

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	AVR
Core Size	8-Bit
Speed	4MHz
Connectivity	SPI
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	3
Program Memory Size	2KB (1K x 16)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.209", 5.30mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at90ls2323-4sc

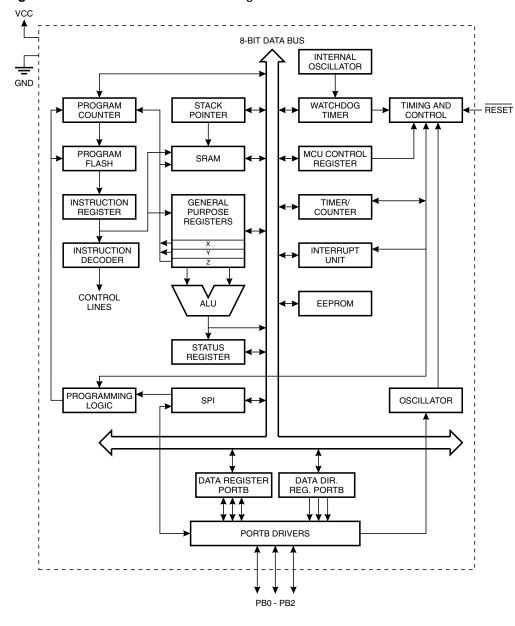
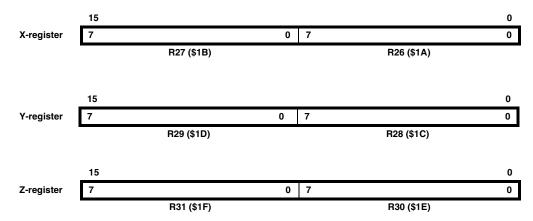


Figure 2. The AT90S/LS2323 Block Diagram

The AT90S2323/2343 provides the following features: 2K bytes of In-System Programmable Flash, 128 bytes EEPROM, 128 bytes SRAM, 3 (AT90S/LS2323)/5 (AT90S/LS2343) general-purpose I/O lines, 32 general-purpose working registers, an 8-bit timer/counter, internal and external interrupts, programmable Watchdog Timer with internal oscillator, an SPI serial port for Flash Memory downloading and two software-selectable power-saving modes. The Idle mode stops the CPU while allowing the SRAM, timer/counters, SPI port and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the oscillator, disabling all other chip functions until the next interrupt or hardware reset.

The device is manufactured using Atmel's high-density nonvolatile memory technology. The On-chip Flash allows the program memory to be reprogrammed in-system through an SPI serial interface. By combining an 8-bit RISC CPU with ISP Flash on a monolithic



X-register, Y-register and Z-register

The registers R26..R31 have some added functions to their general-purpose usage. These registers are the address pointers for indirect addressing of the Data Space. The three indirect address registers X, Y, and Z, are defined in Figure 8.

Figure 8. The X-, Y-, and Z-registers

In the different addressing modes, these address registers have functions as fixed displacement, automatic increment and decrement (see the descriptions for the different instructions).

ALU – Arithmetic Logic Unit

The high-performance AVR ALU operates in direct connection with all the 32 general-purpose working registers. Within a single clock cycle, ALU operations between registers in the register file are executed. The ALU operations are divided into three main categories: arithmetic, logic and bit functions.

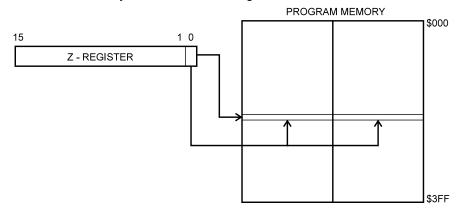
In-System Programmable Flash Program Memory

The AT90S2323/2343 contains 2K bytes On-chip, In-System Programmable Flash memory for program storage. Since all instructions are 16- or 32-bit words, the Flash is organized as 1K x 16. The Flash memory has an endurance of at least 1000 write/erase cycles.

The AT90S2323/2343 Program Counter (PC) is 10 bits wide, hence addressing the 1024 program memory addresses. See page 42 for a detailed description on Flash data programming.

Constant tables must be allocated within the address 0 - 2K (see the LPM – Load Program Memory instruction description on page 60).

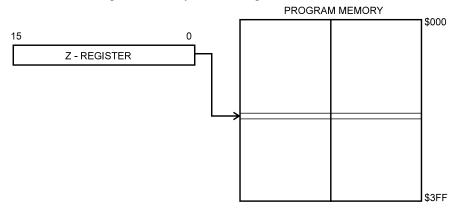
See page 12 for the different addressing modes.


EEPROM Data Memory

The AT90S2323/2343 contains 128 bytes of EEPROM data memory. It is organized as a separate data space, in which single bytes can be read and written. The EEPROM has an endurance of at least 100,000 write/erase cycles. The access between the EEPROM and the CPU is described on page 32, specifying the EEPROM address register, the EEPROM data register and the EEPROM control register.

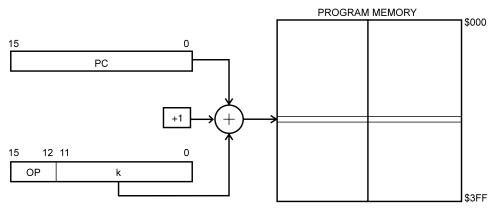
For the SPI data downloading, see page 42 for a detailed description.

Constant Addressing Using the LPM Instruction


Figure 18. Code Memory Constant Addressing

Constant byte address is specified by the Z-register contents. The 15 MSBs select word address (0 - 1K), the LSB selects low byte if cleared (LSB = 0) or high byte if set (LSB = 1).

Indirect Program Addressing, IJMP and ICALL


Figure 19. Indirect Program Memory Addressing

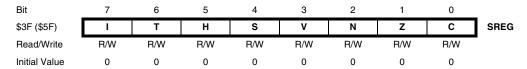
Program execution continues at address contained by the Z-register (i.e., the PC is loaded with the contents of the Z-register).

