

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

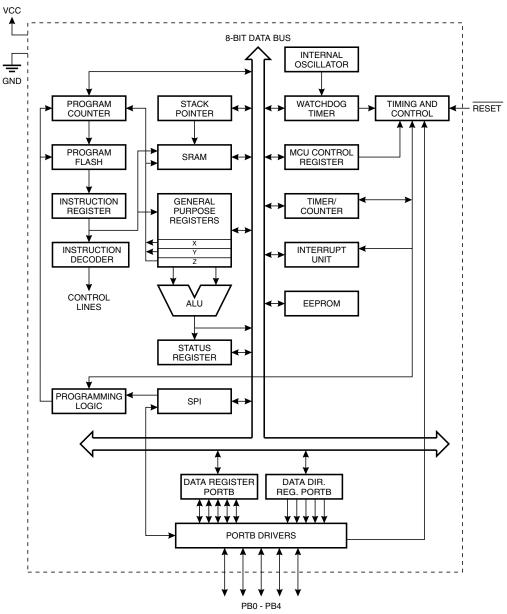
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	AVR
Core Size	8-Bit
Speed	1MHz
Connectivity	SPI
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	5
Program Memory Size	2KB (1K x 16)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.209", 5.30mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at90ls2343-1si

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


Description

The AT90S/LS2323 and AT90S/LS2343 are low-power, CMOS, 8-bit microcontrollers based on the AVR RISC architecture. By executing powerful instructions in a single clock cycle, the AT90S2323/2343 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

The AVR core combines a rich instruction set with 32 general-purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

Figure 1. The AT90S/LS2343 Block Diagram

chip, the Atmel AT90S2323/2343 is a powerful microcontroller that provides a highly flexible and cost-effective solution to many embedded control applications.

The AT90S2323/2343 AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators and evaluation kits.

Comparison between AT90S/LS2323 and AT90S/LS2343

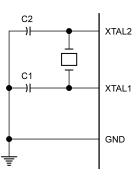
The AT90S/LS2323 is intended for use with external quartz crystal or ceramic resonator as the clock source. The start-up time is fuse-selectable as either 1 ms (suitable for ceramic resonator) or 16 ms (suitable for crystal). The device has three I/O pins.

The AT90S/LS2343 is intended for use with either an external clock source or the internal RC oscillator as clock source. The device has five I/O pins.

Table 1 summarizes the differences in features of the two devices.

Table 1.	Feature Difference	Summary
----------	--------------------	---------

Part	AT90S/LS2323	AT90S/LS2343	
On-chip Oscillator Amplifier	yes	no	
Internal RC Clock	no	yes	
PB3 available as I/O pin	never	internal clock mode	
PB4 available as I/O pin	never	always	
Start-up time	1 ms/16 ms	16 µs fixed	


Pin Descriptions AT90S/LS2323

A1500/202020	
VCC	Supply voltage pin.
GND	Ground pin.
Port B (PB2PB0)	Port B is a 3-bit bi-directional I/O port with internal pull-up resistors. The Port B output buffers can sink 20 mA. As inputs, Port B pins that are externally pulled low, will source current if the pull-up resistors are activated.
	Port B also serves the functions of various special features.
	Port pins can provide internal pull-up resistors (selected for each bit). The Port B pins are tri-stated when a reset condition becomes active.
RESET	Reset input. An external reset is generated by a low level on the $\overrightarrow{\text{RESET}}$ pin. Reset pulses longer than 50 ns will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.
XTAL1	Input to the inverting oscillator amplifier and input to the internal clock operating circuit.
XTAL2	Output from the inverting oscillator amplifier.

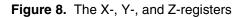
Pin Descriptions AT90S/LS2343

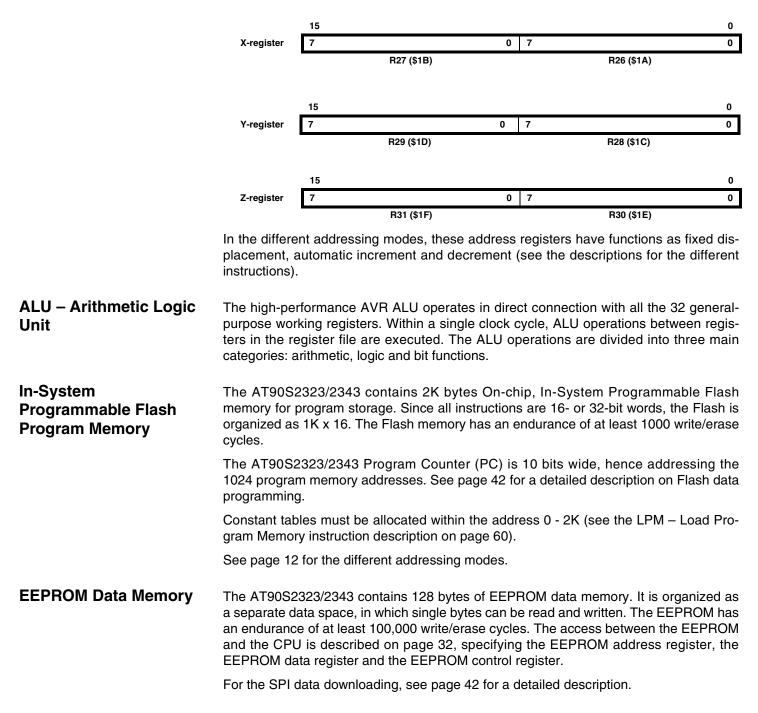
VCC	Supply voltage pin.
GND	Ground pin.
Port B (PB4PB0)	Port B is a 5-bit bi-directional I/O port with internal pull-up resistors. The Port B output buffers can sink 20 mA. As inputs, Port B pins that are externally pulled low, will source current if the pull-up resistors are activated.
	Port B also serves the functions of various special features.
	Port pins can provide internal pull-up resistors (selected for each bit). The Port B pins are tri-stated when a reset condition becomes active.
RESET	Reset input. An external reset is generated by a low level on the $\overline{\text{RESET}}$ pin. Reset pulses longer than 50 ns will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.
CLOCK	Clock signal input in external clock mode.
Clock Options	
Crystal Oscillator	The AT90S/LS2323 contains an inverting amplifier that can be configured for use as an On-chip oscillator, as shown in Figure 3. XTAL1 and XTAL2 are input and output respectively. Either a quartz crystal or a ceramic resonator may be used. It is recommended that the AT90S/LS2343 be used if an external clock source is used, since this gives an extra I/O pin.

