E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	AVR
Core Size	8-Bit
Speed	4MHz
Connectivity	SPI
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	5
Program Memory Size	2KB (1K x 16)
Program Memory Type	FLASH
EEPROM Size	128 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at90ls2343-4pc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 2. The AT90S/LS2323 Block Diagram

The AT90S2323/2343 provides the following features: 2K bytes of In-System Programmable Flash, 128 bytes EEPROM, 128 bytes SRAM, 3 (AT90S/LS2323)/5 (AT90S/LS2343) general-purpose I/O lines, 32 general-purpose working registers, an 8bit timer/counter, internal and external interrupts, programmable Watchdog Timer with internal oscillator, an SPI serial port for Flash Memory downloading and two softwareselectable power-saving modes. The Idle mode stops the CPU while allowing the SRAM, timer/counters, SPI port and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the oscillator, disabling all other chip functions until the next interrupt or hardware reset.

The device is manufactured using Atmel's high-density nonvolatile memory technology. The On-chip Flash allows the program memory to be reprogrammed in-system through an SPI serial interface. By combining an 8-bit RISC CPU with ISP Flash on a monolithic

Pin Descriptions AT90S/LS2343

vcc	Supply voltage pin.
GND	Ground pin.
Port B (PB4PB0)	Port B is a 5-bit bi-directional I/O port with internal pull-up resistors. The Port B output buffers can sink 20 mA. As inputs, Port B pins that are externally pulled low, will source current if the pull-up resistors are activated.
	Port B also serves the functions of various special features.
	Port pins can provide internal pull-up resistors (selected for each bit). The Port B pins are tri-stated when a reset condition becomes active.
RESET	Reset input. An external reset is generated by a low level on the $\overline{\text{RESET}}$ pin. Reset pulses longer than 50 ns will generate a reset, even if the clock is not running. Shorter pulses are not guaranteed to generate a reset.
CLOCK	Clock signal input in external clock mode.
Clock Options	
Crystal Oscillator	The AT90S/LS2323 contains an inverting amplifier that can be configured for use as an On-chip oscillator, as shown in Figure 3. XTAL1 and XTAL2 are input and output respectively. Either a quartz crystal or a ceramic resonator may be used. It is recommended that the AT90S/LS2343 be used if an external clock source is used, since this gives an extra I/O pin.

Figure 3. Oscillator Connection

External Clock

The AT90S/LS2343 can be clocked by an external clock signal, as shown in Figure 4, or by the On-chip RC oscillator. This RC oscillator runs at a nominal frequency of 1 MHz ($V_{CC} = 5V$). A fuse bit (RCEN) in the Flash memory selects the On-chip RC oscillator as the clock source when programmed ("0"). The AT90S/LS2343 is shipped with this bit programmed. The AT90S/LS2343 is recommended if an external clock source is used, because this gives an extra I/O pin.

The AT90S/LS2323 can be clocked by an external clock as well, as shown in Figure 4. No fuse bit selects the clock source for AT90S/LS2323.

The AVR has Harvard architecture – with separate memories and buses for program and data. The program memory is accessed with a two-stage pipeline. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is in-system downloadable Flash memory.

With the relative jump and call instructions, the whole 1K address space is directly accessed. Most AVR instructions have a single 16-bit word format. Every program memory address contains a 16- or 32-bit instruction.

During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the stack. The stack is effectively allocated in the general data SRAM and consequently, the stack size is only limited by the total SRAM size and the usage of the SRAM. All user programs must initialize the SP in the reset routine (before subroutines or interrupts are executed). The 8-bit stack pointer (SP) is read/write-accessible in the I/O space.

The 128 bytes data SRAM + register file and I/O registers can be easily accessed through the five different addressing modes supported in the AVR architecture.

The memory spaces in the AVR architecture are all linear and regular memory maps.

Figure 6. Memory Maps

A flexible interrupt module has its control registers in the I/O space with an additional global interrupt enable bit in the status register. All the different interrupts have a separate interrupt vector in the interrupt vector table at the beginning of the program memory. The different interrupts have priority in accordance with their interrupt vector position. The lower the interrupt vector address, the higher the priority.