Relative Program Addressing, RJMP and RCALL

Figure 20. Relative Program Memory Addressing

Program execution continues at address PC + k + 1. The relative address k is -2048 to 2047.

and OUT, the I/O addresses \$00 - \$3F must be used. When addressing I/O registers as SRAM, \$20 must be added to these addresses. All I/O register addresses throughout this document are shown with the SRAM address in parentheses.


For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

Some of the status flags are cleared by writing a logical "1" to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a "1" back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

The I/O and peripherals control registers are explained in the following sections.

Status Register - SREG

The AVR Status Register (SREG) at I/O space location \$3F (\$5F) is defined as:

• Bit 7 - I: Global Interrupt Enable

The global interrupt enable bit must be set (one) for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control registers. If the global interrupt enable register is cleared (zero), none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred and is set by the RETI instruction to enable subsequent interrupts.

• Bit 6 - T: Bit Copy Storage

The bit copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source and destination for the operated bit. A bit from a register in the register file can be copied into T by the BST instruction and a bit in T can be copied into a bit in a register in the register file by the BLD instruction.

• Bit 5 - H: Half-carry Flag

The half-carry flag H indicates a half-carry in some arithmetic operations. See the Instruction Set description for detailed information.

Bit 4 – S: Sign Bit, S = N ⊕ V

The S-bit is always an exclusive or between the negative flag N and the two's complement overflow flag V. See the Instruction Set description for detailed information.

• Bit 3 – V: Two's Complement Overflow Flag

The two's complement overflow flag V supports two's complement arithmetics. See the Instruction Set description for detailed information.

Bit 2 – N: Negative Flag

The negative flag N indicates a negative result from an arithmetical or logical operation. See the Instruction Set description for detailed information.

• Bit 1 - Z: Zero Flag

The zero flag Z indicates a zero result from an arithmetical or logical operation. See the Instruction Set description for detailed information.

Table 4. Reset Characteristics ($V_{CC} = 5.0V$)

Symbol	Parameter	Min	Тур	Max	Units
V (1)	Power-on Reset Threshold Voltage, rising	1.0	1.4	1.8	V
V _{POT} ⁽¹⁾	Power-on Reset Threshold Voltage, falling	0.4	0.6	0.8	V
V _{RST}	RESET Pin Threshold Voltage		0.6 V _{CC}		V
t _{TOUT}	Reset Delay Time-out Period AT90S/LS2323 FSTRT Programmed	1.0	1.1	1.2	ms
t _{TOUT}	Reset Delay Time-out Period AT90S/LS2323 FSTRT Unprogrammed	11.0	16.0	21.0	ms
t _{TOUT}	Reset Delay Time-out Period AT90S/LS2343	11.0	16.0	21.0	μs

Note: 1. The Power-on Reset will not work unless the supply voltage has been below V_{POT} (falling).

Table 5. Reset Characteristics ($V_{CC} = 3.0V$)

Symbol	Parameter	Min	Тур	Max	Units
V (1)	Power-on Reset Threshold Voltage, rising	1.0	1.4	1.8	V
V _{POT} ⁽¹⁾	Power-on Reset Threshold Voltage, falling	0.4	0.6	8.0	V
V _{RST}	RESET Pin Threshold Voltage		0.6 V _{CC}		V
t _{TOUT}	Reset Delay Time-out Period AT90S/LS2323 FSTRT Programmed	2.0	2.2	2.4	ms
t _{TOUT}	Reset Delay Time-out Period AT90S/LS2323 FSTRT Unprogrammed	22.0	32.0	42.0	ms
t _{TOUT}	Reset Delay Time-out Period AT90S/LS2343	22.0	32.0	42.0	μs

Note: 1. The Power-on Reset will not work unless the supply voltage has been below V_{POT} (falling).

The AT90S2323/2343 is designed for use in systems where it can operate from the internal RC oscillator (AT90S/LS2343), on-chip oscillator (AT90S/LS2323), or in applications where a clock signal is provided by an external clock source. After V_{CC} has reached V_{POT} , the device will start after the time t_{TOUT} (see Figure 25). If the clock signal is provided by an external clock source, the clock must not be applied until V_{CC} has reached the minimum voltage defined for the applied frequency.

For AT90S2323, the user can select the start-up time according to typical oscillator start-up. The number of WDT oscillator cycles used for each time-out is shown in Table 6. For AT90S2343, the start-up time is one Watchdog cycle only. The frequency of the Watchdog oscillator is voltage-dependent as shown in "Typical Characteristics" on page 49.

Table 6. Number of Watchdog Oscillator Cycles

FSTRT	Time-out at V _{CC} = 5V	Number of WDT Cycles			
Programmed	1.1 ms	1K			
Unprogrammed	16.0 ms	16K			

Power-on Reset

Figure 25. MCU Start-up, RESET Tied to V_{CC}.

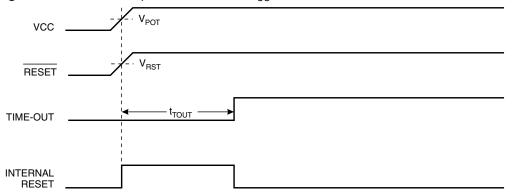
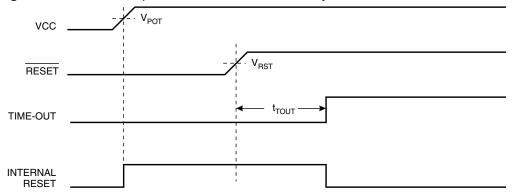



Figure 26. MCU Start-up, RESET Controlled Externally

External Reset

An external reset is generated by a low level on the $\overline{\text{RESET}}$ pin. Reset pulses longer than 50 ns will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset. When the applied signal reaches the Reset Threshold Voltage (V_{RST}) on its positive edge, the delay timer starts the MCU after the Time-out period t_{TOUT} has expired.