Figure 3. Oscillator Connection

External Clock

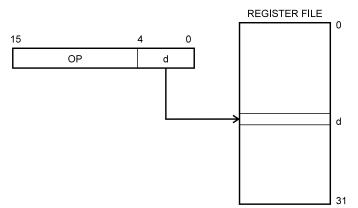
The AT90S/LS2343 can be clocked by an external clock signal, as shown in Figure 4, or by the On-chip RC oscillator. This RC oscillator runs at a nominal frequency of 1 MHz ($V_{CC} = 5V$). A fuse bit (RCEN) in the Flash memory selects the On-chip RC oscillator as the clock source when programmed ("0"). The AT90S/LS2343 is shipped with this bit programmed. The AT90S/LS2343 is recommended if an external clock source is used, because this gives an extra I/O pin.

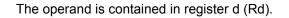

The AT90S/LS2323 can be clocked by an external clock as well, as shown in Figure 4. No fuse bit selects the clock source for AT90S/LS2323.



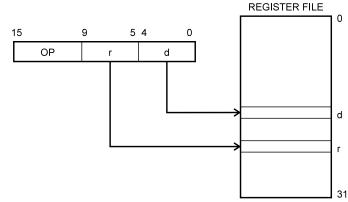
X-register, Y-register and Z-register

The registers R26..R31 have some added functions to their general-purpose usage. These registers are the address pointers for indirect addressing of the Data Space. The three indirect address registers X, Y, and Z, are defined in Figure 8.

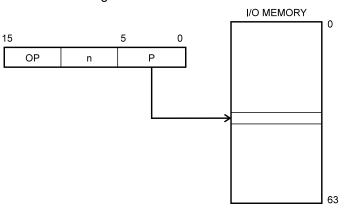




Program and Data Addressing Modes The AT90S2323/2343 AVR RISC microcontroller supports powerful and efficient addressing modes for access to the program memory (Flash) and data memory. This section describes the different addressing modes supported by the AVR architecture. In the figures, OP means the operation code part of the instruction word. To simplify, not all figures show the exact location of the addressing bits.

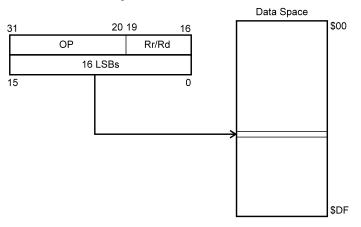

Figure 10. Direct Single Register Addressing

Register Direct, Single Register Rd


Register Direct, Two Registers Figure 11. Direct Register Addressing, Two Registers Rd and Rr

Operands are contained in register r (Rr) and d (Rd). The result is stored in register d (Rd).

I/O Direct


Figure 12. I/O Direct Addressing

Operand address is contained in six bits of the instruction word. n is the destination or source register address.

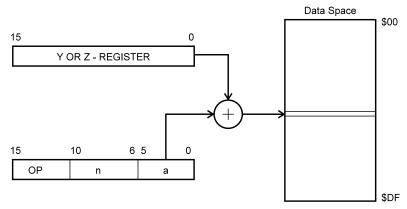

Data Direct

Figure 13. Direct Data Addressing

A 16-bit data address is contained in the 16 LSBs of a 2-word instruction. Rd/Rr specify the destination or source register.

Operand address is the result of the Y- or Z-register contents added to the address contained in six bits of the instruction word.

Data Indirect with Displacement

and OUT, the I/O addresses \$00 - \$3F must be used. When addressing I/O registers as SRAM, \$20 must be added to these addresses. All I/O register addresses throughout this document are shown with the SRAM address in parentheses.

For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

Some of the status flags are cleared by writing a logical "1" to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a "1" back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

The I/O and peripherals control registers are explained in the following sections.

Status Register – SREG The AVR Status Register (SREG) at I/O space location \$3F (\$5F) is defined as:

Bit	7	6	5	4	3	2	1	0	
\$3F (\$5F)	I	Т	Н	S	v	N	Z	С	SREG
Read/Write	R/W	-							
Initial Value	0	0	0	0	0	0	0	0	

• Bit 7 – I: Global Interrupt Enable

The global interrupt enable bit must be set (one) for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control registers. If the global interrupt enable register is cleared (zero), none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred and is set by the RETI instruction to enable subsequent interrupts.

