupt Status.
7	FEMIS	RO	0x0	Framing Error Masked Interrupt Status.
6	RTMIS	RO	0x0	Receive Timeout Masked Interrupt Status.
5	TXMIS	RO	0x0	Transmit Masked Interrupt Status.
4	RXMIS	RO	0x0	Receive Masked Interrupt Status.
3	DSRMMIS	RO	0x0	nUARTDSR Modem Masked Interrupt Status.
2	DCDMMIS	RO	0x0	nUARTDCD Modem Masked Interrupt Status.
1	CTSMMIS	RO	0x0	nUARTCTS Modem Masked Interrupt Status.
0	RIMMIS	RO	0x0	nUARTRI Modem Masked Interrupt Status.

DESCRIPTION:

The MIS register is the Masked Interrupt Status Register. It is a read-only register. On a read this register gives the current masked status value of the corresponding interrupt. A write has no effect. All the bits except for the modem status interrupt bits (bits 3 to 0) are cleared to 0 when reset. The modem status interrupt bits are undefined after reset.

AUDIOOUT/DAC

Figure 29-1 shows a high-level diagram of the AUDIOOUT module. See Figure 1-4 for a diagram of the audio path and control options.

Figure 29-1. Functional AUDIOOUT/DAC Block Diagram

29.2 Operation

Audio data conversion begins by either using the i.MX23's AHB-APBX bridge DMA engine to write two's complement PCM data to the AUDIOOUT's input FIFO, or by writing the data directly to the AUDIOOUT's data register via the host CPU. The data is then normalized to 24-bit samples and then filtered using a 3-stage FIR filter, consisting of 33, 11, and 7 taps, respectively. The AUDIOOUT contains a sequencer, multiply-accumulate hardware, and a set of filter coefficients that performs successive iterations on the data stored in RAM. Intermediate data calculated along the taps/stages of the FIR are also stored in the AUDIOOUT's RAM. The AUDIOOUT module includes hardware for interpolation, sample

SPDIF Transmitter

Table 30-1. HW_SPDIF_CTRL

SFTRST	3 1
CLKGATE	3 0
	2 9
	2 8
	2 7
	2 6
RSRVD1	2 5
	2 4
	2 3
	2 2
	2 1
	2 0
	1 9
DMAWAIT_COUNT	1 8
	1 7
	1 6
	1 5
	1 4
	1 3
	1 2
	1 1
	1 0
	0 9
	0 8
	0 7
	0 6
WAIT_END_XFER	0 5
WORD_LENGTH	0 4
FO_UNDERFLOW_IRQ	0 3
IFO_OVERFLOW_IRQ	0 2
IFO_ERROR_IRQ_EN	0 1
RUN	0 0

Table 30-2. HW_SPDIF_CTRL Bit Field Descriptions

BITS	LABEL	RW	RESET	DEFINITION
31	SFTRST	RW	0x1	Setting this bit to one forces a reset to the entire block and then gates the clocks off. This bit must be set to zero for normal operation.
30	CLRUATE		UXI	set to one it gates off the clocks to the block. WARNING: First set the CLKGATE bit in the HW_CLKCTRL_SPDIF register to 1. Only then, set this bit to 1 to prevent any extra samples from being transmitted. When removing clock gating, follow the reverse order: First reset this CLKGATE bit to 0, and then reset the CLKGATE bit in the HW_CLKCTRL_SPDIF register to 0.
29:21	RSRVD1	RO	0x00	Reserved
20:16	DMAWAIT_COUNT	RW	0x00	DMA Request Delay Count. This bit field specifies the number of APBX clock cycles (0 to 31) to delay before each DMA request. This field acts as a throttle on the bandwidth consumed by the SPDIF block. This field can be loaded by the DMA.
15:6	RSRVD0	RO	0x000	Reserved
5	WAIT_END_XFER	RW	0x1	Set this bit to a one if the SPDIF Transmitter should wait until the internal FIFO is empty before halting transmission based on deassertion of RUN. Use in conjuntion with HW_SPDIF_STAT_END_XFER to determine transfer completion
4	WORD_LENGTH	RW	0x0	Set this bit to one to enable 16-bit mode. Set this bit to zero for 32-bit mode. In either case, the SPDIF frame allows transmission of only 24 bits. In 16-bit mode, eight zeros will be appended to the LSB's of the input sample; in 32-bit mode, the 24 MSB's of HW_SPDIF_DATA will be transmitted.
3	FIFO_UNDERFLOW_IRQ	RW	0x0	This bit is set by hardware if the FIFO underflows during SPDIF transmission. Reset this bit by writing a one to the SCT clear address space and not by a general write.