General-purpose Register File Figure 7 shows the structure of the 32 general-purpose registers in the CPU.

Figure 7. AVR CPU General-purpose Working Registers

	7	0	Addr.
	RC)	\$00
	R1		\$01
	R2)	\$02
	R1	3	\$0D
General	R1	4	\$0E
Purpose	R1	5	\$0F
Working	R1	ô	\$10
Registers	R1	7	\$11
	R20	ô	\$1A
	R2	7	\$1B
	R23	В	\$1C
	R2	9	\$1D
	R3	0	\$1E
	R3	1	\$1F

X-register low byte X-register high byte Y-register low byte Y-register high byte Z-register low byte Z-register high byte

All the register operating instructions in the instruction set have direct and single-cycle access to all registers. The only exception is the five constant arithmetic and logic instructions SBCI, SUBI, CPI, ANDI and ORI between a constant and a register and the LDI instruction for load immediate constant data. These instructions apply to the second half of the registers in the register file (R16..R31). The general SBC, SUB, CP, AND and OR and all other operations between two registers or on a single register apply to the entire register file.

As shown in Figure 7, each register is also assigned a data memory address, mapping them directly into the first 32 locations of the user Data Space. Although the register file is not physically implemented as SRAM locations, this memory organization provides great flexibility in access of the registers, as the X-, Y-, and Z-registers can be set to index any register in the file.

X-register, Y-register and Z-register

The registers R26..R31 have some added functions to their general-purpose usage. These registers are the address pointers for indirect addressing of the Data Space. The three indirect address registers X, Y, and Z, are defined in Figure 8.

Program and Data Addressing Modes The AT90S2323/2343 AVR RISC microcontroller supports powerful and efficient addressing modes for access to the program memory (Flash) and data memory. This section describes the different addressing modes supported by the AVR architecture. In the figures, OP means the operation code part of the instruction word. To simplify, not all figures show the exact location of the addressing bits.

Figure 10. Direct Single Register Addressing

Register Direct, Single Register Rd

Register Direct, Two Registers Figure 11. Direct Register Addressing, Two Registers Rd and Rr

Operands are contained in register r (Rr) and d (Rd). The result is stored in register d (Rd).

I/O Direct

Figure 12. I/O Direct Addressing

Operand address is contained in six bits of the instruction word. n is the destination or source register address.

Data Direct

Figure 13. Direct Data Addressing

A 16-bit data address is contained in the 16 LSBs of a 2-word instruction. Rd/Rr specify the destination or source register.

Operand address is the result of the Y- or Z-register contents added to the address contained in six bits of the instruction word.

Data Indirect with Displacement

Figure 23. On-chip Data SRAM Access Cycles

I/O Memory

The I/O space definition of the AT90S2323/2343 is shown in Table 2.

	•	
Address Hex	Name	Function
\$3F (\$5F)	SREG	Status REGister
\$3D (\$5D)	SPL	Stack Pointer Low
\$3B (\$5B)	GIMSK	General Interrupt MaSK register
\$3A (\$5A)	GIFR	General Interrupt Flag Register
\$39 (\$59)	TIMSK	Timer/Counter Interrupt MaSK register
\$38 (\$58)	TIFR	Timer/Counter Interrupt Flag register
\$35 (\$55)	MCUCR	MCU Control Register
\$34 (\$54)	MCUSR	MCU Status Register
\$33 (\$53)	TCCR0	Timer/Counter0 Control Register
\$32 (\$52)	TCNT0	Timer/Counter0 (8-bit)
\$21 (\$41)	WDTCR	Watchdog Timer Control Register
\$1E (\$3E)	EEAR	EEPROM Address Register
\$1D (\$3D)	EEDR	EEPROM Data Register
\$1C (\$3C)	EECR	EEPROM Control Register
\$18 (\$38)	PORTB	Data Register, Port B
\$17 (\$37)	DDRB	Data Direction Register, Port B
\$16 (\$36)	PINB	Input Pins, Port B

Table 2. AT90S2323/2343 I/O Space

Note: Reserved and unused locations are not shown in the table.