• Bit 6 – T: Bit Copy Storage

The bit copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source and destination for the operated bit. A bit from a register in the register file can be copied into T by the BST instruction and a bit in T can be copied into a bit in a register in the register file by the BLD instruction.

• Bit 5 – H: Half-carry Flag

The half-carry flag H indicates a half-carry in some arithmetic operations. See the Instruction Set description for detailed information.

• Bit 4 – S: Sign Bit, S = N ⊕ V

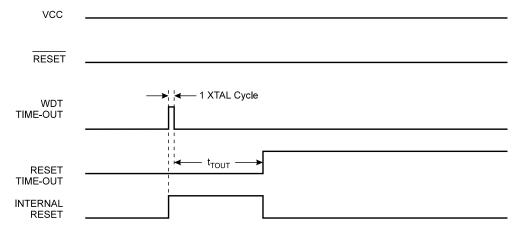
The S-bit is always an exclusive or between the negative flag N and the two's complement overflow flag V. See the Instruction Set description for detailed information.

• Bit 3 – V: Two's Complement Overflow Flag

The two's complement overflow flag V supports two's complement arithmetics. See the Instruction Set description for detailed information.

• Bit 2 – N: Negative Flag

The negative flag N indicates a negative result from an arithmetical or logical operation. See the Instruction Set description for detailed information.


• Bit 1 – Z: Zero Flag

The zero flag Z indicates a zero result from an arithmetical or logical operation. See the Instruction Set description for detailed information.

Watchdog Reset

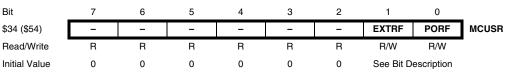

When the Watchdog times out, it will generate a short reset pulse of 1 CPU clock cycle duration. On the falling edge of this pulse, the delay timer starts counting the Time-out period t_{TOUT} . Refer to page 30 for details on operation of the Watchdog.

Figure 28. Watchdog Reset during Operation

MCU Status Register – MCUSR

The MCU Status Register provides information on which reset source caused an MCU reset.

• Bits 7..2 - Res: Reserved Bits

These bits are reserved bits in the AT90S2323/2343 and always read as zero.

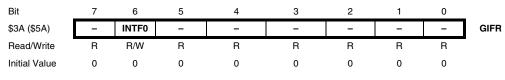
• Bit 1 – EXTRF: External Reset Flag

After a Power-on Reset, this bit is undefined (X). It will be set by an External Reset. A Watchdog Reset will leave this bit unchanged.

Bit 0 – PORF: Power-on Reset Flag

This bit is set by a Power-on Reset. A Watchdog Reset or an External Reset will leave this bit unchanged.

To summarize, Table 7 shows the value of these two bits after the three modes of reset.


Table 7. PORF and EXTRF Values after Reset

Reset Source	PORF	EXTRF
Power-on Reset	1	Undefined
External Reset	Unchanged	1
Watchdog Reset	Unchanged	Unchanged

To make use of these bits to identify a reset condition, the user software should clear both the PORF and EXTRF bits as early as possible in the program. Checking the PORF and EXTRF values is done before the bits are cleared. If the bit is cleared before an External or Watchdog Reset occurs, the source of reset can be found by using the following truth table, Table 8.

General Interrupt Flag Register – GIFR

• Bit 7 – Res: Reserved Bit

This bit is a reserved bit in the AT90S2323/2343 and always reads as zero.

• Bit 6 – INTF0: External Interrupt Flag0

When an edge on the INTO pin triggers an interrupt request, the corresponding interrupt flag, INTFO becomes set (one). If the I-bit in SREG and the corresponding interrupt enable bit, INTO in GIMSK, is set (one), the MCU will jump to the interrupt vector. The flag is cleared when the interrupt routine is executed. Alternatively, the flag is cleared by writing a logical "1" to it. This flag is always cleared when INTO is configured as level interrupt.

• Bits 5..0 - Res: Reserved Bits

These bits are reserved bits in the AT90S2323/2343 and always read as zero.

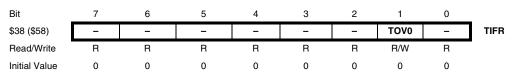
Timer/Counter Interrupt Mask

Register – TIMSK

Bit	7	6	5	4	3	2	1	0	_
\$39 (\$59)	-	-	-	-	-	-	TOIE0	-	TIMSK
Read/Write	R	R	R	R	R	R	R/W	R	-
Initial Value	0	0	0	0	0	0	0	0	

• Bits 7..2 - Res: Reserved Bits

These bits are reserved bits in the AT90S2323/2343 and always read zero.


• Bit 1 – TOIE0: Timer/Counter0 Overflow Interrupt Enable

When the TOIE0 bit is set (one) and the I-bit in the Status Register is set (one), the Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt (at vector \$002) is executed if an overflow in Timer/Counter0 occurs, i.e., when the Overflow Flag (Timer/Counter0) is set (one) in the Timer/Counter Interrupt Flag Register (TIFR).

• Bit 0 - Res: Reserved Bit

This bit is a reserved bit in the AT90S2323/2343 and always reads as zero.

Timer/Counter Interrupt FLAG Register – TIFR

• Bits 7..2 - Res: Reserved Bits

These bits are reserved bits in the AT90S2323/2343 and always read zero.

• Bit 1 – TOV0: Timer/Counter0 Overflow Flag

The bit TOV0 is set (one) when an overflow occurs in Timer/Counter0. TOV0 is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, TOV0 is cleared by writing a logical "1" to the flag. When the SREG I-bit and TOIE0 (Timer/Counter0 Overflow Interrupt Enable) and TOV0 are set (one), the Timer/Counter0 Overflow Interrupt is executed.