Power Supply

BITS	LABEL	RW	RESET	DEFINITION
10	ENIRQ_VDDIO_BO	RW	0x0	Enable interrupt for VDDIO brownout.
9	VDDA_BO_IRQ	RW	0x0	Interrupt Status for VDDA_BO. Reset this bit by writing
				a one to the SCT clear address space and not by a general write.
8	ENIRQ_VDDA_BO	RW	0x0	Enable interrupt for VDDA brownout.
7	VDDD_BO_IRQ	RW	0x0	Interrupt Status for VDDD_BO. Reset this bit by writing
				a one to the SCT clear address space and not by a
				general write.
6	ENIRQ_VDDD_BO	RW	0x0	Enable interrupt for VDDD brownout.
5	POLARITY_VBUSVALID	RW	0x1	Set to 1 to check for 5V connected using VBUSVALID
				status bit. Set to 0 to check for 5V disconnected.
4	VBUSVALID_IRQ	RW	0x0	Interrupt status for VBUSVALID signal. Interrupt
				polarity is set using POLARITY_VBUSVALID. Reset
				this bit by writing a one to the SCT clear address space
				and not by a general write.
3	ENIRQ_VBUS_VALID	RW	0x0	Enable interrupt for 5V detect using VBUSVALID.
2	POLARITY_VDD5V_GT_VDDI	RW	0x1	Set to 1 to check for 5V connected. Set to 0 to check
	0			for 5V disconnected.
1	VDD5V_GT_VDDIO_IRQ	RW	0x0	Interrupt status for VDD5V_GT_VDDIO signal.
				Interrupt polarity is set using
				POLARITY_VDD5V_GT_VDDIO. Reset this bit by
				writing a one to the SCT clear address space and not
				by a general write.
0	ENIRQ VDD5V GT VDDIO	RW	0x0	Enable interrupt for 5V detect.

Table 32-3. HW_POWER_CTRL Bit Field Descriptions

DESCRIPTION:

Empty Description.

EXAMPLE:

Empty Example.

32.11.2 DC-DC 5V Control Register Description

This register contains the configuration options of the power management subsystem that are available when external 5V is applied.

HW_POWER_5VCTRL	0x010
HW_POWER_5VCTRL_SET	0x014
HW_POWER_5VCTRL_CLR	0x018
HW_POWER_5VCTRL_TOG	0x01C

DESCRIPTION:

Empty Description.

EXAMPLE:

Empty Example.

32.11.4 Battery Charge Control Register Description

This register cotrols the battery charge features for both NiMH slow charge and Li-Ion charge.

HW_POWER_CHARGE	
HW_POWER_CHARGE_SET	
HW_POWER_CHARGE_CLR	
HW_POWER_CHARGE_TOG	

0x030
0x034
0x038
0x03C

	3 1
	3 I
	3 0
RSVD5	2 9
	2 8
	2 7
	2 6
ADJ_VOLT	2 5
	2 4
EGVASA	2 3
ENABLE_LOAD	2 2
ENABLE_CHARGER_RESISTORS	2 1
ENABLE_FAULT_DETECT	2 0
CHRG_STS_OFF	1 9
RSVD4	1 8
RSVD3	1 7
PWD_BATTCHRG	1 6
	1 5
DEVIDS	1 4
	1 3
	1 2
	1 1
TIMI II GOTS	1 0
	0 9
	0 8
FUNSA	0 7
	0 6
	0 5
	0 4
	0 3
	0 2
	0 1
	0 0

Table 32-8. HW_POWER_CHARGE

Table 32-9. HW_POWER_CHARGE Bit Field Descriptions

BITS	LABEL	RW	RESET	DEFINITION
31:27	RSVD5	RO	0x0	Empty Description.
26:24	ADJ_VOLT	RW	0x0	Adjustments to the final Lilon final voltage. These bits
				shouldn't be set unless recommended by Freescale.
				0b000: no change
				0b001: -0.25%
				0b010: +0.50%
				0b011: -0.75%
				0b100: +0.25%
				0b101: -0.50%
				0b110: +0.75%
				0b111: -1.00%
23	RSRVD3	RW	0x0	Empty Description.
22	ENABLE_LOAD	RW	0x0	Enable 100ohm load on the regulated 4.2V output.
				This bit shouldn't be set unless recommended by
				Freescale.