All AT90S2323/2343 I/Os and peripherals are placed in the I/O space. The I/O locations are accessed by the IN and OUT instructions transferring data between the 32 generalpurpose working registers and the I/O space. I/O registers within the address range \$00 - \$1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. Refer to the instruction set section for more details. When using the I/O-specific commands IN

and OUT, the I/O addresses \$00 - \$3F must be used. When addressing I/O registers as SRAM, \$20 must be added to these addresses. All I/O register addresses throughout this document are shown with the SRAM address in parentheses.

For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

Some of the status flags are cleared by writing a logical "1" to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a "1" back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers \$00 to \$1F only.

The I/O and peripherals control registers are explained in the following sections.

Status Register – SREG The AVR Status Register (SREG) at I/O space location \$3F (\$5F) is defined as:

Bit	7	6	5	4	3	2	1	0	
\$3F (\$5F)	I	Т	Н	S	v	Ν	Z	С	SREG
Read/Write	R/W	-							
Initial Value	0	0	0	0	0	0	0	0	

• Bit 7 – I: Global Interrupt Enable

The global interrupt enable bit must be set (one) for the interrupts to be enabled. The individual interrupt enable control is then performed in separate control registers. If the global interrupt enable register is cleared (zero), none of the interrupts are enabled independent of the individual interrupt enable settings. The I-bit is cleared by hardware after an interrupt has occurred and is set by the RETI instruction to enable subsequent interrupts.

• Bit 6 – T: Bit Copy Storage

The bit copy instructions BLD (Bit LoaD) and BST (Bit STore) use the T-bit as source and destination for the operated bit. A bit from a register in the register file can be copied into T by the BST instruction and a bit in T can be copied into a bit in a register in the register file by the BLD instruction.

• Bit 5 – H: Half-carry Flag

The half-carry flag H indicates a half-carry in some arithmetic operations. See the Instruction Set description for detailed information.

• Bit 4 – S: Sign Bit, S = N ⊕ V

The S-bit is always an exclusive or between the negative flag N and the two's complement overflow flag V. See the Instruction Set description for detailed information.

• Bit 3 – V: Two's Complement Overflow Flag

The two's complement overflow flag V supports two's complement arithmetics. See the Instruction Set description for detailed information.

• Bit 2 – N: Negative Flag

The negative flag N indicates a negative result from an arithmetical or logical operation. See the Instruction Set description for detailed information.

• Bit 1 – Z: Zero Flag

The zero flag Z indicates a zero result from an arithmetical or logical operation. See the Instruction Set description for detailed information.

• Bit 0 – Res: Reserved Bit

This bit is a reserved bit in the AT90S2323/2343 and always reads zero.

External Interrupt The external interrupt is triggered by the INTO pin. Observe that, if enabled, the interrupt will trigger even if the INTO pin is configured as an output. This feature provides a way of generating a software interrupt. The external interrupt can be triggered by a falling or rising edge or a low level. This is set up as indicated in the specification for the MCU Control Register (MCUCR). When the external interrupt is enabled and is configured as level-triggered, the interrupt will trigger as long as the pin is held low.

The external interrupt is set up as described in the specification for the MCU Control Register (MCUCR).

Interrupt Response Time The interrupt execution response for all the enabled AVR interrupts is four clock cycles minimum. Four clock cycles after the interrupt flag has been set, the program vector address for the actual interrupt handling routine is executed. During these four clock cycles, the Program Counter (2 bytes) is popped back from the stack, the Stack Pointer is incremented by 2 and the I-flag in SREG is set. The vector is a relative jump to the interrupt routine and this jump takes two clock cycles. If an interrupt occurs during execution of a multi-cycle instruction, this instruction is completed before the interrupt is served.

