




Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M0                                                            |
| Core Size                  | 32-Bit Single-Core                                                         |
| Speed                      | 50MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, SPI, UART/USART                                          |
| Peripherals                | Brown-out Detect/Reset, POR, WDT                                           |
| Number of I/O              | 28                                                                         |
| Program Memory Size        | 16KB (16K x 8)                                                             |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | -                                                                          |
| RAM Size                   | 4K x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                                |
| Data Converters            | A/D 8x10b                                                                  |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 32-VFQFN Exposed Pad                                                       |
| Supplier Device Package    | 32-HVQFN (5x5)                                                             |
| Purchase URL               | https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc1112fhi33-202-5 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### 32-bit ARM Cortex-M0 microcontroller

| Type number      | Package          | Package                                                                                          |           |  |  |  |  |  |  |
|------------------|------------------|--------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|
|                  | Name Description |                                                                                                  |           |  |  |  |  |  |  |
| LPC1115JBD48/303 | LQFP48           | LQFP48: plastic low profile quad flat package; 48 leads; body 7 $\times$ 7 $\times$ 1.4 mm       | SOT313-2  |  |  |  |  |  |  |
| LPC1115FET48/303 | TFBGA48          | plastic thin fine-pitch ball grid array package; 48 balls; body 4.5 $\times$ 4.5 $\times$ 0.7 mm | SOT1155-2 |  |  |  |  |  |  |
| LPC1115JET48/303 | TFBGA48          | plastic thin fine-pitch ball grid array package; 48 balls; body 4.5 $\times$ 4.5 $\times$ 0.7 mm | SOT1155-2 |  |  |  |  |  |  |

#### Table 1. Ordering information ... continued

### 4.1 Ordering options

#### Table 2. Ordering options

| Type number      | Series    | Flash | Total<br>SRAM | Power<br>profiles | UART | l <sup>2</sup> C/<br>Fast+ | SPI | ADC<br>channel | GPIO | Package | Temp <u><sup>[1]</sup></u> |
|------------------|-----------|-------|---------------|-------------------|------|----------------------------|-----|----------------|------|---------|----------------------------|
| LPC1110          |           |       |               |                   |      |                            |     |                |      |         |                            |
| LPC1110FD20      | LPC1100L  | 4 kB  | 1 kB          | 100               | 1    | 1                          | 1   | 5              | 16   | SO20    | F                          |
| LPC1111          | LFCIIUUL  | 4 KD  | IKD           | yes               | I    | I                          | I   | 5              | 10   | 3020    | Г                          |
|                  | LPC1100L  | 0.1-D |               |                   | 4    | 4                          | 4   | 5              | 40   | TSSOP20 | F                          |
| LPC1111FDH20/002 |           | 8 kB  | 2 kB          | yes               | 1    | 1                          | 1   |                | 16   |         |                            |
| LPC1111FHN33/101 | LPC1100   | 8 kB  | 2 kB          | no                | 1    | 1                          | 1   | 8              | 28   |         | F                          |
| LPC1111FHN33/102 | LPC1100L  | 8 kB  | 2 kB          | yes               | 1    | 1                          | 1   | 8              | 28   | HVQFN33 |                            |
| LPC1111FHN33/103 | LPC1100XL | 8 kB  | 2 kB          | yes               | 1    | 1                          | 2   | 8              | 28   | HVQFN33 |                            |
| LPC1111JHN33/103 | LPC1100XL | 8 kB  | 2 kB          | yes               | 1    | 1                          | 2   | 8              | 28   | HVQFN33 | J                          |
| LPC1111FHN33/201 | LPC1100   | 8 kB  | 4 kB          | no                | 1    | 1                          | 1   | 8              | 28   | HVQFN33 |                            |
| LPC1111FHN33/202 | LPC1100L  | 8 kB  | 4 kB          | yes               | 1    | 1                          | 1   | 8              | 28   | HVQFN33 | F                          |
| LPC1111FHN33/203 | LPC1100XL | 8 kB  | 4 kB          | yes               | 1    | 1                          | 2   | 8              | 28   | HVQFN33 | F                          |
| LPC1111JHN33/203 | LPC1100XL | 8 kB  | 4 kB          | yes               | 1    | 1                          | 2   | 8              | 28   | HVQFN33 | J                          |
| LPC1112          |           |       |               |                   |      |                            |     |                |      |         |                            |
| LPC1112FD20/102  | LPC1100L  | 16 kB | 4 kB          | yes               | 1    | 1                          | 1   | 5              | 16   | SO20    | F                          |
| LPC1112FDH20/102 | LPC1100L  | 16 kB | 4 kB          | yes               | 1    | -                          | 1   | 5              | 14   | TSSOP20 | F                          |
| LPC1112FDH28/102 | LPC1100L  | 16 kB | 4 kB          | yes               | 1    | 1                          | 1   | 6              | 22   | TSSOP28 | F                          |
| LPC1112FHN24/202 | LPC1100L  | 16 kB | 4 kB          | yes               | 1    | 1                          | 1   | 6              | 19   | HVQFN24 | F                          |
| LPC1112FHN33/101 | LPC1100   | 16 kB | 2 kB          | no                | 1    | 1                          | 1   | 8              | 28   | HVQFN33 | F                          |
| LPC1112FHN33/102 | LPC1100L  | 16 kB | 2 kB          | yes               | 1    | 1                          | 1   | 8              | 28   | HVQFN33 | F                          |
| LPC1112FHN33/103 | LPC1100XL | 16 kB | 2 kB          | yes               | 1    | 1                          | 2   | 8              | 28   | HVQFN33 | F                          |
| LPC1112JHN33/103 | LPC1100XL | 16 kB | 2 kB          | yes               | 1    | 1                          | 2   | 8              | 28   | HVQFN33 | J                          |
| LPC1112FHN33/201 | LPC1100   | 16 kB | 4 kB          | no                | 1    | 1                          | 1   | 8              | 28   | HVQFN33 | F                          |
| LPC1112FHN33/202 | LPC1100L  | 16 kB | 4 kB          | yes               | 1    | 1                          | 1   | 8              | 28   | HVQFN33 | F                          |
| LPC1112FHN33/203 | LPC1100XL | 16 kB | 4 kB          | yes               | 1    | 1                          | 2   | 8              | 28   | HVQFN33 | F                          |
| LPC1112JHN33/203 | LPC1100XL | 16 kB | 4 kB          | yes               | 1    | 1                          | 2   | 8              | 28   | HVQFN33 | J                          |
| LPC1112FHI33/102 | LPC1100L  | 16 kB | 2 kB          | yes               | 1    | 1                          | 1   | 8              | 28   | HVQFN33 | F                          |
| LPC1112FHI33/202 | LPC1100L  | 16 kB | 4 kB          | yes               | 1    | 1                          | 1   | 8              | 28   | HVQFN33 | F                          |
| LPC1112FHI33/203 | LPC1100XL | 16 kB | 4 kB          | yes               | 1    | 1                          | 2   | 8              | 28   | HVQFN33 | F                          |
| LPC1112JHI33/203 | LPC1100XL | 16 kB | 4 kB          | yes               | 1    | 1                          | 2   | 8              | 28   | HVQFN33 | J                          |