Pin Control and GPIO

BITS	LABEL	RW	RESET	DEFINITION
13:12	BANK1_PIN19_MA	RW	0x0	Pin 33, LCD_RS pin output drive strength selection:
				00= 4 mA;
				01= 8 mA;
				10= 12 mA;
				11= reserved.
11:10	RSRVD2	RO	0x0	Always write zeroes to this field.
9:8	BANK1_PIN18_MA	RW	0x0	Pin 31, LCD_RESET pin output drive strength
				selection:
				00= 4 mA;
				01= 8 mA;
				10= 12 mA;
				11= reserved.
7:6	RSRVD1	RO	0x0	Always write zeroes to this field.
5:4	BANK1_PIN17_MA	RW	0x0	Pin 11, LCD_D17 pin output drive strength selection:
				00= 4 mA;
				01= 8 mA;
				10= 12 mA;
				11= reserved.
3:2	RSRVD0	RO	0x0	Always write zeroes to this field.
1:0	BANK1_PIN16_MA	RW	0x0	Pin 13, LCD_D16 pin output drive strength selection:
				00= 4 mA;
				01= 8 mA;
				10= 12 mA;
				11= reserved.

Table 37-36. HW_PINCTRL_DRIVE6 Bit Field Descriptions

DESCRIPTION:

The Drive Strength and Voltage Register selects the drive strength and voltage for pins that are configured for output.

EXAMPLE:

Empty Example.

37.4.17 PINCTRL Drive Strength and Voltage Register 7 Description

The PINCTRL Drive Strength and Voltage Register selects the current drive strength for 7 pins of bank 1.

0x270
0x274
0x278
0x27C

BITS	LABEL	RW	RESET	DEFINITION
17:16	BANK2_PIN20_MA	RW	0x0	Pin 102, EMI_A11 pin output drive strength selection:
				00= 4 mA; 01- 8 mA;
				$10 - 12 \text{ m}\Delta$
				11 - 16 mA
15	BSBVD3	BO	0x0	Always write zeroes to this field
10	BANK2 DIN19 V	RW/	0x0	Pin 104 EML A10 pin voltage selection:
14	DANKZ_FIN15_V	1100		0 - 1.8V (mDDB) or 2.5V (DDB1).
				1 = reserved
13.12	ΒΔΝΚ2 ΡΙΝ19 ΜΔ	RW	0x0	Pin 104 FMI A10 pin output drive strength selection:
10.12			0,0	$00=4 \text{ mA}^{\circ}$
				01= 8 mA:
				10= 12 mA:
				11= 16 mA.
11	RSRVD2	RO	0x0	Always write zeroes to this field.
10	BANK2 PIN18 V	RW	0x1	Pin 103, EMI A09 pin voltage selection:
				0= 1.8V (mDDR) or 2.5V (DDR1);
				1= reserved.
9:8	BANK2_PIN18_MA	RW	0x0	Pin 103, EMI_A09 pin output drive strength selection:
				00= 4 mA;
				01= 8 mA;
				10= 12 mA;
				11= 16 mA.
7	RSRVD1	RO	0x0	Always write zeroes to this field.
6	BANK2_PIN17_V	RW	0x1	Pin 106, EMI_A08 pin voltage selection:
				0= 1.8V (mDDR) or 2.5V (DDR1);
				1= reserved.
5:4	BANK2_PIN17_MA	RW	0x0	Pin 106, EMI_A08 pin output drive strength selection:
				00= 4 mA;
				01= 8 mA;
				10= 12 mA;
0			0.40	II= IO IIIA.
3		RU	0x0	Always write zeroes to this field.
2	BANK2_PIN16_V	RW	UXI	Pin 105, EMI_A07 pin voltage selection:
				0 = 1.80 (MDDR) or 2.50 (DDR1);
1.0			0.20	I = IESEIVEU.
1:0		HVV	UXU	P in 105, EIVII_AU7 pin output drive strength selection:
				01- 9 m A:
				01= 0 mA, 10= 12 mΔ·
				10 = 12 mA, 11 = 16 mA

Table 37-44. HW_PINCTRL_DRIVE10 Bit Field Descriptions

DESCRIPTION:

The Drive Strength and Voltage Register selects the drive strength and voltage for pins that are configured for output.

EXAMPLE:

Empty Example.

Pin Control and GPIO

HW_PINCTRL_PULL1_TOG

0x41C

										10		; 01	-50		vv_	гп			_		- '										
3 1	3 0	2 9	2 8	2 7	2 6	2 5	2 4	2 3	2 2	2 1	2 0	1 9	1 8	1 7	1 6	1 5	1 4	1 3	1 2	1 1	1 0	0 9	0 8	0 7	0 6	0 5	0 4	0 3	0 2	0 1	0 0
	RSRVD3		BANK1_PIN28			RSRVD2			BANK1_PIN22		RSRVD1		BANK1_PIN18																		

Table 37-55 HW PINCTRI PUILL1

Table 37-56. HW_PINCTRL_PULL1 Bit Field Descriptions

BITS	LABEL	RW	RESET	DEFINITION
31:29	RSRVD3	RO	0x0	Always write zeroes to this field.
28	BANK1_PIN28	RW	0x0	Set this bit to one to disable the internal pad keeper and enable the internal pull up resistor on pin 129, PWM2.
27:23	RSRVD2	RO	0x0	Always write zeroes to this field.
22	BANK1_PIN22	RW	0x0	Set this bit to one to disable the internal pad keeper and enable the internal pull up resistor on pin 36, LCD_DOTCK.
21:19	RSRVD1	RO	0x0	Always write zeroes to this field.
18	BANK1_PIN18	RW	0x0	Set this bit to one to disable the internal pad keeper and enable the internal pull up resistor on pin 31, LCD_RESET.
17:0	RSRVD0	RO	0x0	Always write zeroes to this field.