• Bit 0 – Res: Reserved Bit

This bit is a reserved bit in the AT90S2323/2343 and always reads zero.

External Interrupt The external interrupt is triggered by the INTO pin. Observe that, if enabled, the interrupt will trigger even if the INTO pin is configured as an output. This feature provides a way of generating a software interrupt. The external interrupt can be triggered by a falling or rising edge or a low level. This is set up as indicated in the specification for the MCU Control Register (MCUCR). When the external interrupt is enabled and is configured as level-triggered, the interrupt will trigger as long as the pin is held low.

The external interrupt is set up as described in the specification for the MCU Control Register (MCUCR).

Interrupt Response Time The interrupt execution response for all the enabled AVR interrupts is four clock cycles minimum. Four clock cycles after the interrupt flag has been set, the program vector address for the actual interrupt handling routine is executed. During these four clock cycles, the Program Counter (2 bytes) is popped back from the stack, the Stack Pointer is incremented by 2 and the I-flag in SREG is set. The vector is a relative jump to the interrupt routine and this jump takes two clock cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before the interrupt is served.

A return from an interrupt handling routine (same as for a subroutine call routine) takes four clock cycles. During these four clock cycles, the Program Counter (2 bytes) is popped back from the stack and the Stack Pointer is incremented by 2. When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any pending interrupt is served.

MCU Control Register – MCUCR The MCU Control Register contains control bits for general MCU functions.

Bit	7	6	5	4	3	2	1	0	_
\$35 (\$55)	-	-	SE	SM	-	-	ISC01	ISC00	MCUCR
Read/Write	R	R	R/W	R/W	R	R	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

• Bits 7, 6 - Res: Reserved Bits

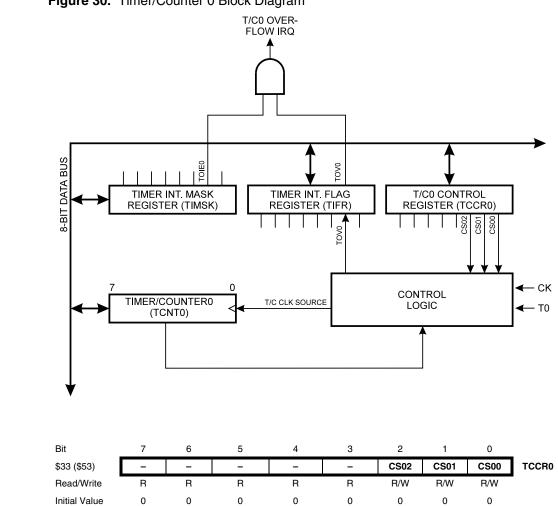
These bits are reserved bits in the AT90S2323/2343 and always read as zero.

• Bit 5 – SE: Sleep Enable

The SE bit must be set (one) to make the MCU enter the Sleep mode when the SLEEP instruction is executed. To avoid the MCU entering the Sleep mode, unless it is the programmer's purpose, it is recommended to set the Sleep Enable (SE) bit just before the execution of the SLEEP instruction.

• Bit 4 – SM: Sleep Mode

This bit selects between the two available sleep modes. When SM is cleared (zero), Idle mode is selected as Sleep mode. When SM is set (one), Power-down mode is selected as sleep mode. For details, refer to the section "Sleep Modes".


• Bits 3, 2 - Res: Reserved Bits

These bits are reserved bits in the AT90S2323/2343 and always read as zero.

• Bits 1, 0 – ISC01, ISC00: Interrupt Sense Control 0 Bit 1 and Bit 0

The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the corresponding interrupt mask are set. The level and edges on the external INT0 pin that

• Bits 7..3 - Res: Reserved Bits

These bits are reserved bits in the AT90S2323/2343 and always read zero.

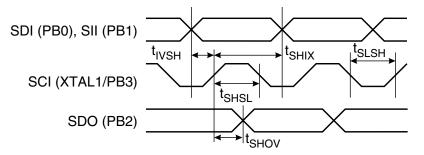
• Bits 2, 1, 0 – CS02, CS01, CS00: Clock Select0, Bits 2, 1 and 0

The Clock Select0 bits 2, 1 and 0 define the prescaling source of Timer/Counter0.

Table 10. Clock 0 Prescale Select

CS02	CS01	CS00	Description
0	0	0	Stop, the Timer/Counter0 is stopped.
0	0	1	СК
0	1	0	CK/8
0	1	1	CK/64
1	0	0	CK/256
1	0	1	CK/1024
1	1	0	External Pin T0, falling edge
1	1	1	External Pin T0, rising edge

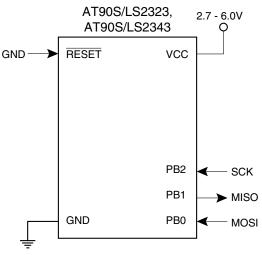
Timer/Counter0 Control Register – TCCR0


Table 16.	High-voltage	Serial Programming	Instruction Set
-----------	--------------	--------------------	-----------------