### 32-bit ARM Cortex-M0 microcontroller

| Symbol                        | Pin                      | Start<br>logic<br>input | Туре | Reset<br>state<br>[1] | Description                                                                                                                                                                                                                                        |
|-------------------------------|--------------------------|-------------------------|------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PIO0_0 to PIO0_11             |                          |                         | I/O  |                       | <b>Port 0</b> — Port 0 is a 12-bit I/O port with individual direction and function controls for each bit. The operation of port 0 pins depends on the function selected through the IOCONFIG register block.                                       |
| RESET/PIO0_0                  | 3 <u>[2]</u>             | yes                     | 1    | I; PU                 | <b>RESET</b> — External reset input with 20 ns glitch filter. A LOW-going pulse as short as 50 ns on this pin resets the device, causing I/O ports and peripherals to take on their default states, and processor execution to begin at address 0. |
|                               |                          |                         |      |                       | In deep power-down mode, this pin must be pulled HIGH externally. The RESET pin can be left unconnected or be used as a GPIO pin if an external RESET function is not needed and Deep power-down mode is not used.                                 |
|                               |                          |                         | I/O  | -                     | <b>PIO0_0</b> — General purpose digital input/output pin with 10 ns glitch filter.                                                                                                                                                                 |
| PIO0_1/CLKOUT/<br>CT32B0_MAT2 | 4 <u>[3]</u>             | yes                     | I/O  | I; PU                 | <b>PIO0_1</b> — General purpose digital input/output pin. A LOW level on this pin during reset starts the ISP command handler.                                                                                                                     |
|                               |                          |                         | 0    | -                     | CLKOUT — Clockout pin.                                                                                                                                                                                                                             |
|                               |                          |                         | 0    | -                     | CT32B0_MAT2 — Match output 2 for 32-bit timer 0.                                                                                                                                                                                                   |
| PIO0_2/SSEL0/                 | 10 <u>[3]</u>            | yes                     | I/O  | I; PU                 | PIO0_2 — General purpose digital input/output pin.                                                                                                                                                                                                 |
| CT16B0_CAP0                   |                          |                         | I/O  | -                     | SSEL0 — Slave Select for SPI0.                                                                                                                                                                                                                     |
|                               |                          |                         | I    | -                     | CT16B0_CAP0 — Capture input 0 for 16-bit timer 0.                                                                                                                                                                                                  |
| PIO0_3                        | 14 <u>[3]</u>            | yes                     | I/O  | I; PU                 | PIO0_3 — General purpose digital input/output pin.                                                                                                                                                                                                 |
| PIO0_4/SCL                    | 15 <u><sup>[4]</sup></u> | yes                     | I/O  | I; IA                 | <b>PIO0_4</b> — General purpose digital input/output pin (open-drain).                                                                                                                                                                             |
|                               |                          |                         | I/O  | -                     | <b>SCL</b> — I <sup>2</sup> C-bus, open-drain clock input/output. High-current sink only if I <sup>2</sup> C Fast-mode Plus is selected in the I/O configuration register.                                                                         |
| PIO0_5/SDA                    | 16 <u><sup>[4]</sup></u> | yes                     | I/O  | I; IA                 | <b>PIO0_5</b> — General purpose digital input/output pin (open-drain).                                                                                                                                                                             |
|                               |                          |                         | I/O  | -                     | <b>SDA</b> — I <sup>2</sup> C-bus, open-drain data input/output. High-current sink only if I <sup>2</sup> C Fast-mode Plus is selected in the I/O configuration register.                                                                          |
| PIO0_6/SCK0                   | 22 <u>[3]</u>            | yes                     | I/O  | I; PU                 | PIO0_6 — General purpose digital input/output pin.                                                                                                                                                                                                 |
|                               |                          |                         | I/O  | -                     | SCK0 — Serial clock for SPI0.                                                                                                                                                                                                                      |
| PIO0_7/CTS                    | 23 <u>[3]</u>            | yes                     | I/O  | I; PU                 | <b>PIO0_7</b> — General purpose digital input/output pin (high-current output driver).                                                                                                                                                             |
|                               |                          |                         | I    | -                     | CTS — Clear To Send input for UART.                                                                                                                                                                                                                |
| PIO0_8/MISO0/                 | 27 <u>[3]</u>            | yes                     | I/O  | I; PU                 | PIO0_8 — General purpose digital input/output pin.                                                                                                                                                                                                 |
| CT16B0_MAT0                   |                          |                         | I/O  | -                     | MISO0 — Master In Slave Out for SPI0.                                                                                                                                                                                                              |
|                               |                          |                         | 0    | -                     | CT16B0_MAT0 — Match output 0 for 16-bit timer 0.                                                                                                                                                                                                   |
| PIO0_9/MOSI0/                 | 28 <u>[3]</u>            | yes                     | I/O  | I; PU                 | PIO0_9 — General purpose digital input/output pin.                                                                                                                                                                                                 |
| CT16B0_MAT1                   |                          |                         | I/O  | -                     | MOSI0 — Master Out Slave In for SPI0.                                                                                                                                                                                                              |
|                               |                          |                         | 0    | -                     | CT16B0_MAT1 — Match output 1 for 16-bit timer 0.                                                                                                                                                                                                   |

#### Table 8. LPC1100 and LPC1100L series: LPC1113/14 pin description table (LQFP48 package)

#### 32-bit ARM Cortex-M0 microcontroller

| Symbol          |              | Start<br>logic<br>input | Туре | Reset<br>state<br>[1] | Description                                                                                                             |
|-----------------|--------------|-------------------------|------|-----------------------|-------------------------------------------------------------------------------------------------------------------------|
| V <sub>DD</sub> | 6; 29        | -                       | I    | -                     | 3.3 V supply voltage to the internal regulator, the external rail, and the ADC. Also used as the ADC reference voltage. |
| XTALIN          | 4 <u>[6]</u> | -                       | I    | -                     | Input to the oscillator circuit and internal clock generator circuits. Input voltage must not exceed 1.8 V.             |
| XTALOUT         | 5 <u>[6]</u> | -                       | 0    | -                     | Output from the oscillator amplifier.                                                                                   |
| V <sub>SS</sub> | 33           | -                       | -    | -                     | Thermal pad. Connect to ground.                                                                                         |

#### Table 11. LPC1100XL series: LPC1111/12/13/14 pin description table (HVQFN33 package) ... continued

[1] Pin state at reset for default function: I = Input; O = Output; PU = internal pull-up enabled (pins pulled up to full V<sub>DD</sub> level (V<sub>DD</sub> = 3.3 V)); IA = inactive, no pull-up/down enabled.

[2] 5 V tolerant pad. RESET functionality is not available in Deep power-down mode. Use the WAKEUP pin to reset the chip and wake up from Deep power-down mode. An external pull-up resistor is required on this pin for the Deep power-down mode. See Figure 52 for the reset pad configuration.

[3] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors and configurable hysteresis (see Figure 51).

[4] I<sup>2</sup>C-bus pads compliant with the I<sup>2</sup>C-bus specification for I<sup>2</sup>C standard mode and I<sup>2</sup>C Fast-mode Plus. The pin requires an external pull-up to provide output functionality. When power is switched off, this pin is floating and does not disturb the I2C lines. Open-drain configuration applies to all functions on this pin.

[5] 5 V tolerant pad providing digital I/O functions with configurable pull-up/pull-down resistors, configurable hysteresis, and analog input. When configured as a ADC input, digital section of the pad is disabled, and the pin is not 5 V tolerant (see <u>Figure 51</u>).

[6] When the system oscillator is not used, connect XTALIN and XTALOUT as follows: XTALIN can be left floating or can be grounded (grounding is preferred to reduce susceptibility to noise). XTALOUT should be left floating.