Figure 27. External Reset during Operation

VCC

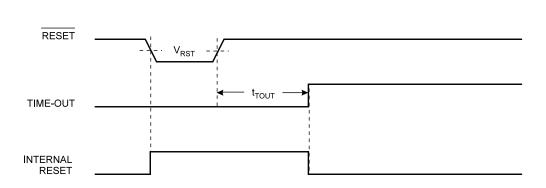


Table 8. Reset Source Identification

PORF	EXTRF	Reset Source
0	0	Watchdog Reset
0	1	External Reset
1	0	Power-on Reset
1	1	Power-on Reset

Interrupt Handling

The AT90S2323/2343 has two 8-bit interrupt mask control registers; GIMSK (General Interrupt Mask register) and TIMSK (Timer/Counter Interrupt Mask register).

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared (zero) and all interrupts are disabled. The user software can set (one) the I-bit to enable nested interrupts. The I-bit is set (one) when a Return from Interrupt instruction (RETI) is executed.

When the Program Counter is vectored to the actual interrupt vector in order to execute the interrupt handling routine, hardware clears the corresponding flag that generated the interrupt. Some of the interrupt flags can also be cleared by writing a logical "1" to the flag bit position(s) to be cleared. If an interrupt condition occurs when the corresponding interrupt enable bit is cleared (zero), the interrupt flag will be set and remembered until the interrupt is enabled or the flag is cleared by software.

If one or more interrupt conditions occur when the global interrupt enable bit is cleared (zero), the corresponding interrupt flag(s) will be set and remembered until the global interrupt enable bit is set (one) and will be executed by order of priority.

Note that external level interrupt does not have a flag and will only be remembered for as long as the interrupt condition is active.

Note that the Status Register is not automatically stored when entering an interrupt routine and restored when returning from an interrupt routine. This must be handled by software.

General Interrupt Mask Register – GIMSK

• Bit 7 - Res: Reserved Bit

This bit is a reserved bit in the AT90S2323/2343 and always reads as zero.

• Bit 6 - INT0: External Interrupt Request 0 Enable

When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one), the external pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and ISC00) in the MCU general Control Register (MCUCR) define whether the external interrupt is activated on rising or falling edge of the INT0 pin or level sensed. Activity on the pin will cause an interrupt request even if INT0 is configured as an output. The corresponding interrupt of External Interrupt Request 0 is executed from program memory address \$001. See also "External Interrupts."

• Bits 5..0 - Res: Reserved Bits

These bits are reserved bits in the AT90S2323/2343 and always read as zero.

• Bit 0 - Res: Reserved Bit

This bit is a reserved bit in the AT90S2323/2343 and always reads zero.

External Interrupt

The external interrupt is triggered by the INT0 pin. Observe that, if enabled, the interrupt will trigger even if the INT0 pin is configured as an output. This feature provides a way of generating a software interrupt. The external interrupt can be triggered by a falling or rising edge or a low level. This is set up as indicated in the specification for the MCU Control Register (MCUCR). When the external interrupt is enabled and is configured as level-triggered, the interrupt will trigger as long as the pin is held low.

The external interrupt is set up as described in the specification for the MCU Control Register (MCUCR).

Interrupt Response Time

The interrupt execution response for all the enabled AVR interrupts is four clock cycles minimum. Four clock cycles after the interrupt flag has been set, the program vector address for the actual interrupt handling routine is executed. During these four clock cycles, the Program Counter (2 bytes) is popped back from the stack, the Stack Pointer is incremented by 2 and the I-flag in SREG is set. The vector is a relative jump to the interrupt routine and this jump takes two clock cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before the interrupt is served.

A return from an interrupt handling routine (same as for a subroutine call routine) takes four clock cycles. During these four clock cycles, the Program Counter (2 bytes) is popped back from the stack and the Stack Pointer is incremented by 2. When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any pending interrupt is served.

MCU Control Register – MCUCR

The MCU Control Register contains control bits for general MCU functions.

Bit	7	6	5	4	3	2	1	0	_
\$35 (\$55)	-	-	SE	SM	-	-	ISC01	ISC00	MCUCR
Read/Write	R	R	R/W	R/W	R	R	R/W	R/W	-
Initial Value	0	0	0	0	0	0	0	0	

• Bits 7, 6 - Res: Reserved Bits

These bits are reserved bits in the AT90S2323/2343 and always read as zero.

• Bit 5 – SE: Sleep Enable

The SE bit must be set (one) to make the MCU enter the Sleep mode when the SLEEP instruction is executed. To avoid the MCU entering the Sleep mode, unless it is the programmer's purpose, it is recommended to set the Sleep Enable (SE) bit just before the execution of the SLEEP instruction.

• Bit 4 - SM: Sleep Mode

This bit selects between the two available sleep modes. When SM is cleared (zero), Idle mode is selected as Sleep mode. When SM is set (one), Power-down mode is selected as sleep mode. For details, refer to the section "Sleep Modes".

• Bits 3, 2 - Res: Reserved Bits

These bits are reserved bits in the AT90S2323/2343 and always read as zero.

Bits 1, 0 – ISC01, ISC00: Interrupt Sense Control 0 Bit 1 and Bit 0

The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the corresponding interrupt mask are set. The level and edges on the external INT0 pin that

activate the interrupt are defined in Table 9. The value on the INT01 pin is sampled before detecting edges. If edge or toggle interrupt is selected, pulses that last longer than one clock period will generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low-level interrupt is selected, the low level must be held until the completion of the currently executing instruction to generate an interrupt.

Table 9. Interrupt 0 Sense Control

ISC01	ISC00	Description
0	0	The low level of INT0 generates an interrupt request.
0	1	Reserved
1	0	The falling edge of INT0 generates an interrupt request.
1	1	The rising edge of INT0 generates an interrupt request.