	Instruction Format						
Instruction		Instr.1	Instr.2	Instr.3	Instr.4	Operation Remarks	
Chip Erase	PB0 PB1 PB2	0_1000_0000_00 0_0100_1100_00 x_xxxx_xxx	0_0000_0000_00 0_0110_0100_00 x_xxxx_xxx	0_0000_0000_00 0_0110_1100_00 x_xxxx_xxx	0_0000_0000_00 0_0100_1100_00 x_xxxx_xxx	Wait t_{WLWH_CE} after Instr.3 for the Chip Erase cycle to finish.	
Write Flash High and Low Address	PB0 PB1 PB2	0_0001_0000_00 0_0100_1100_00 x_xxxx_xxx	0_0000_00 aa _00 0_0001_1100_00 x_xxxx_xxxx_xx	0_ bbbb_bbbb _00 0_0000_1100_00 x_xxxx_xxxx_xx		Repeat Instr.2 for a new 256-byte page. Repeat Instr.3 for each new address.	
Write Flash Low Byte	PB0 PB1 PB2	0_1111_1111_00 0_0010_1100_00 x_xxxx_xxx	0_0000_0000_00 0_0110_0100_00 x_xxxx_xxx	0_0000_0000_00 0_0110_1100_00 0_0000_0000_00		Wait after Instr.3 until PB2 goes high. Repeat Instr.1, Instr. 2 and Instr.3 for each new address.	
Write Flash High Byte	PB0 PB1 PB2	0_1111_1111_00 0_0010_1100_00 x_xxxx_xxx	0_0000_0000_00 0_0111_0100_00 x_xxxx_xxx	0_0000_0000_00 0_0111_1100_00 0_0000_0000_00		Wait after Instr.3 until PB2 goes high. Repeat Instr.1, Instr. 2 and Instr.3 for each new address.	
Read Flash High and Low Address	PB0 PB1 PB2	0_0000_0010_00 0_0100_1100_00 x_xxxx_xxx	0_0000_00 aa _00 0_0001_1100_00 x_xxxx_xxxx_xx	0_ bbbb_bbbb _00 0_0000_1100_00 x_xxxx_xxxx_xx		Repeat Instr.2 and Instr.3 for each new address.	
Read Flash Low Byte	PB0 PB1 PB2	0_0000_0000_00 0_0110_1000_00 x_xxxx_xxx	0_0000_0000_00 0_0110_1100_00 o_0000_000 x_xx			Repeat Instr.1 and Instr.2 for each new address.	
Read Flash High Byte	PB0 PB1P B2	0_0000_0000_00 0_0111_1000_00 x_xxxx_xxx	0_0000_0000_00 0_0111_1100_00 0_0000_000			Repeat Instr.1 and Instr.2 for each new address.	
Write EEPROM Low Address	PB0 PB1 PB2	0_0001_0001_00 0_0100_1100_00 x_xxxx_xxx	0_0 bbb_bbbb _00 0_0000_1100_00 x_xxxx_xxxx_xx			Repeat Instr.2 for each new address.	
Write EEPROM Byte	PB0 PB1 PB2	0_ iiii _ iiii _00 0_0010_1100_00 x_xxxx_xxxx_xx	0_0000_0000_00 0_0110_0100_00 x_xxxx_xxx	0_0000_0000_00 0_0110_1100_00 0_0000_0000_00		Wait after Instr.3 until PB2 goes high	
Read EEPROM Low Address	PB0 PB1 PB2	0_0000_0011_00 0_0100_1100_00 x_xxxx_xxx	0_0 bbb_bbbb _00 0_0000_1100_00 x_xxxx_xxxx_xx			Repeat Instr.2 for each new address.	
Read EEPROM Byte	PB0 PB1 PB2	0_0000_0000_00 0_0110_1000_00 x_xxxx_xxx	0_0000_0000_00 0_0110_1100_00 0_0000_000			Repeat Instr.2 for each new address	
Write Fuse Bits (AT90S/ LS2323)	PB0 PB1 PB2	0_0100_0000_00 0_0100_1100_00 x_xxxx_xxx	0_11 S 1_111 F _00 0_0010_1100_00 x_xxxx_xxxx_xx	0_0000_0000_00 0_0110_0100_00 x_xxxx_xxx	0_0000_0000_00 0_0110_1100_00 x_xxxx_xxx	Wait t _{WLWH_PFB} after Instr.3 for the Write Fuse bits cycle to finish. Set S,F = "0" to program, "1" to unprogram.	
Write Fuse Bits (AT90S/ LS2343)	PB0 PB1 PB2	0_0100_0000_00 0_0100_1100_00 x_xxxx_xxx	0_11 S 1_111 R _00 0_0010_1100_00 x_xxxx_xxxx_xx	0_0000_0000_00 0_0110_0100_00 x_xxxx_xxx	0_0000_0000_00 0_0110_1100_00 x_xxxx_xxx	Wait t _{WLWH_PFB} after Instr.3 for the Write Fuse bits cycle to finish. Set S,R = "0" to program, "1" to unprogram.	
Write Lock Bits	PB0 PB1 PB2	0_0010_0000_00 0_0100_1100_00 x_xxxx_xxx	0_1111_1 21 1_00 0_0010_1100_00 x_xxxx_xxxx_xx	0_0000_0000_00 0_0110_0100_00 x_xxxx_xxx	0_0000_0000_00 0_0110_1100_00 0_0000_0000_00	Wait after Instr.4 until PB2 goes high. Write 2 , 1 = "0" to program the Lock bit.	