#### 32-bit ARM Cortex-M0 microcontroller

- In the LPC1110/11/12/13/14/15, the NVIC supports 32 vectored interrupts including up to 13 inputs to the start logic from individual GPIO pins.
- Four programmable interrupt priority levels with hardware priority level masking.
- Software interrupt generation.

### 7.5.2 Interrupt sources

Each peripheral device has one interrupt line connected to the NVIC but may have several interrupt flags. Individual interrupt flags may also represent more than one interrupt source.

Any GPIO pin (total of up to 42 pins) regardless of the selected function, can be programmed to generate an interrupt on a level, or rising edge or falling edge, or both.

### 7.6 IOCONFIG block

The IOCONFIG block allows selected pins of the microcontroller to have more than one function. Configuration registers control the multiplexers to allow connection between the pin and the on-chip peripherals.

Peripherals should be connected to the appropriate pins prior to being activated and prior to any related interrupt(s) being enabled. Activity of any enabled peripheral function that is not mapped to a related pin should be considered undefined.

### 7.7 Fast general purpose parallel I/O

Device pins that are not connected to a specific peripheral function are controlled by the GPIO registers. Pins may be dynamically configured as inputs or outputs. Multiple outputs can be set or cleared in one write operation.

LPC1110/11/12/13/14/15 use accelerated GPIO functions:

- GPIO registers are a dedicated AHB peripheral so that the fastest possible I/O timing can be achieved.
- Entire port value can be written in one instruction.

Additionally, any GPIO pin (total of up to 42 pins) providing a digital function can be programmed to generate an interrupt on a level, a rising or falling edge, or both.

### 7.7.1 Features

- Bit level port registers allow a single instruction to set or clear any number of bits in one write operation.
- Direction control of individual bits.
- All I/O default to inputs with pull-ups enabled after reset with the exception of the I<sup>2</sup>C-bus pins PIO0\_4 and PIO0\_5.
- Pull-up/pull-down resistor configuration can be programmed through the IOCONFIG block for each GPIO pin (except for pins PIO0\_4 and PIO0\_5).
- On the LPC1100, all GPIO pins (except PIO0\_4 and PIO0\_5) are pulled up to 2.6 V (V<sub>DD</sub> = 3.3 V) if their pull-up resistor is enabled in the IOCONFIG block.

#### 32-bit ARM Cortex-M0 microcontroller

- On the LPC1100L and LPC1100XL series, all GPIO pins (except PIO0\_4 and PIO0\_5) are pulled up to 3.3 V (V<sub>DD</sub> = 3.3 V) if their pull-up resistor is enabled in the IOCONFIG block.
- Programmable open-drain mode for series LPC1100L and LPC1100XL.

### 7.8 UART

The LPC1110/11/12/13/14/15 contain one UART.

Support for RS-485/9-bit mode allows both software address detection and automatic address detection using 9-bit mode.

The UART includes a fractional baud rate generator. Standard baud rates such as 115200 Bd can be achieved with any crystal frequency above 2 MHz.

### 7.8.1 Features

- Maximum UART data bit rate of 3.125 MBit/s.
- 16 Byte Receive and Transmit FIFOs.
- Register locations conform to 16C550 industry standard.
- Receiver FIFO trigger points at 1 B, 4 B, 8 B, and 14 B.
- Built-in fractional baud rate generator covering wide range of baud rates without a need for external crystals of particular values.
- FIFO control mechanism that enables software flow control implementation.
- Support for RS-485/9-bit mode.
- Support for modem control.

### 7.9 SPI serial I/O controller

The LPC1100 and LPC1100L series contain two SPI controllers on the LQFP48 package and one SPI controller on the HVQFN33/TSSOP28/DIP28/TSSOP20/SO20 packages (SPI0).

The LPC1100XL series contain two SPI controllers.

Both SPI controllers support SSP features.

The SPI controller is capable of operation on a SSP, 4-wire SSI, or Microwire bus. It can interact with multiple masters and slaves on the bus. Only a single master and a single slave can communicate on the bus during a given data transfer. The SPI supports full duplex transfers, with frames of 4 bits to 16 bits of data flowing from the master to the slave and from the slave to the master. In practice, often only one of these data flows carries meaningful data.

### 7.9.1 Features

- Maximum SPI speed of 25 Mbit/s (master) or 4.17 Mbit/s (slave) (in SSP mode)
- Compatible with Motorola SPI, 4-wire Texas Instruments SSI, and National Semiconductor Microwire buses
- Synchronous serial communication

32-bit ARM Cortex-M0 microcontroller

- Master or slave operation
- 8-frame FIFOs for both transmit and receive
- 4-bit to 16-bit frame

### 7.10 I<sup>2</sup>C-bus serial I/O controller

The LPC1110/11/12/13/14/15 contain one I<sup>2</sup>C-bus controller.

Remark: Part LPC1112FDH20/102 does not contain the I<sup>2</sup>C-bus controller.

The I<sup>2</sup>C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock Line (SCL) and a Serial DAta line (SDA). Each device is recognized by a unique address and can operate as either a receiver-only device (e.g., an LCD driver) or a transmitter with the capability to both receive and send information (such as memory). Transmitters and/or receivers can operate in either master or slave mode, depending on whether the chip has to initiate a data transfer or is only addressed. The I<sup>2</sup>C is a multi-master bus and can be controlled by more than one bus master connected to it.

### 7.10.1 Features

- The I<sup>2</sup>C-interface is a standard I<sup>2</sup>C-bus compliant interface with open-drain pins. The I<sup>2</sup>C-bus interface also supports Fast-mode Plus with bit rates up to 1 Mbit/s.
- Easy to configure as master, slave, or master/slave.
- Programmable clocks allow versatile rate control.
- Bidirectional data transfer between masters and slaves.
- Multi-master bus (no central master).
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus.
- Serial clock synchronization allows devices with different bit rates to communicate via one serial bus.
- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer.
- The I<sup>2</sup>C-bus can be used for test and diagnostic purposes.
- The I<sup>2</sup>C-bus controller supports multiple address recognition and a bus monitor mode.

### 7.11 10-bit ADC

The LPC1110/11/12/13/14/15 contain one ADC. It is a single 10-bit successive approximation ADC with eight channels.

#### 7.11.1 Features

- 10-bit successive approximation ADC.
- Input multiplexing among 8 pins.
- Power-down mode.
- Measurement range 0 V to V<sub>DD</sub>.
- 10-bit conversion time  $\ge$  2.44  $\mu$ s (up to 400 kSamples/s).
- Burst conversion mode for single or multiple inputs.

32-bit ARM Cortex-M0 microcontroller

The start logic must be configured in the system configuration block and in the NVIC before being used.

#### 7.17.2 Reset

Reset has four sources on the LPC1110/11/12/13/14/15: the RESET pin, the Watchdog reset, Power-On Reset (POR), and the BrownOut Detection (BOD) circuit. The RESET pin is a Schmitt trigger input pin. Assertion of chip reset by any source, once the operating voltage attains a usable level, starts the IRC and initializes the flash controller.

A LOW-going pulse as short as 50 ns resets the part.

When the internal Reset is removed, the processor begins executing at address 0, which is initially the Reset vector mapped from the boot block. At that point, all of the processor and peripheral registers have been initialized to predetermined values.

An external pull-up resistor is required on the RESET pin if Deep power-down mode is used.