Sleep Modes

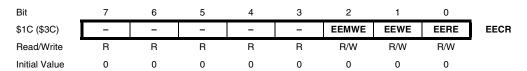
To enter the sleep modes, the SE bit in MCUCR must be set (one) and a SLEEP instruction must be executed. If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU awakes, executes the interrupt routine and resumes execution from the instruction following SLEEP. The contents of the register file, SRAM and I/O memory are unaltered. If a reset occurs during Sleep mode, the MCU wakes up and executes from the Reset vector.

Idle Mode

When the SM bit is cleared (zero), the SLEEP instruction forces the MCU into the Idle mode, stopping the CPU but allowing Timer/Counters, Watchdog and the interrupt system to continue operating. This enables the MCU to wake up from external triggered interrupts as well as internal ones like Timer Overflow interrupt and Watchdog reset.

Power-down Mode

When the SM bit is set (one), the SLEEP instruction forces the MCU into the Power-down mode. In this mode, the external oscillator is stopped while the external interrupts and the Watchdog (if enabled) continue operating. Only an external reset, a Watchdog reset (if enabled), or an external level interrupt on INTO can wake up the MCU.


Note that if a level-triggered interrupt is used for wake-up from Power-down mode, the changed level must be held for some time to wake up the MCU. This makes the MCU less sensitive to noise. The changed level is sampled twice by the Watchdog oscillator clock and if the input has the required level during this time, the MCU will wake up. The period of the Watchdog oscillator is 1 µs (nominal) at 5.0V and 25°C. The frequency of the Watchdog oscillator is voltage-dependent as shown in section "Typical Characteristics" on page 49.

When waking up from Power-down mode, a delay from the wake-up condition occurs until the wake-up becomes effective. This allows the clock to restart and become stable after having been stopped. The wake-up period is equal to the clock reset period, as shown in Table 4 and Table 5 on page 21.

If the wake-up condition disappears before the MCU wakes up and starts to execute, e.g., a low-level on is not held long enough, the interrupt causing the wake-up will not be executed.

EEPROM Control Register – EECR

Bits 7..3 – Res: Reserved Bits

These bits are reserved bits in the AT90S2323/2343 and will always read as zero.

• Bit 2 - EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to "1" causes the EEPROM to be written. When EEMWE is set (one), setting EEWE will write data to the EEPROM at the selected address. If EEMWE is zero, setting EEWE will have no effect. When EEMWE has been set (one) by software, hardware clears the bit to zero after four clock cycles. See the description of the EEWE bit for a EEPROM write procedure.

• Bit 1 - EEWE: EEPROM Write Enable

The EEPROM Write Enable signal (EEWE) is the write strobe to the EEPROM. When address and data are correctly set up, the EEWE bit must be set to write the value into the EEPROM. The EEMWE bit must be set when the logical "1" is written to EEWE, otherwise no EEPROM write takes place. The following procedure should be followed when writing the EEPROM (the order of steps 2 and 3 is unessential):

- Wait until EEWE becomes zero.
- Write new EEPROM address to EEAR (optional).
- 3. Write new EEPROM data to EEDR (optional).
- 4. Write a logical "1" to the EEMWE bit in EECR (to be able to write a logical "1" to the EEMWE bit, the EEWE bit must be written to "0" in the same cycle).
- 5. Within four clock cycles after setting EEMWE, write a logical "1" to EEWE.

Caution: An interrupt between step 4 and step 5 will make the write cycle fail, since the EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is interrupting another EEPROM access, the EEAR and EEDR registers will be modified, causing the interrupted EEPROM access to fail. It is recommended to have the global interrupt flag cleared during the four last steps to avoid these problems.

When the write access time (typically 2.5 ms at $V_{CC} = 5V$ or 4 ms at $V_{CC} = 2.7V$) has elapsed, the EEWE bit is cleared (zero) by hardware. The user software can poll this bit and wait for a zero before writing the next byte. When EEWE has been set, the CPU is halted for two cycles before the next instruction is executed.

• Bit 0 - EERE: EEPROM Read Enable

The EEPROM Read Enable signal (EERE) is the read strobe to the EEPROM. When the correct address is set up in the EEAR register, the EERE bit must be set. When the EERE bit is cleared (zero) by hardware, requested data is found in the EEDR register. The EEPROM read access takes one instruction and there is no need to poll the EERE bit. When EERE has been set, the CPU is halted for four cycles before the next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation is in progress when new data or address is written to the EEPROM I/O registers, the write operation will be interrupted and the result is undefined.

I/O Port B

All AVR ports have true read-modify-write functionality when used as general digital I/O ports. This means that the direction of one port pin can be changed without unintentionally changing the direction of any other pin with the SBI and CBI instructions. The same applies for changing drive value (if configured as output) or enabling/disabling of pull-up resistors (if configured as input).

For the AT90S/LS2323, Port B is an 3-bit bi-directional I/O port. For the AT90S/LS2343, Port B is a 5-bit bi-directional I/O port.

Please note: Bits 3 and 4 in the description of PORTB, DDRB and PINB do not apply to the AT90S/LS2323. They are read only with a value of 0.

Three I/O memory address locations are allocated for Port B, one each for the Data Register – PORTB, \$18 (\$38), Data Direction Register – DDRB, \$17(\$37) and the Port B Input Pins – PINB, \$16(\$36). The Port B Input Pins address is read-only, while the Data Register and the Data Direction Register are read/write.

All port pins have individually selectable pull-up resistors. The Port B output buffers can sink 20 mA and thus drive LED displays directly. When pins PB0 to PB4 are used as inputs and are externally pulled low, they will source current if the internal pull-up resistors are activated.

The Port B pins with alternate functions are shown in Table 12.