A return from an interrupt handling routine (same as for a subroutine call routine) takes four clock cycles. During these four clock cycles, the Program Counter (2 bytes) is popped back from the stack and the Stack Pointer is incremented by 2. When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any pending interrupt is served.

MCU Control Register – MCUCR The MCU Control Register contains control bits for general MCU functions.

Bit	7	6	5	4	3	2	1	0	
\$35 (\$55)	-	-	SE	SM	-	-	ISC01	ISC00	MCUCR
Read/Write	R	R	R/W	R/W	R	R	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

• Bits 7, 6 - Res: Reserved Bits

These bits are reserved bits in the AT90S2323/2343 and always read as zero.

• Bit 5 – SE: Sleep Enable

The SE bit must be set (one) to make the MCU enter the Sleep mode when the SLEEP instruction is executed. To avoid the MCU entering the Sleep mode, unless it is the programmer's purpose, it is recommended to set the Sleep Enable (SE) bit just before the execution of the SLEEP instruction.

• Bit 4 – SM: Sleep Mode

This bit selects between the two available sleep modes. When SM is cleared (zero), Idle mode is selected as Sleep mode. When SM is set (one), Power-down mode is selected as sleep mode. For details, refer to the section "Sleep Modes".

• Bits 3, 2 - Res: Reserved Bits

These bits are reserved bits in the AT90S2323/2343 and always read as zero.

• Bits 1, 0 – ISC01, ISC00: Interrupt Sense Control 0 Bit 1 and Bit 0

The External Interrupt 0 is activated by the external pin INT0 if the SREG I-flag and the corresponding interrupt mask are set. The level and edges on the external INT0 pin that

activate the interrupt are defined in Table 9. The value on the INT01 pin is sampled before detecting edges. If edge or toggle interrupt is selected, pulses that last longer than one clock period will generate an interrupt. Shorter pulses are not guaranteed to generate an interrupt. If low-level interrupt is selected, the low level must be held until the completion of the currently executing instruction to generate an interrupt.

Гal	ble	9.	Interrupt	0	Sense	Contro	
-----	-----	----	-----------	---	-------	--------	--

ISC01	ISC00	Description
0	0	The low level of INT0 generates an interrupt request.
0	1	Reserved
1	0	The falling edge of INT0 generates an interrupt request.
1	1	The rising edge of INT0 generates an interrupt request.

Sleep Modes To enter the sleep modes, the SE bit in MCUCR must be set (one) and a SLEEP instruction must be executed. If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU awakes, executes the interrupt routine and resumes execution from the instruction following SLEEP. The contents of the register file, SRAM and I/O memory are unaltered. If a reset occurs during Sleep mode, the MCU wakes up and executes from the Reset vector.

Idle Mode When the SM bit is cleared (zero), the SLEEP instruction forces the MCU into the Idle mode, stopping the CPU but allowing Timer/Counters, Watchdog and the interrupt system to continue operating. This enables the MCU to wake up from external triggered interrupts as well as internal ones like Timer Overflow interrupt and Watchdog reset.

Power-down Mode When the SM bit is set (one), the SLEEP instruction forces the MCU into the Powerdown mode. In this mode, the external oscillator is stopped while the external interrupts and the Watchdog (if enabled) continue operating. Only an external reset, a Watchdog reset (if enabled), or an external level interrupt on INTO can wake up the MCU.

Note that if a level-triggered interrupt is used for wake-up from Power-down mode, the changed level must be held for some time to wake up the MCU. This makes the MCU less sensitive to noise. The changed level is sampled twice by the Watchdog oscillator clock and if the input has the required level during this time, the MCU will wake up. The period of the Watchdog oscillator is 1 µs (nominal) at 5.0V and 25°C. The frequency of the Watchdog oscillator is voltage-dependent as shown in section "Typical Characteristics" on page 49.

When waking up from Power-down mode, a delay from the wake-up condition occurs until the wake-up becomes effective. This allows the clock to restart and become stable after having been stopped. The wake-up period is equal to the clock reset period, as shown in Table 4 and Table 5 on page 21.