### 7.17.3 Brownout detection

The LPC1110/11/12/13/14/15 includes up to four levels for monitoring the voltage on the  $V_{DD}$  pin. If this voltage falls below one of the selected levels, the BOD asserts an interrupt signal to the NVIC. This signal can be enabled for interrupt in the Interrupt Enable Register in the NVIC in order to cause a CPU interrupt; if not, software can monitor the signal by reading a dedicated status register. Four threshold levels can be selected to cause a forced reset of the chip.

### 7.17.4 Code security (Code Read Protection - CRP)

This feature of the LPC1110/11/12/13/14/15 allows user to enable different levels of security in the system so that access to the on-chip flash and use of the Serial Wire Debugger (SWD) and In-System Programming (ISP) can be restricted. When needed, CRP is invoked by programming a specific pattern into a dedicated flash location. IAP commands are not affected by the CRP.

In addition, ISP entry via the PIO0\_1 pin can be disabled without enabling CRP. For details see the *LPC111x user manual*.

There are three levels of Code Read Protection:

- CRP1 disables access to the chip via the SWD and allows partial flash update (excluding flash sector 0) using a limited set of the ISP commands. This mode is useful when CRP is required and flash field updates are needed but all sectors can not be erased.
- 2. CRP2 disables access to the chip via the SWD and only allows full flash erase and update using a reduced set of the ISP commands.
- 3. Running an application with level CRP3 selected fully disables any access to the chip via the SWD pins and the ISP. This mode effectively disables ISP override using PIO0\_1 pin, too. It is up to the user's application to provide (if needed) flash update mechanism using IAP calls or call reinvoke ISP command to enable flash update via the UART.

32-bit ARM Cortex-M0 microcontroller

### 10. Static characteristics

### 10.1 LPC1100, LPC1100L series

#### Table 16. Static characteristics (LPC1100, LPC1100L series)

 $T_{amb} = -40 \$ °C to +85 °C, unless otherwise specified.

| Symbol          | Parameter                               | Conditions                                  |                  | Min      | Typ <u>[1]</u>      | Max | Unit |
|-----------------|-----------------------------------------|---------------------------------------------|------------------|----------|---------------------|-----|------|
| V <sub>DD</sub> | supply voltage (core and external rail) |                                             |                  | 1.8      | 3.3                 | 3.6 | V    |
| LPC1100 se      | ries (LPC111x/101/201/301               | ) power consumption                         |                  |          | U                   |     |      |
| I <sub>DD</sub> | supply current                          | Active mode; code                           |                  |          |                     |     |      |
|                 |                                         | while(1){}                                  |                  |          |                     |     |      |
|                 |                                         | executed from flash                         |                  |          |                     |     |      |
|                 |                                         | system clock = 12 MHz                       | [2][3][4]        | -        | 3                   | -   | mA   |
|                 |                                         | V <sub>DD</sub> = 3.3 V                     | [5][6]           |          |                     |     |      |
|                 |                                         | system clock = 50 MHz                       | [2][3][5]        | -        | 9                   | -   | mA   |
|                 |                                         | V <sub>DD</sub> = 3.3 V                     | <u>[6][7]</u>    |          |                     |     |      |
|                 |                                         | Sleep mode;                                 | [2][3][4]        | -        | 2                   | -   | mA   |
|                 |                                         | system clock = 12 MHz                       | [5][6]           |          |                     |     |      |
|                 |                                         | V <sub>DD</sub> = 3.3 V                     |                  |          |                     |     |      |
|                 |                                         | Deep-sleep mode;<br>V <sub>DD</sub> = 3.3 V | [2][3][8]        | -        | 6                   | -   | μΑ   |
|                 |                                         | Deep power-down mode;<br>$V_{DD} = 3.3 V$   | <u>[2][9]</u>    | -        | 220                 | -   | nA   |
| LPC1100L s      | eries (LPC111x/002/102/20               | 2/302) power consumption                    | in low-c         | urrent m | ode <sup>[11]</sup> |     | 1    |
| I <sub>DD</sub> | supply current                          | Active mode; code                           |                  |          |                     |     |      |
|                 |                                         | while(1){}                                  |                  |          |                     |     |      |
|                 |                                         | executed from flash                         |                  |          |                     |     |      |
|                 |                                         | system clock = 1 MHz                        | [2][3][5]        | -        | 840                 | -   | μA   |
|                 |                                         | V <sub>DD</sub> = 3.3 V                     | [6][10]          |          |                     |     |      |
|                 |                                         | system clock = 6 MHz                        | [2][3][5]        | -        | 1                   | -   | mA   |
|                 |                                         | $V_{DD} = 3.3 V$                            | <u>[6][10]</u>   |          |                     |     |      |
|                 |                                         | system clock = 12 MHz                       | [2][3][4]        | -        | 2                   | -   | mA   |
|                 |                                         | $V_{DD} = 3.3 V$                            | [5][6]           |          |                     |     |      |
|                 |                                         | system clock = 50 MHz                       | [2][3][5]        | -        | 7                   | -   | mA   |
|                 |                                         | $V_{DD} = 3.3 V$                            | [6][7]           |          |                     |     |      |
|                 |                                         | Sleep mode;                                 | [2][3][4]        | -        | 1                   | -   | mA   |
|                 |                                         | system clock = 12 MHz                       | [5][6]           |          |                     |     |      |
|                 |                                         | V <sub>DD</sub> = 3.3 V                     |                  |          |                     |     |      |
|                 |                                         | system clock = 50 MHz                       | [2][3][4]        | -        | 5                   | -   | mA   |
|                 |                                         | V <sub>DD</sub> = 3.3 V                     | [5][6]           |          |                     |     |      |
|                 |                                         | Deep-sleep mode;<br>V <sub>DD</sub> = 3.3 V | <u>[2][3][8]</u> | -        | 2                   | -   | μΑ   |
|                 |                                         | Deep power-down mode;<br>$V_{DD} = 3.3 V$   | [2][9]           | -        | 220                 | -   | nA   |

© NXP Semiconductors N.V. 2014. All rights reserved.

32-bit ARM Cortex-M0 microcontroller

#### Table 16. Static characteristics (LPC1100, LPC1100L series) ... continued

 $T_{amb} = -40 \ ^{\circ}C$  to +85  $^{\circ}C$ , unless otherwise specified.