Table 12. Port B Pin Alternate Functions

Port Pin	Alternate Functions						
PB0	MOSI (Data input line for memory downloading)						
PB1	MISO (Data output line for memory uploading) INTO (External Interrupt0 Input)						
PB2	SCK (Serial clock input for serial programming) TO (Timer/Counter0 counter clock input)						
PB3	CLOCK (Clock input, AT90S/LS2343 only)						

When the pins are used for the alternate function the DDRB and PORTB register has to be set according to the alternate function description.

Port B Data Register – PORTB

Bit	7	6	5	4	3	2	1	0	
\$18 (\$38)	-	-	-	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	PORTB
Read/Write	R	R	R	R/W	R/W	R/W	R/W	R/W	!
Initial Value	0	0	0	0	0	0	0	0	

Port B Data Direction Register – DDRB

Bit	7	6	5	4	3	2	1	0	_
\$17 (\$37)	-	-	-	DDB4	DDB3	DDB2	DDB1	DDB0	DDRB
Read/Write	R	R	R	R/W	R/W	R/W	R/W	R/W	<u>-</u>
Initial Value	0	0	0	0	0	0	0	0	

Memory Programming

Program and Data Memory Lock Bits

The AT90S2323/2343 MCU provides two Lock bits that can be left unprogrammed ("1") or can be programmed ("0") to obtain the additional features listed in Table 14. The Lock bits can only be erased with the Chip Erase operation.

Table 14. Lock Bit Protection Modes

Memory Lock Bits		Bits	
Mode LB1 LB2		LB2	Protection Type
1	1	1	No memory lock features enabled.
2	0	1	Further programming of the Flash and EEPROM is disabled. ⁽¹⁾
3	0	0	Same as mode 2, and verify is also disabled.

Note: 1. In the high-voltage Serial Programming mode, further programming of the Fuse bits are also disabled. Program the Fuse bits before programming the Lock bits.

Fuse Bits in AT90S/LS2323

The AT90S/LS2323 has two Fuse bits, SPIEN and FSTRT.

- When the SPIEN Fuse is programmed ("0"), Serial Program and Data Downloading are enabled. Default value is programmed ("0"). This bit is not accessible in the lowvoltage Serial Programming mode.
- When the FSTRT Fuse is programmed ("0"), the shortest start-up time is selected
 as indicated in Table 6 on page 21. Default value is programmed ("0"). Changing the
 FSTRT Fuse does not take effect until the next Power-on Reset. In AT90S/LS2343
 the start-up time is fixed.

The status of the Fuse bits is not affected by Chip Erase.

Fuse Bits in AT90S/LS2343

The AT90S/LS2343 has two Fuse bits, SPIEN and RCEN.

- When the SPIEN Fuse is programmed ("0"), Serial Program and Data Downloading are enabled. Default value is programmed ("0"). This bit is not accessible in the low-voltage Serial Programming mode.
- When the RCEN Fuse is programmed ("0"), the internal RC oscillator is selected as the MCU clock source. Default value is programmed ("0") in AT90LS2343-1. Default value is un-programmed ("1") in AT90LS2343-4 and AT90S2343-10. Changing the RCEN Fuse does not take effect until the next Power-on Reset. AT90S/LS2323 cannot select the internal RC oscillator as the MCU source.

The status of the Fuse bits is not affected by Chip Erase.

Signature Bytes

All Atmel microcontrollers have a three-byte signature code that identifies the device. The three bytes reside in a separate address space.

For the AT90S/LS2323^(Note:), they are:

- 1. \$000: \$1E (indicates manufactured by Atmel)
- 2. \$001: \$91 (indicates 2K bytes Flash memory)
- 3. \$002: \$02 (indicates AT90S/LS2323 when signature byte \$001 is \$91)

For AT90S/LS2343^(Note:), they are:

- 1. \$000: \$1E (indicates manufactured by Atmel)
- 2. \$001: \$91 (indicates 2K bytes Flash memory)

High-voltage Serial Programming Algorithm

To program and verify the AT90S/LS2323 and AT90S/LS234 in the high-voltage Serial Programming mode, the following sequence is recommended (see instruction formats in Table 16):

- 1. Power-up sequence: Apply 4.5 5.5V between V_{CC} and GND. Set $\overline{\text{RESET}}$ and PB0 to "0" and wait at least 100 ns. Then, if the RCEN Fuse is not programmed, toggle XTAL1/PB3 at least four times with minimum 100 ns pulse width. Set PB3 to "0". Wait at least 100 ns. Or, if the RCEN Fuse is programmed, set PB3 to "0". Wait for least 4 μ s. In both cases, apply 12V to $\overline{\text{RESET}}$ and wait at least 100 ns before changing PB0. Wait 8 μ s before giving any instructions.
- 2. The Flash array is programmed one byte at a time by supplying first the address, then the low and high data bytes. The write instruction is self-timed; wait until the PB2 (RDY/BSY) pin goes high.
- 3. The EEPROM array is programmed one byte at a time by supplying first the address, then the data byte. The write instruction is self-timed; wait until the PB2 (RDY/BSY) pin goes high.
- 4. Any memory location can be verified by using the Read instruction, which returns the contents at the selected address at serial output PB2.
- Power-off sequence:Set PB3 to "0".
 Set RESET to "0".
 Turn V_{CC} power off.

When writing or reading serial data to the device, data is clocked on the rising edge of the serial clock. See Figure 33, Figure 34 and Table 17 for details.