High-voltage Serial Programming Characteristics

Figure 34. High-voltage Serial Programming Timing


Table 17. High-voltage Serial Programming Characteristics, $T_A = 25^{\circ}C \pm 10^{\circ}$, $V_{CC} = 5.0V \pm 10^{\circ}$ (unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units
t _{SHSL}	SCI (XTAL1/PB3) Pulse Width High	100.0			ns
t _{SLSH}	SCI (XTAL1/PB3) Pulse Width Low	100.0			ns
t _{IVSH}	SDI (PB0), SII (PB1) Valid to SCI (XTAL1/PB3) High	50.0			ns
t _{shix}	SDI (PB0), SII (PB1) Hold after SCI (XTAL1/PB3) High	50.0			ns
t _{SHOV}	SCI (XTAL1/PB3) High to SDO (PB2) Valid	10.0	16.0	32.0	ns
t _{WLWH_CE}	Wait after Instr.3 for Chip Erase	5.0	10.0	15.0	ms
t _{WLWH_PFB}	Wait after Instr.3 for Write Fuse Bits	1.0	1.5	1.8	ms

Low-voltage Serial Downloading

Both the program and data memory arrays can be programmed using the serial SPI bus while RESET is pulled to GND. The serial interface consists of pins SCK, MOSI (input) and MISO (output) (see Figure 35). After RESET is set low, the Programming Enable instruction needs to be executed first before program/erase instructions can be executed.

Figure 35. Low-voltage Serial Programming and Verify

Electrical Characteristics

Absolute Maximum Ratings*

Operating Temperature55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on Any Pin except $\overrightarrow{\text{RESET}}$ with respect to Ground1.0V to V_{CC} + 0.5V
Voltage on RESET with Respect to Ground1.0V to +13.0V
Maximum Operating Voltage 6.6V
DC Current per I/O Pin 40.0 mA
DC Current V_{CC} and GND Pins

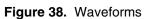
*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

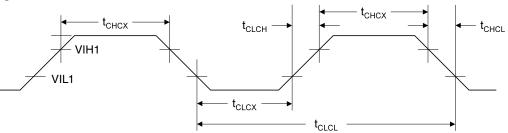
DC Characteristics

$T_A = -40^{\circ}C$ to 85°C, $V_{CC} = 2.7V$ to 6.0V (unless otherwise no
--

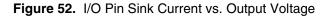
Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{IL}	Input Low Voltage	(Except XTAL)	-0.5		0.3 V _{CC} ⁽¹⁾	V
V _{IL1}	Input Low Voltage	XTAL	-0.5		0.1 ⁽¹⁾	V
V _{IH}	Input High Voltage	(Except XTAL, RESET)	0.6 V _{CC} ⁽²⁾		V _{CC} + 0.5	V
V _{IH1}	Input High Voltage	XTAL	0.7 V _{CC} ⁽²⁾		V _{CC} + 0.5	V
V _{IH2}	Input High Voltage	RESET	0.85 V _{CC} ⁽²⁾		V _{CC} + 0.5	V
V _{OL}	Output Low Voltage Ports B	I_{OL} = 20 mA, V_{CC} = 5V I_{OL} = 10 mA, V_{CC} = 3V			0.5 0.4	V V
V _{он}	Output High Voltage Ports B	$I_{OH} = -3 \text{ mA}, V_{CC} = 5V$ $I_{OH} = -1.5 \text{ mA}, V_{CC} = 3V$	4.2 2.4			V V
I	Input Leakage Current I/O Pin	V _{CC} = 6V, Pin Low (absolute value)			8.0	μA
I _{IH}	Input Leakage Current I/O Pin	V _{CC} = 6V, Pin High (absolute value)			8.0	μA
RRST	Reset Pull-up		100.0		500.0	kΩ
R _{I/O}	I/O Pin Pull-up		30.0		150.0	kΩ
	Power Supply Current AT90S2343	Active 4 MHz, V _{CC} = 3V			3.0	mA
		Idle 4 MHz, V _{CC} = 3V			1.1	mA
		Power-down 4 MHz ⁽³⁾ , V _{CC} = 3V WDT Enabled			25.0	μA
		Power-down 4 MHz ⁽³⁾ , V _{CC} = 3V WDT Disabled			20.0	μA
I _{cc}	Power Supply Current AT90S2323	Active 4 MHz, V _{CC} = 3V			4.0	mA
		ldle 4 MHz, V _{CC} = 3V		1.0	1.2	mA
		Power-down ⁽³⁾ , V _{CC} = 3V WDT Enabled		9.0	15.0	μA
		Power-down ⁽³⁾ , V_{CC} = 3V WDT Disabled		<1.0	2.0	μA

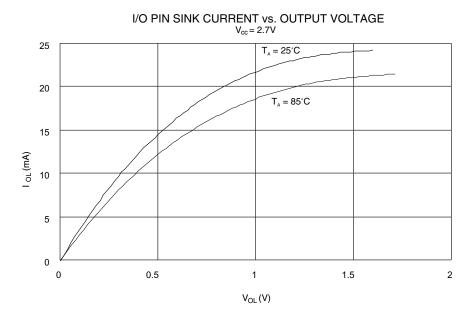
1. "Max" means the highest value where the pin is guaranteed to be read as low.

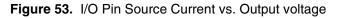

2. "Min" means the lowest value where the pin is guaranteed to be read as high.