| Symbol                                       | Parameter                                 | Conditions                                                                                                                                                                                              | Min                | Typ <u>[1]</u>      | Max                | Unit |
|----------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------|--------------------|------|
| I <sub>OZ</sub>                              | OFF-state output<br>current               | $V_O = 0 V; V_O = V_{DD};$<br>on-chip pull-up/down<br>resistors disabled                                                                                                                                | -                  | 0.5                 | 10                 | nA   |
| VI                                           | input voltage                             | pin configured to provide [12][13]<br>a digital function [14]                                                                                                                                           | 0                  | -                   | 5.0                | V    |
| Vo                                           | output voltage                            | output active                                                                                                                                                                                           | 0                  | -                   | V <sub>DD</sub>    | V    |
| V <sub>IH</sub>                              | HIGH-level input<br>voltage               |                                                                                                                                                                                                         | 0.7V <sub>DD</sub> | -                   | -                  | V    |
| V <sub>IL</sub>                              | LOW-level input voltage                   |                                                                                                                                                                                                         | -                  | -                   | $0.3V_{DD}$        | V    |
| V <sub>hys</sub>                             | hysteresis voltage                        |                                                                                                                                                                                                         | 0.4                | -                   | -                  | V    |
| V <sub>OH</sub>                              | HIGH-level output voltage                 | $\begin{array}{l} 2.5 \ V \leq V_{DD} \leq 3.6 \ V; \\ I_{OH} = -20 \ mA \end{array} \label{eq:VDD}$                                                                                                    | $V_{DD}-0.4$       | -                   | -                  | V    |
|                                              |                                           | $\begin{array}{l} 1.8 \ V \leq V_{DD} < 2.5 \ V; \\ I_{OH} = -12 \ mA \end{array} \label{eq:VDD}$                                                                                                       | $V_{DD} - 0.4$     | -                   | -                  | V    |
| V <sub>OL</sub>                              | LOW-level output voltage                  | $\begin{array}{l} 2.5 \ V \leq V_{DD} \leq 3.6 \ V; \\ I_{OL} = 4 \ mA \end{array} \label{eq:VDD}$                                                                                                      | -                  | -                   | 0.4                | V    |
|                                              |                                           | $\begin{array}{l} 1.8 \ V \leq V_{DD} < 2.5 \ V; \\ I_{OL} = 3 \ mA \end{array} \label{eq:VDD}$                                                                                                         | -                  | -                   | 0.4                | V    |
| I <sub>OH</sub> HIGH-level output<br>current |                                           | $V_{OH} = V_{DD} - 0.4 V;$<br>2.5 V $\leq V_{DD} \leq 3.6 V$                                                                                                                                            | 20                 | -                   | -                  | mA   |
|                                              |                                           | $1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.5 \text{ V}$                                                                                                                                               | 12                 | -                   | -                  | mA   |
| I <sub>OL</sub>                              | LOW-level output<br>current               | $V_{OL} = 0.4 \text{ V}$ $2.5 \text{ V} \leq V_{DD} \leq 3.6 \text{ V}$                                                                                                                                 | 4                  | -                   | -                  | mA   |
|                                              |                                           | $1.8 \text{ V} \leq \text{V}_{\text{DD}}$ < $2.5 \text{ V}$                                                                                                                                             | 3                  | -                   | -                  | mA   |
| I <sub>OLS</sub>                             | LOW-level short-circuit<br>output current | $V_{OL} = V_{DD} $ <sup>[15]</sup>                                                                                                                                                                      | -                  | -                   | 50                 | mA   |
| I <sub>pd</sub>                              | pull-down current                         | V <sub>1</sub> = 5 V                                                                                                                                                                                    | 10                 | 50                  | 150                | μA   |
| I <sub>pu</sub>                              | pull-up current                           | $V_{I} = 0 V$ $2.0 V \le V_{DD} \le 3.6 V$                                                                                                                                                              | -15                | -50                 | -85                | μΑ   |
|                                              |                                           | $1.8 \text{ V} \le \text{V}_{\text{DD}}$ < 2.0 V                                                                                                                                                        | -10                | -50                 | -85                | μA   |
|                                              |                                           | V <sub>DD</sub> < V <sub>I</sub> < 5 V                                                                                                                                                                  | 0                  | 0                   | 0                  | μA   |
| I <sup>2</sup> C-bus pins                    | s (PIO0_4 and PIO0_5)                     | L                                                                                                                                                                                                       | 1                  |                     |                    |      |
| V <sub>IH</sub>                              | HIGH-level input voltage                  |                                                                                                                                                                                                         | 0.7V <sub>DD</sub> | -                   | -                  | V    |
| V <sub>IL</sub>                              | LOW-level input voltage                   |                                                                                                                                                                                                         | -                  | -                   | 0.3V <sub>DD</sub> | V    |
| V <sub>hys</sub>                             | hysteresis voltage                        |                                                                                                                                                                                                         | -                  | 0.05V <sub>DD</sub> | -                  | V    |
| I <sub>OL</sub>                              | LOW-level output<br>current               | $\label{eq:Volume} \begin{array}{l} V_{OL} = 0.4 \ \text{V; } l^2 C\text{-bus pins} \\ \text{configured as standard} \\ \text{mode pins} \\ 2.5 \ \text{V} \leq V_{DD} \leq 3.6 \ \text{V} \end{array}$ | 3.5                | -                   | -                  | mA   |
|                                              |                                           | $1.8 \text{ V} \le \text{V}_{\text{DD}}$ < 2.5 V                                                                                                                                                        | 3                  | -                   | -                  |      |

32-bit ARM Cortex-M0 microcontroller

| Symbol                                      | Parameter                   | Conditions                                                                                 | Min         | Typ[1] | Max  | Unit |
|---------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------|-------------|--------|------|------|
| I <sub>OL</sub> LOW-level output<br>current |                             | V <sub>OL</sub> = 0.4 V; I <sup>2</sup> C-bus pins<br>configured as Fast-mode<br>Plus pins | 20          | -      | -    | mA   |
|                                             |                             | $2.5~V \leq V_{DD} \leq 3.6~V$                                                             |             |        |      |      |
|                                             |                             | $1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.5 \text{ V}$                                  | 16          | -      | -    |      |
| I <sub>LI</sub> input leak                  | input leakage current       | $V_I = V_{DD}$ [1]                                                                         | <u>6]</u> _ | 2      | 4    | μA   |
|                                             |                             | V <sub>1</sub> = 5 V                                                                       | -           | 10     | 22   | μA   |
| Oscillator p                                | bins                        |                                                                                            | 1           | 4      |      |      |
| V <sub>i(xtal)</sub>                        | crystal input voltage       |                                                                                            | -0.5        | 1.8    | 1.95 | V    |
| V <sub>o(xtal)</sub>                        | crystal output voltage      |                                                                                            | -0.5        | 1.8    | 1.95 | V    |
| Pin capacita                                | ance                        |                                                                                            | 1           | 4      |      |      |
| C <sub>io</sub>                             | input/output<br>capacitance | pins configured for analog function                                                        | -           | -      | 7.1  | pF   |
|                                             |                             | I <sup>2</sup> C-bus pins (PIO0_4 and PIO0_5)                                              | -           | -      | 2.5  | pF   |
|                                             |                             | pins configured as GPIO                                                                    | -           | -      | 2.8  | pF   |

#### Table 16. Static characteristics (LPC1100, LPC1100L series) ... continued

 $T_{amb} = -40 \,^{\circ}\text{C}$  to +85  $\,^{\circ}\text{C}$ , unless otherwise specified.

[1] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.

 $[2] \quad T_{amb} = 25 \ ^{\circ}C.$ 

[3] I<sub>DD</sub> measurements were performed with all pins configured as GPIO outputs driven LOW and pull-up resistors disabled.

[4] IRC enabled; system oscillator disabled; system PLL disabled.

[5] BOD disabled.

[6] All peripherals disabled in the SYSAHBCLKCTRL register. Peripheral clocks to UART and SPI0/1 disabled in system configuration block.

- [7] IRC disabled; system oscillator enabled; system PLL enabled.
- [8] All oscillators and analog blocks turned off in the PDSLEEPCFG register; PDSLEEPCFG = 0x0000 18FF.
- [9] WAKEUP pin and RESET pin are pulled HIGH externally.
- [10] System oscillator enabled; IRC disabled; system PLL disabled.