Figure 33. High-voltage Serial Programming Waveforms

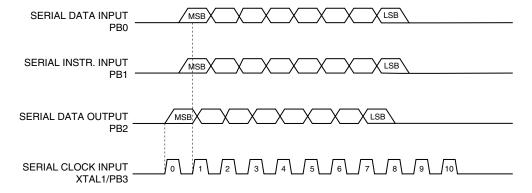


Table 16. High-voltage Serial Programming Instruction Set

	Instruction Format						
Instruction		Instr.1	Instr.2	Instr.3	Instr.4	Operation Remarks	
Chip Erase	PB0 PB1 PB2	0_1000_0000_00 0_0100_1100_00 x_xxxx_xxx	0_0000_0000_00 0_0110_0100_00 x_xxxx_xxx	0_0000_0000_00 0_0110_1100_00 x_xxxx_xxx	0_0000_0000_00 0_0100_1100_00 x_xxxx_xxx	Wait t _{WLWH_CE} after Instr.3 for the Chip Erase cycle to finish.	
Write Flash High and Low Address	PB0 PB1 PB2	0_0001_0000_00 0_0100_1100_00 x_xxxx_xxx	0_0000_00 aa _00 0_0001_1100_00 x_xxxx_xxxx_xx	0_ bbbb_bbbb _00 0_0000_1100_00 x_xxxx_xxxx_xx		Repeat Instr.2 for a new 256-byte page. Repeat Instr.3 for each new address.	
Write Flash Low Byte	PB0 PB1 PB2	0_IIII_IIII_00 0_0010_1100_00 x_xxxx_xxxx_xx	0_0000_0000_00 0_0110_0100_00 x_xxxx_xxx	0_0000_0000_00 0_0110_1100_00 0_0000_0000_00		Wait after Instr.3 until PB2 goes high. Repeat Instr.1, Instr. 2 and Instr.3 for each new address.	
Write Flash High Byte	PB0 PB1 PB2	0_IIII_IIII_00 0_0010_1100_00 x_xxxx_xxxx_xx	0_0000_0000_00 0_0111_0100_00 x_xxxx_xxx	0_0000_0000_00 0_0111_1100_00 0_0000_0000_00		Wait after Instr.3 until PB2 goes high. Repeat Instr.1, Instr. 2 and Instr.3 for each new address.	
Read Flash High and Low Address	PB0 PB1 PB2	0_0000_0010_00 0_0100_1100_00 x_xxxx_xxx	0_0000_00 aa _00 0_0001_1100_00 x_xxxx_xxxx_xx	0_ bbbb_bbbb_ 00 0_0000_1100_00 x_xxxx_xxxx_xx		Repeat Instr.2 and Instr.3 for each new address.	
Read Flash Low Byte	PB0 PB1 PB2	0_0000_0000_00 0_0110_1000_00 x_xxxx_xxx	0_0000_0000_00 0_0110_1100_00 o_0000_000 x_xx			Repeat Instr.1 and Instr.2 for each new address.	
Read Flash High Byte	PB0 PB1P B2	0_0000_0000_00 0_0111_1000_00 x_xxxx_xxx	0_0000_0000_00 0_0111_1100_00 o_0000_000 x_xx			Repeat Instr.1 and Instr.2 for each new address.	
Write EEPROM Low Address	PB0 PB1 PB2	0_0001_0001_00 0_0100_1100_00 x_xxxx_xxx	0_0 bbb_bbbb _00 0_0000_1100_00 x_xxxx_xxxx_xx			Repeat Instr.2 for each new address.	
Write EEPROM Byte	PB0 PB1 PB2	0_1111_1111_00 0_0010_1100_00 x_xxxx_xxx	0_0000_0000_00 0_0110_0100_00 x_xxxx_xxx	0_0000_0000_00 0_0110_1100_00 0_0000_0000_00		Wait after Instr.3 until PB2 goes high	
Read EEPROM Low Address	PB0 PB1 PB2	0_0000_0011_00 0_0100_1100_00 x_xxxx_xxx	0_0 bbb_bbbb _00 0_0000_1100_00 x_xxxx_xxxx			Repeat Instr.2 for each new address.	
Read EEPROM Byte	PB0 PB1 PB2	0_0000_0000_00 0_0110_1000_00 x_xxxx_xxx	0_0000_0000_00 0_0110_1100_00 o_0000_000 x_xx			Repeat Instr.2 for each new address	
Write Fuse Bits (AT90S/ LS2323)	PB0 PB1 PB2	0_0100_0000_00 0_0100_1100_00 x_xxxx_xxx	0_11 S 1_111 F _00 0_0010_1100_00 x_xxxx_xxxx_xx	0_0000_0000_00 0_0110_0100_00 x_xxxx_xxx	0_0000_0000_00 0_0110_1100_00 x_xxxx_xxx	Wait t _{WLWH_PFB} after Instr.3 for the Write Fuse bits cycle to finish. Set S,F = "0" to program, "1" to unprogram.	
Write Fuse Bits (AT90S/ LS2343)	PB0 PB1 PB2	0_0100_0000_00 0_0100_1100_00 x_xxxx_xxx	0_11 S 1_111 R _00 0_0010_1100_00 x_xxxx_xxxx_xx	0_0000_0000_00 0_0110_0100_00 x_xxxx_xxx	0_0000_0000_00 0_0110_1100_00 x_xxxx_xxx	Wait t _{WLWH_PFB} after Instr.3 for the Write Fuse bits cycle to finish. Set S,R = "0" to program, "1" to unprogram.	
Write Lock Bits	PB0 PB1 PB2	0_0010_0000_00 0_0100_1100_00 x_xxxx_xxx	0_1111_1 21 1_00 0_0010_1100_00 x_xxxx_xxxx_xx	0_0000_0000_00 0_0110_0100_00 x_xxxx_xxx	0_0000_0000_00 0_0110_1100_00 0_0000_0000_00	Wait after Instr.4 until PB2 goes high. Write 2 , 1 = "0" to program the Lock bit.	