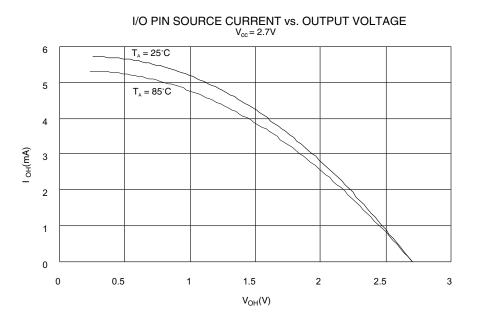

3. Minimum V_{CC} for Power-down is 2V.

External Clock Drive Waveforms



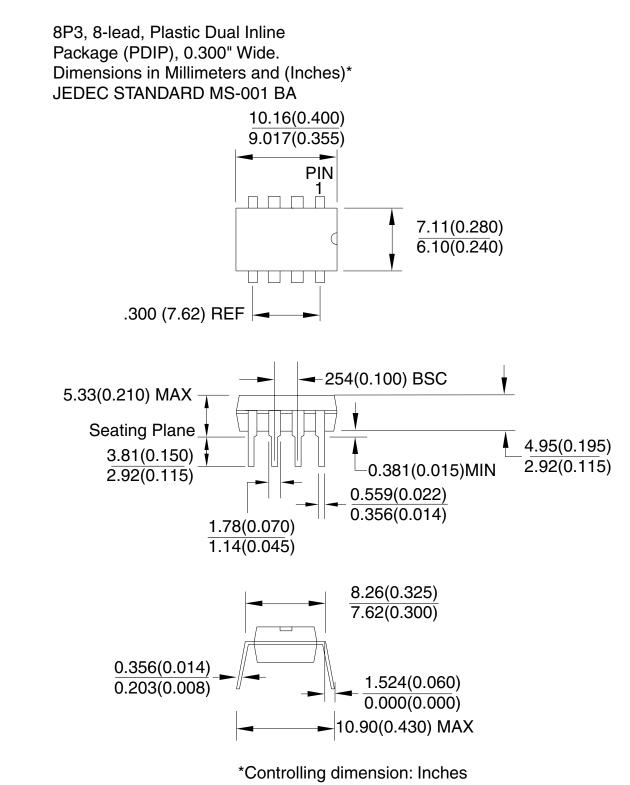

External Clock Drive


$T_A =$	-40°C to	85°C
---------	----------	------

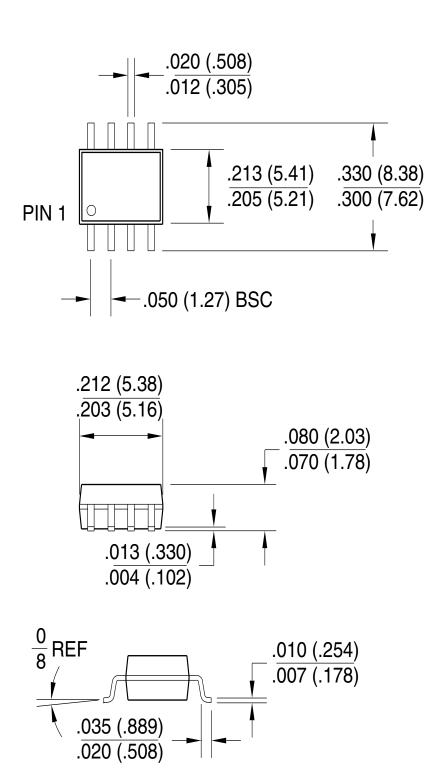

		V _{CC} : 2.7V to 4.0V		V _{cc} : 4.0V to 6.0V		
Symbol	Parameter	Min	Max	Min	Max	Units
1/t _{CLCL}	Oscillator Frequency	0	4.0	0	10.0	MHz
t _{CLCL}	Clock Period	250.0		100.0		ns
t _{CHCX}	High Time	100.0		40.0		ns
t _{CLCX}	Low Time	100.0		40.0		ns
t _{CLCH}	Rise Time		1.6		0.5	μs
t _{CHCL}	Fall Time		1.6		0.5	μs