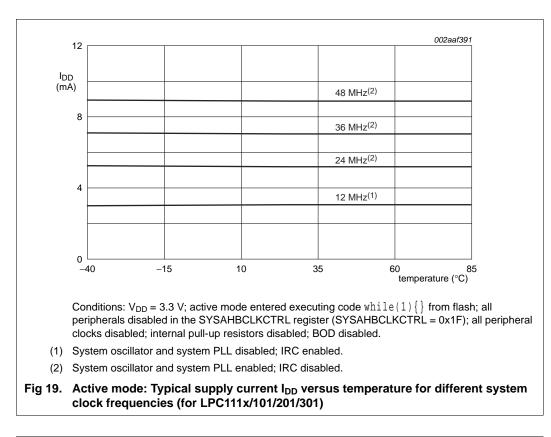
[11] Low-current mode PWR\_LOW\_CURRENT selected when running the set\_power routine in the power profiles.

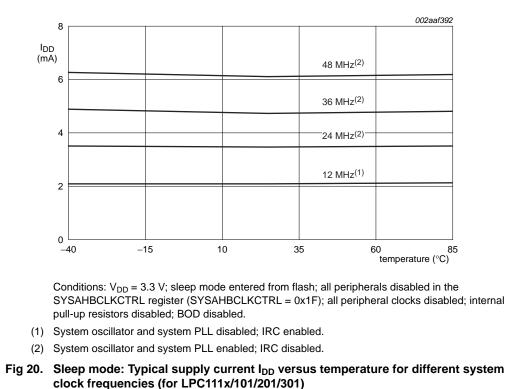
[12] Including voltage on outputs in 3-state mode.

[13]  $V_{DD}$  supply voltage must be present.

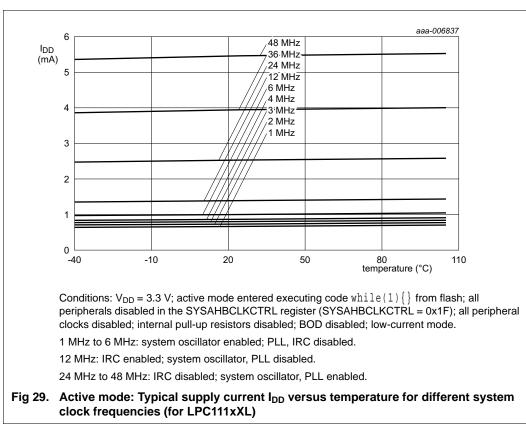
[14] 3-state outputs go into 3-state mode in Deep power-down mode.

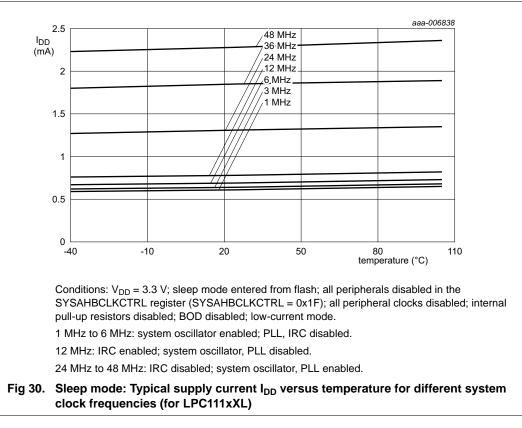
[15] Allowed as long as the current limit does not exceed the maximum current allowed by the device.


[16] To  $V_{\text{SS}}.$ 


32-bit ARM Cortex-M0 microcontroller

| Symbol                                       | Parameter                                  | Conditions                                                                                                                                        | Min                | Typ[1] | Max                | Unit |
|----------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|--------------------|------|
| V <sub>IL</sub>                              | LOW-level input voltage                    |                                                                                                                                                   | -                  | -      | 0.3V <sub>DD</sub> | V    |
| V <sub>hys</sub>                             | hysteresis voltage                         |                                                                                                                                                   | -                  | 0.4    | -                  | V    |
| V <sub>OH</sub> HIGH-level output<br>voltage |                                            | $\begin{array}{l} 2.5 \ V \leq V_{DD} \leq 3.6 \ V; \\ I_{OH} = -4 \ mA \end{array} \label{eq:VDD}$                                               | $V_{DD}-0.4$       | -      | -                  | V    |
|                                              |                                            | $\begin{array}{l} 1.8 \ \text{V} \leq \text{V}_{\text{DD}} < 2.5 \ \text{V}; \\ \text{I}_{\text{OH}} = -3 \ \text{mA} \end{array}$                | $V_{DD}-0.4$       | -      | -                  | V    |
| V <sub>OL</sub>                              | LOW-level output voltage                   | $\begin{array}{l} 2.5 \ \text{V} \leq \text{V}_{DD} \leq 3.6 \ \text{V}; \\ \text{I}_{OL} = 4 \ \text{mA} \end{array} \end{array} \label{eq:VDD}$ | -                  | -      | 0.4                | V    |
|                                              |                                            | $\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{DD} < 2.5 \mbox{ V}; \\ \mbox{I}_{OL} = 3 \mbox{ mA} \end{array}$                   | -                  | -      | 0.4                | V    |
| I <sub>OH</sub>                              | HIGH-level output current                  | $V_{OH} = V_{DD} - 0.4 V;$<br>2.5 V $\leq V_{DD} \leq 3.6 V$                                                                                      | -4                 | -      | -                  | mA   |
|                                              |                                            | $1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.5 \text{ V}$                                                                                          | -3                 | -      | -                  | mA   |
| I <sub>OL</sub>                              | LOW-level output current                   | $V_{OL} = 0.4 V$<br>2.5 V $\leq V_{DD} \leq 3.6 V$                                                                                                | 4                  | -      | -                  | mA   |
|                                              |                                            | $1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.5 \text{ V}$                                                                                          | 3                  | -      | -                  | mA   |
| I <sub>OHS</sub>                             | HIGH-level short-circuit<br>output current | V <sub>OH</sub> = 0 V [16]                                                                                                                        | -                  | -      | -45                | mA   |
| I <sub>OLS</sub>                             | LOW-level short-circuit<br>output current  | $V_{OL} = V_{DD} $ [16]                                                                                                                           | -                  | -      | 50                 | mA   |
| I <sub>pd</sub>                              | pull-down current                          | V <sub>1</sub> = 5 V                                                                                                                              | 10                 | 50     | 150                | μA   |
| I <sub>pu</sub>                              | pull-up current                            | $V_{I} = 0 V;$<br>2.0 V $\leq V_{DD} \leq 3.6 V$                                                                                                  | -15                | -50    | -85                | μA   |
|                                              |                                            | $1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.0 \text{ V}$                                                                                          | -10                | -50    | -85                | μA   |
|                                              |                                            | V <sub>DD</sub> < V <sub>I</sub> < 5 V                                                                                                            | 0                  | 0      | 0                  | μA   |
| High-drive o                                 | output pin (PIO0_7)                        |                                                                                                                                                   |                    |        |                    |      |
| IIL                                          | LOW-level input current                    | V <sub>I</sub> = 0 V; on-chip pull-up resistor disabled                                                                                           | -                  | 0.5    | 10                 | nA   |
| I <sub>IH</sub>                              | HIGH-level input<br>current                | V <sub>I</sub> = V <sub>DD</sub> ; on-chip<br>pull-down resistor<br>disabled                                                                      | -                  | 0.5    | 10                 | nA   |
| I <sub>OZ</sub>                              | OFF-state output<br>current                | V <sub>O</sub> = 0 V; V <sub>O</sub> = V <sub>DD</sub> ;<br>on-chip pull-up/down<br>resistors disabled                                            | -                  | 0.5    | 10                 | nA   |
| VI                                           | input voltage                              | pin configured to provide [13][14]<br>a digital function [15]                                                                                     | -                  | -      | 5.0                | V    |
| Vo                                           | output voltage                             | output active                                                                                                                                     | 0                  | -      | V <sub>DD</sub>    | V    |
| V <sub>IH</sub>                              | HIGH-level input voltage                   |                                                                                                                                                   | 0.7V <sub>DD</sub> | -      | -                  | V    |
| V <sub>IL</sub>                              | LOW-level input voltage                    |                                                                                                                                                   | -                  | -      | 0.3V <sub>DD</sub> | V    |
| V <sub>hys</sub>                             | hysteresis voltage                         |                                                                                                                                                   | 0.4                | -      | -                  | V    |


#### Table 17. Static characteristics (LPC1100XL series) ... continued $T_{amb} = -40 \ ^{\circ}C$ to +105 $^{\circ}C$ . unless otherwise specified.