 Table 16. High-voltage Serial Programming Instruction Set (Continued)

Instruction		Instr.1	Instr.2	Instr.3	Instr.4	Operation Remarks
Read Fuse and Lock Bits (AT90S/ LS2323)	PB0 PB1 PB2	0_0000_0100_00 0_0100_1100_00 x_xxxx_xxx	0_0000_0000_00 0_0111_1000_00 x_xxxx_xxx	0_0000_0000_00 0_0111_1100_00 1_2\$xx_xxRx_xx		Reading 1, 2, S, R = "0" means the Fuse/Lock bit is programmed.
Read Fuse and Lock Bits (AT90S/ LS2343)	PB0 PB1 PB2	0_0000_0100_00 0_0100_1100_00 x_xxxx_xxx	0_0000_0000_00 0_0111_1000_00 x_xxxx_xxx	0_0000_0000_00 0_0111_1100_00 1_2\$xx_xxRx_xx		Reading 1, 2, S, R = "0" means the Fuse/Lock bit is programmed.
Read Signature Bytes	PB0 PB1 PB2	0_0000_1000_00 0_0100_1100_00 x_xxxx_xxx	0_0000_00 bb _00 0_0000_1100_00 x_xxxx_xxxx_xx	0_0000_0000_00 0_0110_1000_00 x_xxxx_xxx	0_0000_0000_00 0_0110_1100_00 o_0000_000 x_xx	Repeat Instr.2 - Instr.4 for each signature byte address.

Note: **a** = address high bits

b = address low bits

 $\mathbf{i} = \text{data in}$

o = data out

x = don't care

1 = Lock Bit1

2 = Lock Bit2

F = FSTRT Fuse **R** = RCEN Fuse

S = SPIEN Fuse

Table 19. Low-voltage Serial Programming Instruction Set AT90S2323/2343

		Instruction				
Instruction	Byte 1	Byte 2	Byte 2 Byte 3		Operation	
Programming Enable	1010 1100	0101 0011	xxxx xxxx	xxxx xxxx	Enable Serial programming while RESET is low.	
Chip Erase	1010 1100	100x xxxx	xxxx xxxx	xxxx xxxx	Chip erase both Flash and EEPROM memory arrays.	
Read Program Memory	0010 H 000	0000 00 aa	bbbb bbbb	0000 0000	Read H (high or low) data o from program memory at word address a : b .	
Write Program Memory	0100 H 000	0000 00 aa	bbbb bbbb	iiii iiii	Write H (high or low) data i to program memory at word address a : b .	
Read EEPROM Memory	1010 0000	0000 0000	xbbb bbbb	0000 0000	Read data o from EEPROM memory at address b .	
Write EEPROM Memory	1100 0000	0000 0000	xbbb bbbb	1111 1111	Write data i to EEPROM memory at address b .	
Read Lock and Fuse Bits (AT90S/LS2323)	0101 1000	xxxx xxxx	xxxx xxxx	12Sx xxxF	Read Lock and Fuse bits. "0" = programmed, "1" = unprogrammed	
Read Lock and Fuse Bits (AT90S/LS2343)	0101 1000	xxxx xxxx	xxxx xxxx	12Sx xxxR	Read Lock and Fuse bits. "0" = programmed, "1" = unprogrammed	
Write Lock Bits	1010 1100	1111 1 21 1	xxxx xxxx	xxxx xxxx	Write Lock bits. Set bits 1,2 = "0" to program Lock bits.	
Write FSTRT Bit (AT90S/LS2323)	1010 1100	1011 111 F	xxxx xxxx	xxxx xxxx	Write FSTRT fuse. Set bit F = "0" to program, "1" to unprogram. (2)	
Write RCEN Bit (AT90S/LS2343)	1010 1100	1011 111 R	xxxx xxxx	xxxx xxxx	Write RCEN Fuse. Set bit R = '0' to program, '1' to unprogram. ⁽²⁾	
Read Signature Bytes	0011 0000	xxxx xxxx	xxxx xx bb	0000 0000	Read signature byte o from address b . ⁽³⁾	

Notes: 1. **a** = address high bits

b = address low bits

 $\mathbf{H} = 0 - \text{Low byte}, 1 - \text{High byte}$

 $\mathbf{o} = \text{data out}$

i = data in

x = don't care

1 = lock bit 1

2 = lock bit 2

F = FSTRT Fuse

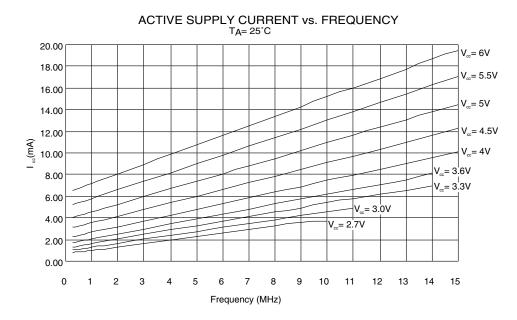
R = RCEN Fuse

S = SPIEN Fuse

- 2. When the state of the RCEN/FSTRT bit is changed, the device must be power cycled for the changes to have any effect.
- 3. The signature bytes are not readable in Lock mode 3, i.e., both Lock bits programmed.

Typical Characteristics

The following charts show typical behavior. These figures are not tested during manufacturing. All current consumption measurements are performed with all I/O pins configured as inputs and with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock source.


The current consumption is a function of several factors such as: operating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as $C_L \cdot V_{CC} \cdot f$ where $C_L = load$ capacitance, $V_{CC} = load$ operating voltage and f = load switching frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog Timer enabled and Power-down mode with Watchdog Timer disabled represents the differential current drawn by the Watchdog Timer.