Instruction Set Summary

Mnemonic	Operands	Description	Operation	Flags	# Clocks
ARITHMETIC AND	LOGIC INSTRUCTIO	ONS			
ADD	Rd, Rr	Add Two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry Two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl, K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract Two Registers	Rd ← Rd – Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBIW	Rdl, K	Subtract Immediate from Word	$Rdh:RdI \leftarrow Rdh:RdI - K$	Z,C,N,V,S	2
SBC	Rd, Rr	Subtract with Carry Two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \gets Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd \lor Rr$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \lor K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \gets Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	$Rd \leftarrow \$FF - Rd$	Z,C,N,V	1
NEG	Rd	Two's Complement	$Rd \leftarrow \$00 - Rd$	Z,C,N,V,H	1
SBR	Rd, K	Set Bit(s) in Register	$Rd \gets Rd \lor K$	Z,N,V	1
CBR	Rd, K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (\$FF - K)$	Z,N,V	1
INC	Rd	Increment	$Rd \leftarrow Rd + 1$	Z,N,V	1
DEC	Rd	Decrement	$Rd \leftarrow Rd - 1$	Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	$Rd \leftarrow FF$	None	1
BRANCH INSTRU	CTIONS				
RJMP	k	Relative Jump	$PC \leftarrow PC + k + 1$	None	2
IJMP		Indirect Jump to (Z)	$PC \leftarrow Z$	None	2
RCALL	k	Relative Subroutine Call	$PC \leftarrow PC + k + 1$	None	3
ICALL		Indirect Call to (Z)	$PC \leftarrow Z$	None	3
RET		Subroutine Return	$PC \leftarrow STACK$	None	4
RETI		Interrupt Return	$PC \leftarrow STACK$	1	4
CPSE	Rd, Rr	Compare, Skip if Equal	if (Rd = Rr) PC \leftarrow PC + 2 or 3	None	1/2/3
CP	Rd, Rr	Compare	Rd – Rr	Z,N,V,C,H	1
CPC	Rd, Rr	Compare with Carry	Rd – Rr – C	Z,N,V,C,H	1
CPI	Rd, K	Compare Register with Immediate	Rd – K	Z,N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(Rr(b) = 0) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(Rr(b) = 1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if $(P(b) = 0) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(R(b) = 1) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) = 1) then PC \leftarrow PC + k + 1	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) = 0) then PC \leftarrow PC + k + 1	None	1/2
BREQ	k	Branch if Equal	if (Z = 1) then PC \leftarrow PC + k + 1	None	1/2
BRNE	k	Branch if Not Equal	if (Z = 0) then PC \leftarrow PC + k + 1	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC \leftarrow PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if $(N \oplus V = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if $(N \oplus V = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half-carry Flag Set	if (H = 1) then PC \leftarrow PC + k + 1	None	1/2
BRHC	k	Branch if Half-carry Flag Cleared	if (H = 0) then $PC \leftarrow PC + k + 1$	None	1/2
BRTS	k	Branch if T-flag Set	if (T = 1) then PC \leftarrow PC + k + 1	None	1/2
BRTC	k	Branch if T-flag Cleared	if $(T = 0)$ then PC \leftarrow PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC \leftarrow PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared			1/2
		Branch if Overnow Flag is Cleared Branch if Interrupt Enabled	if $(V = 0)$ then PC \leftarrow PC + k + 1 if $(l = 1)$ then PC \leftarrow PC + k + 1	None	
BRIE	k k	Branch if Interrupt Enabled Branch if Interrupt Disabled	if (I = 1) then PC \leftarrow PC + k + 1 if (I = 0) then PC \leftarrow PC + k + 1	None	1/2


Instruction Set Summary (Continued)

Mnemonic	Operands	Description	Operation	Flags	# Clocks
DATA TRANSFER	INSTRUCTIONS				•
MOV	Rd, Rr	Move between Registers	Rd ← Rr	None	1
LDI	Rd, K	Load Immediate	$Rd \leftarrow K$	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, -X	Load Indirect and Pre-dec.	$X \leftarrow X - 1$, Rd \leftarrow (X)	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, -Y	Load Indirect and Pre-dec.	$Y \leftarrow Y - 1$, Rd \leftarrow (Y)	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-inc.	$Rd \leftarrow (Z), Z \leftarrow Z + 1$	None	2
LD	Rd, -Z	Load Indirect and Pre-dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2
ST	X, Rr	Store Indirect	(X) ← Rr	None	2
ST	X+, Rr	Store Indirect and Post-inc.	$(X) \leftarrow \operatorname{Rr}, X \leftarrow X + 1$	None	2
ST	-X, Rr	Store Indirect and Pre-dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	$(Y) \leftarrow Rr$	None	2
ST	Y+, Rr	Store Indirect and Post-inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	-Y, Rr	Store Indirect and Pre-dec.	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
STD	Y+q, Rr	Store Indirect and Fie-dec.	$(Y + q) \leftarrow Rr$	None	2
ST	Z, Rr	Store Indirect	$(T + q) \leftarrow Rr$	None	2
ST	Z+, Rr	Store Indirect and Post-inc.	$(Z) \leftarrow \operatorname{Rr}, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-dec.	$Z \leftarrow Z - 1, (Z) \leftarrow Rr$	None	2
STD	Z+q, Rr	Store Indirect with Displacement		None	2
STS	k, Rr	Store Direct to SRAM	$(Z + q) \leftarrow \operatorname{Rr}$		2
LPM	к, пі	Load Program Memory	$(k) \leftarrow Rr$	None	3
			$R0 \leftarrow (Z)$	None	
IN	Rd, P P, Rr	In Port Out Port	$Rd \leftarrow P$	None	1
OUT			$P \leftarrow Rr$	None	
PUSH	Rr	Push Register on Stack		None	2
POP	Rd	Pop Register from Stack	$Rd \leftarrow STACK$	None	2
BIT AND BIT-TEST					
SBI	P, b	Set Bit in I/O Register	$I/O(P,b) \leftarrow 1$	None	2
CBI	P, b	Clear Bit in I/O Register	$I/O(P,b) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left through Carry	$Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right through Carry	$Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n = 06$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	$Rd(30) \leftarrow Rd(74), Rd(74) \leftarrow Rd(30)$	None	1
BSET	s	Flag Set	$SREG(s) \leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1
BLD	Rd, b	Bit Load from T to Register	$Rd(b) \leftarrow T$	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	$C \leftarrow 0$	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	$Z \leftarrow 0$	Z	1
SEI		Global Interrupt Enable	I ← 1	1	1
CLI		Global Interrupt Disable	I ← 0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Two's Complement Overflow	$V \leftarrow 1$	V	1
CLV		Clear Two's Complement Overflow	$V \leftarrow 0$	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	$T \leftarrow 0$	Т	1
SEH		Set Half-carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half-carry Flag in SREG	H ← 0	Н	1
NOP		No Operation		None	1
	1	Sleep	(see specific descr. for Sleep function)	None	1
SLEEP		Sleep			


Packaging Information

8P3

REV. A 04/11/2001

8S2