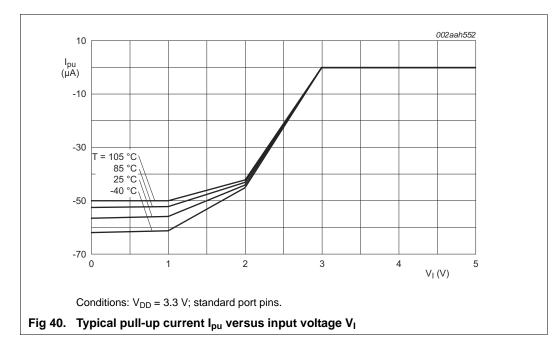

#### 32-bit ARM Cortex-M0 microcontroller

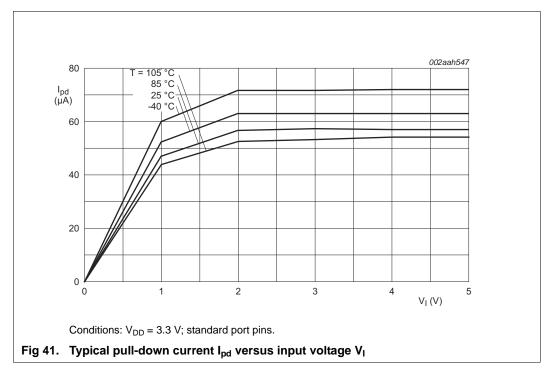




32-bit ARM Cortex-M0 microcontroller

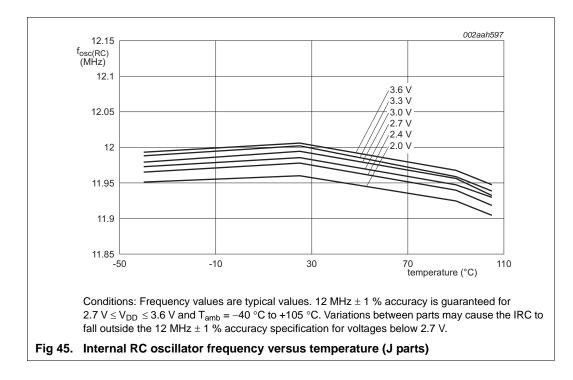






All information provided in this document is subject to legal disclaimers

LPC111X

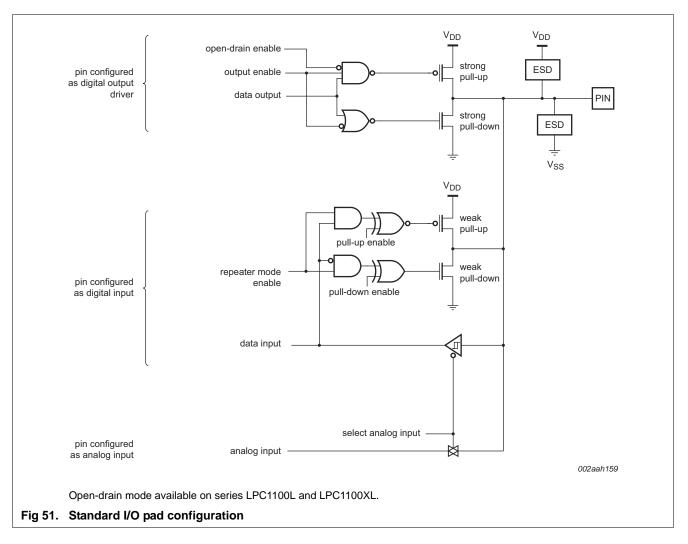
© NXP Semiconductors N.V. 2014. All rights reserved.


32-bit ARM Cortex-M0 microcontroller

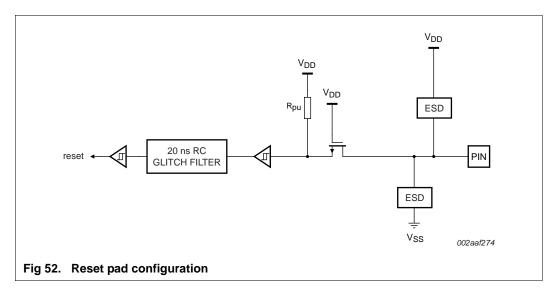




Product data sheet


32-bit ARM Cortex-M0 microcontroller




### **NXP Semiconductors**

# LPC1110/11/12/13/14/15

32-bit ARM Cortex-M0 microcontroller



### 12.6 Reset pad configuration



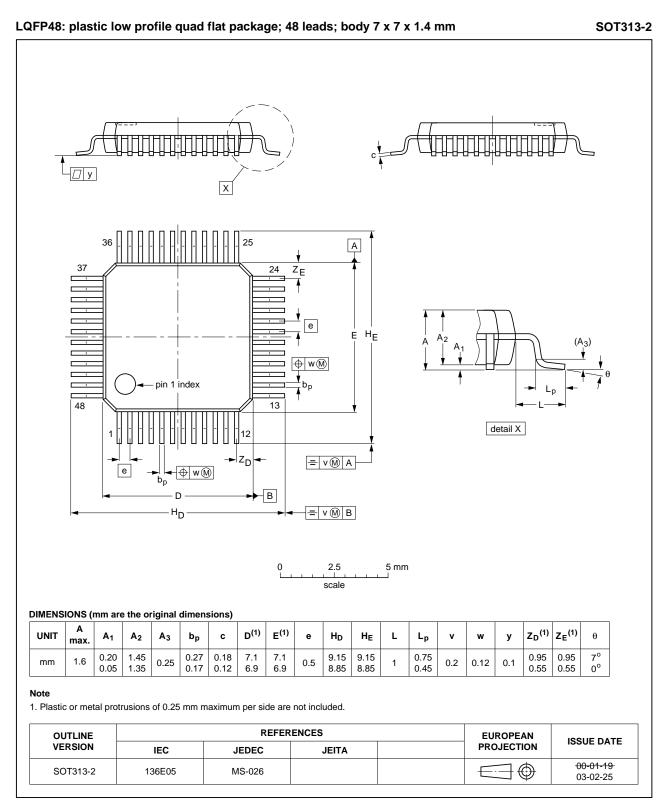
LPC111X

All information provided in this document is subject to legal disclaimers.