DESCRIPTION:

The Pull register enables/disables integrated on-chip pull up resistors or pad keepers for the pins.

EXAMPLE:

Empty Example.

37.4.27 PINCTRL Bank 2 Pull Up Resistor Enable Register Description

The PINCTRL Bank 2 PULL Register enables/disables the internal pull up resistors for those pins in bank 2 which support this operation.

HW_PINCTRL_PULL2	0x420
HW_PINCTRL_PULL2_SET	0x424
HW_PINCTRL_PULL2_CLR	0x428
HW_PINCTRL_PULL2_TOG	0x42C

Digital Video Encoder Programmers' Manual

01: for NTSC

10: for PAL-M, PAL-N and Pal-60

11: other PAL cases

H_pal_fsc_phase_alt goes to SG to enable PAL-manner of phase alternation by field of color subcarrier

H_ntsc_ln_cnt goes to SG to align even-odd field identification with internal field count; expected value is "1" for ntsc and "0" for PAL-B

H_lpf_rst_off[8:0] goes to ES to program the time to generate a pulse so as to preload a pipeline in the y_delay module of the L_unit. The value is found by simulation to be 272 for NTSC in D1 mode, 284 for PAL in D1 mode, and 136 for progressive in external sync mode.

If "default_picform" in register 0 is set to1, all the parameters programmable through the register-10 group are instead assigned hardwired values determined by T_ENCD_MODE. However, if even one of these parameters needs to be given a different value, the entire register-10 group must be written and default_picform set to 0. To make this process easier, the hardwired values for all registers and modes are given in Table 38-2.

mode	10.0	10.1	10.2	10.3	10.4
000 NTSC	17b1340 e	3a42242 d	07b1445 9	8320ca5 1	884a92c 5
001 PAL-B	17c1340 e	3a72642 d	0771405 8	9c270c4e	0471f244
010 PAL-M	17b1340 e	3a72642 d	07f1505c	8320ca5 1	0443a2c 5
011 PAL-N	17b1340 e	3a725c2 d	07e1505 c	9c270c51	0471b2c 5
100 PAL-CN	17c1340 e	3a72642 d	07a1405 8	9c270c4e	0471f244
101 mixed NTSC	17b1340 e	3a42242 d	07b1445 9	8320ca5 1	044252c 5
110 PAL-60	17b1340 e	3a72642 d	07f1505c	8320ca5 1	0443a2c 5
111 prog NTSC	32a1380f	359224xx (*)	xxxxxxxx (*)	8320bacx (*)	022202c 5

(*) The parameters sync_eqend, wbrst_strt, nbrst_strt, brst_end, vstrt_subph are not used for progressive. The corresponding fields are "don't care."

Appendix C Acronyms and Abbreviations

This appendix includes definitions for many of the acronyms and abbreviations found in this product data sheet.

AAC:	Advanced Audio Coding
AC:	Audio Coding
ADC:	Analog-to-Digital Converter
AES:	Advanced Encryption Standard
AHB:	Advanced High-performance Bus
AIO:	Analog Input/Output
AMBA:	Advanced Microcontroller Bus Architecture
APB:	Advanced Peripheral Bus
APBH:	Advanced Peripheral Bus—HCLK Domain
APBX:	Advanced Peripheral Bus—XCLK Domain
ARC:	ARC International (corporate name)
ARM:	Advanced RISC Machine (formerly Acorn RISC Machine)
AVC:	Adaptive Voltage Control
BATT:	Battery
BCB:	Boot Control Block
BGA:	Ball Grid Array
BIST:	Built-In Self-Test
BKPT:	Breakpoint
BLTC:	Boot Loader Transaction Controller
CBC	Cipher Block Chaining
CCS:	Command Completion Signaling
CE:	Consumer Electronics
CLKCTRL:	Clock Control
CP:	Charge Pump
CPUCLK:	Processor (ARM CPU) Clock
CRC:	Cyclic Redundancy Check
CSC:	Color-Space Conversion
CTS:	Clear To Send
DABT:	Data Abort
DAC:	Digital-to-Analog Converter
dB:	Decibel