Figure 39. Active Supply Current vs. Frequency

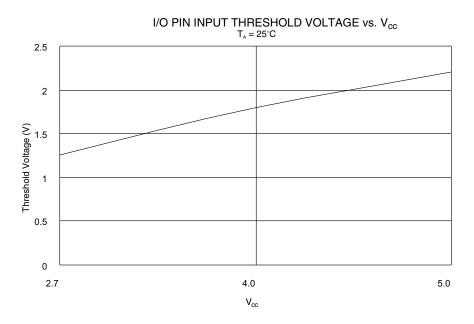
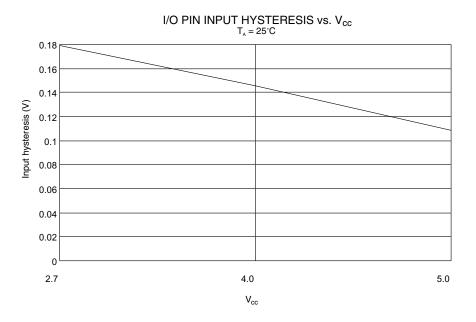



Figure 55. I/O Pin Input Hysteresis vs. $V_{\rm CC}$

AT90S2323/2343 Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
\$3F (\$5F)	SREG	I	T	Н	S	V	N	Z	С	page 18
\$3E (\$5E)	Reserved								•	
\$3D (\$5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	page 19
\$3C (\$5C)	Reserved								•	
\$3B (\$5B)	GIMSK	-	INT0	-	-	-	-	-	-	page 24
\$3A (\$5A)	GIFR	-	INTF0							page 25
\$39 (\$59)	TIMSK	-	-	-	-	-	-	TOIE0	-	page 25
\$38 (\$58)	TIFR	-	-	-	-	-	-	TOV0	-	page 25
\$37 (\$57)	Reserved								•	
\$36 (\$56)	Reserved									
\$35 (\$55)	MCUCR	-	-	SE	SM	-	-	ISC01	ISC00	page 26
\$34 (\$54)	MCUSR	-	-	-	-	-	-	EXTRF	PORF	page 23
\$33 (\$53)	TCCR0	-	-	-	-	-	CS02	CS01	CS00	page 29
\$32 (\$52)	TCNT0	Timer/Count	ter0 (8 Bits)						İ	page 30
\$31 (\$51)	Reserved									-
\$30 (\$50)	Reserved									
\$2F (\$4F)	Reserved									
\$2E (\$4E)	Reserved									
\$2D (\$4D)	Reserved									
\$2C (\$4C)	Reserved									
\$2B (\$4B)	Reserved									
\$2A (\$4A)	Reserved									
\$29 (\$49)	Reserved									
\$28 (\$48)	Reserved									
\$27 (\$47)	Reserved									
\$26 (\$46)	Reserved									
\$25 (\$45)	Reserved									
\$24 (\$44)	Reserved									
\$23 (\$43)	Reserved									
\$22 (\$42)	Reserved									
\$21 (\$41)	WDTCR	-	-	-	WDTOE	WDE	WDP2	WDP1	WDP0	page 31
\$20 (\$40)	Reserved			•		•		•		
\$1F (\$3F)	Reserved									
\$1E (\$3E)	EEAR	-	EEPROM Ac	Idress Register						page 32
\$1D (\$3D)	EEDR	EEPROM D								page 32
\$1C (\$3C)	EECR	-	-	-	-	-	EEMWE	EEWE	EERE	page 33
\$1B (\$3B)	Reserved		1						1	
\$1A (\$3A)	Reserved									
\$19 (\$39)	Reserved									
\$18 (\$38)	PORTB	-	-	-	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	page 35
\$17 (\$37)	DDRB	-	-	-	DDB4	DDB3	DDB2	DDB1	DDB0	page 35
\$16 (\$36)	PINB	-	-	-	PINB4	PINB3	PINB2	PINB1	PINB0	page 36
\$15 (\$35)	Reserved									1
(+/										
	Reserved									

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

^{2.} Some of the status flags are cleared by writing a logical "1" to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

Ordering Information

Power Supply	Speed (MHz)	Ordering Code	Package	Operation Range
2.7 - 6.0V	4	AT90LS2323-4PC	8P3	Commercial
		AT90LS2323-4SC	8S2	(0°C to 70°C)
		AT90LS2323-4PI	8P3	Industrial
		AT90LS2323-4SI	8S2	(-40°C to 85°C)
4.0 - 6.0V	10	AT90S2323-10PC	8P3	Commercial
		AT90S2323-10SC	8S2	(0°C to 70°C)
		AT90S2323-10PI	8P3	Industrial
		AT90S2323-10SI	8S2	(-40°C to 85°C)
2.7 - 6.0V	1	AT90LS2343-1PC	8P3	Commercial
		AT90LS2343-1SC	8S2	(0°C to 70°C)
		AT90LS2343-1PI	8P3	Industrial
		AT90LS2343-1SI	8S2	(-40°C to 85°C)
2.7 - 6.0V	4	AT90LS2343-4PC	8P3	Commercial
		AT90LS2343-4SC	8S2	(0°C to 70°C)
		AT90LS2343-4PI	8P3	Industrial
		AT90LS2343-4SI	8S2	(-40°C to 85°C)
4.0 - 6.0V	10	AT90S2343-10PC	8P3	Commercial
		AT90S2343-10SC	8S2	(0°C to 70°C)
		AT90S2343-10PI	8P3	Industrial
		AT90S2343-10SI	8S2	(-40°C to 85°C)

Notes: 1. The speed grade refers to maximum clock rate when using an external crystal or external clock drive. The internal RC oscillator has the same nominal clock frequency for all speed grades.

2. In AT90LS2343-1xx, the internal RC oscillator is selected as default MCU clock source (RCEN fuse is programmed) when the device is shipped from Atmel. In AT90LS2343-4xx and AT90S2343-10xx, the default MCU clock source is the clock input pin (RCEN fuse is unprogrammed). The fuse settings can be changed by high voltage serial programming.

Package Type					
8P3	8-lead, 0.300" Wide, Plastic Dual Inline Package (PDIP)				
8S2	8-lead, 0.200" Wide, Plastic Gull Wing Small Outline Package (EIAJ SOIC)				