### 32-bit ARM Cortex-M0 microcontroller

### 12.7 ElectroMagnetic Compatibility (EMC)

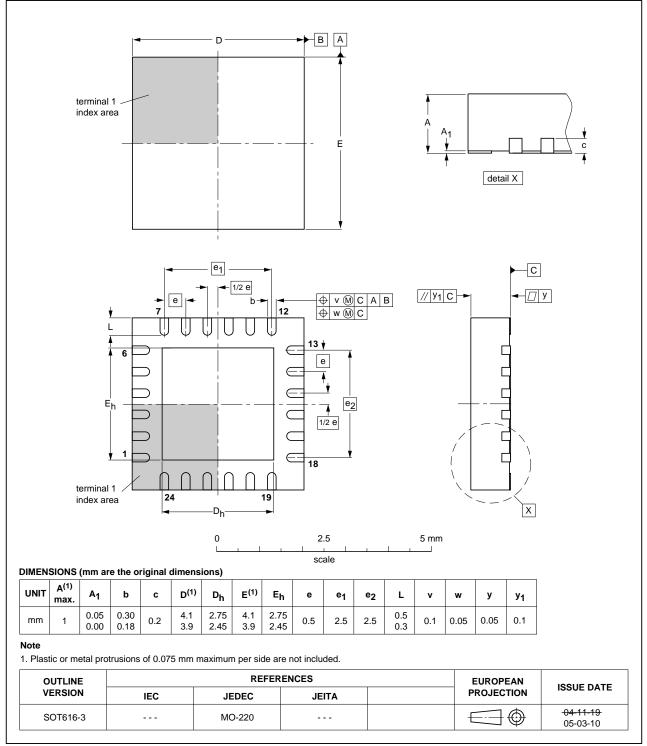
Radiated emission measurements according to the IEC61967-2 standard using the TEM-cell method are shown for the LPC1114FBD48/302 in Table 32.


# Table 32. ElectroMagnetic Compatibility (EMC) for part LPC1114FBD48/302 (TEM-cell method)

 $V_{DD} = 3.3 V; T_{amb} = 25 °C.$ 

| Parameter                | Frequency band           | System clo    | System clock = |        |          |  |  |
|--------------------------|--------------------------|---------------|----------------|--------|----------|--|--|
|                          |                          | 12 MHz 24 MHz |                | 48 MHz |          |  |  |
| Input clock:             | IRC (12 MHz)             |               |                | I      | <b>I</b> |  |  |
| maximum<br>peak level    | 150 kHz to 30 MHz        | -7            | -5             | -7     | dBμV     |  |  |
|                          | 30 MHz to 150 MHz        | -2            | 1              | 10     | dBμV     |  |  |
|                          | 150 MHz to 1 GHz         | 4             | 8              | 16     | dBμV     |  |  |
| IEC level <sup>[1]</sup> | -                        | 0             | Ν              | Μ      | -        |  |  |
| Input clock:             | crystal oscillator (12 l | MHz)          |                |        |          |  |  |
| maximum<br>peak level    | 150 kHz to 30 MHz        | -7            | -7             | -7     | dBμV     |  |  |
|                          | 30 MHz to 150 MHz        | -2            | 1              | 8      | dBμV     |  |  |
|                          | 150 MHz to 1 GHz         | 4             | 7              | 14     | dBμV     |  |  |
| IEC level <sup>[1]</sup> | -                        | 0             | Ν              | Μ      | -        |  |  |

[1] IEC levels refer to Appendix D in the IEC61967-2 Specification.


32-bit ARM Cortex-M0 microcontroller



#### Fig 60. Package outline SOT313-2 (LQFP48)

LPC111X Product data sheet © NXP Semiconductors N.V. 2014. All rights reserved.

32-bit ARM Cortex-M0 microcontroller



### HVQFN24: plastic thermal enhanced very thin quad flat package; no leads; 24 terminals; body 4 x 4 x 0.85 mm

SOT616-3

Fig 61. Package outline SOT616-3 (HVQFN24)

### 32-bit ARM Cortex-M0 microcontroller

| Document ID             | Release date                                                                                                                    | Data sheet status                                                                                                 | Change notice                                                            | Supersedes                                                                         |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Modifications:          | BOD level 0 for                                                                                                                 | reset added in Table 15.                                                                                          | •                                                                        | 1                                                                                  |
| LPC111X v.7.4           | 20120730                                                                                                                        | Product data sheet                                                                                                | -                                                                        | LPC111X v.7.3                                                                      |
| Modifications:          | HVQFN33"<br>(HVQFN33                                                                                                            |                                                                                                                   | XL series: LPC111                                                        | 1100XL series pin configuratior<br>1/12/13/14 pin description table                |
| LPC111X v.7.3           | 20120706                                                                                                                        | Product data sheet                                                                                                | -                                                                        | LPC111X v.7.2                                                                      |
| Modifications:          |                                                                                                                                 | Dinout for part LPC1112F<br>Figure 10.                                                                            | HN24/202. Pin XT                                                         | ALOUT replaced by V <sub>DD</sub> . See                                            |
| LPC111X v.7.2           | 20120604                                                                                                                        | Product data sheet                                                                                                | -                                                                        | LPC111X v.7.1                                                                      |
| Modifications:          | $V \le V_{DD} \le 3$<br>• Capture-cle                                                                                           | 3.6 V in Table 13).                                                                                               |                                                                          | s to 1.8 V $\leq$ V <sub>DD</sub> < 2.5 V and 2.5<br>ter/timers (see Section 7.12; |
|                         | <ul> <li>Figure 47 u</li> <li>Added Sec</li> <li>Added LPC</li> </ul>                                                           | updated for parts with control<br>tion 9.5 "CoreMark data"<br>C1100L series part (LPC1<br>equency range corrected | ,<br>1112FHN24/202).                                                     | ain mode.                                                                          |
| LPC111X v.7.1           | 20120401                                                                                                                        | Product data sheet                                                                                                | -                                                                        | LPC111X v.7                                                                        |
| Modifications:          | Added HVC                                                                                                                       | QFN33 (5x5) reflow sold                                                                                           | ering information.                                                       |                                                                                    |
| LPC111X v.7             | 20120301                                                                                                                        | Product data sheet                                                                                                | -                                                                        | LPC1110_11_12_13_14 v.6                                                            |
| Modifications:          | LPC1112FF<br>LPC1113FF<br>LPC1114FF                                                                                             | HN33/203, LPC1113FHN                                                                                              | 133/203, LPC1112F<br>133/303, LPC1114F<br>133/303, LPC1114F              | HI33/203, LPC1113FBD48/303<br>BD48/303,<br>HI33/303, LPC1114FBD48/323              |
| LPC1110_11_12_13_14 v.6 | 20111102                                                                                                                        | Product data sheet                                                                                                | -                                                                        | LPC1111_12_13_14 v.5                                                               |
| Modifications:          | <ul> <li>Parts LPC1</li> </ul>                                                                                                  | 112FHI33/202 and LPC<br>112FDH28/102, LPC111<br>DH20/102, LPC1110FD2                                              | 4FDH28/102, LPC                                                          |                                                                                    |
| LPC1111_12_13_14 v.5    | 20110622                                                                                                                        | Product data sheet                                                                                                | -                                                                        | LPC1111_12_13_14 v.4                                                               |
| Modifications:          | <ul> <li>Pull-up leve</li> <li>Parameter</li> <li>WWDT for</li> <li>Programma<br/>and Section</li> <li>Condition for</li> </ul> | n 7.12.<br>or parameter T <sub>stg</sub> in Tabl<br>4 of Table 5 updated.                                         | Table 4 and Sectio<br>le 17.<br>302 added in Secti<br>r parts LPC111x/10 | n 7.7.1.                                                                           |
|                         |                                                                                                                                 | PLCC44 package information                                                                                        | ation                                                                    |                                                                                    |
|                         |                                                                                                                                 |                                                                                                                   |                                                                          |                                                                                    |

#### Table 34. Revision history ...continued