If the wake-up condition disappears before the MCU wakes up and starts to execute, e.g., a low-level on is not held long enough, the interrupt causing the wake-up will not be executed.

Watchdog Timer Control Register – WDTCR

Bit	7	6	5	4	3	2	1	0	_
\$21 (\$41)	-	-	-	WDTOE	WDE	WDP2	WDP1	WDP0	WDTCR
Read/Write	R	R	R	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Bits 7..5 – Res: Reserved Bits

These bits are reserved bits in the AT90S2323/2343 and will always read as zero.

• Bit 4 – WDTOE: Watchdog Turn-off Enable

This bit must be set (one) when the WDE bit is cleared. Otherwise, the Watchdog will not be disabled. Once set, hardware will clear this bit to zero after four clock cycles. Refer to the description of the WDE bit for a Watchdog disable procedure.

• Bit 3 – WDE: Watchdog Enable

When the WDE is set (one) the Watchdog Timer is enabled and if the WDE is cleared (zero) the Watchdog Timer function is disabled. WDE can only be cleared if the WDTOE bit is set (one). To disable an enabled Watchdog Timer, the following procedure must be followed:

- 1. In the same operation, write a logical "1" to WDTOE and WDE. A logical "1" must be written to WDE even though it is set to "1" before the disable operation starts.
- 2. Within the next four clock cycles, write a logical "0" to WDE. This disables the Watchdog.

• Bits 2..0 – WDP2, WDP1, WDP0: Watchdog Timer Prescaler 2, 1 and 0

The WDP2, WDP1 and WDP0 bits determine the Watchdog Timer prescaling when the Watchdog Timer is enabled. The different prescaling values and their corresponding time-out periods are shown in Table 11.

WDP2	WDP1	WDP0	Number of WDT Oscillator Cycles	Typical Time-out at V _{CC} = 3.0V	Typical Time-out at V _{CC} = 5.0V
0	0	0	16K cycles	47 ms	15 ms
0	0	1	32K cycles	94 ms	30 ms
0	1	0	64K cycles	0.19 s	60 ms
0	1	1	128K cycles	0.38 s	0.12 s
1	0	0	256K cycles	0.75 s	0.24 s
1	0	1	512K cycles	1.5 s	0.49 s
1	1	0	1,024K cycles	3.0 s	0.97 s
1	1	1	2,048K cycles	6.0 s	1.9 s

Table 11. Watchdog Timer Prescale Select

Note: The frequency of the Watchdog oscillator is voltage-dependent as shown in the Electrical Characteristics section.

The WDR (Watchdog Reset) instruction should always be executed before the Watchdog Timer is enabled. This ensures that the reset period will be in accordance with the Watchdog Timer prescale settings. If the Watchdog Timer is enabled without reset, the Watchdog Timer may not start counting from zero.

To avoid unintentional MCU resets, the Watchdog Timer should be disabled or reset before changing the Watchdog Timer Prescale Select.

EEPROM Control Register – EECR

• Bits 7..3 - Res: Reserved Bits

These bits are reserved bits in the AT90S2323/2343 and will always read as zero.

• Bit 2 – EEMWE: EEPROM Master Write Enable

The EEMWE bit determines whether setting EEWE to "1" causes the EEPROM to be written. When EEMWE is set (one), setting EEWE will write data to the EEPROM at the selected address. If EEMWE is zero, setting EEWE will have no effect. When EEMWE has been set (one) by software, hardware clears the bit to zero after four clock cycles. See the description of the EEWE bit for a EEPROM write procedure.

• Bit 1 – EEWE: EEPROM Write Enable

The EEPROM Write Enable signal (EEWE) is the write strobe to the EEPROM. When address and data are correctly set up, the EEWE bit must be set to write the value into the EEPROM. The EEMWE bit must be set when the logical "1" is written to EEWE, otherwise no EEPROM write takes place. The following procedure should be followed when writing the EEPROM (the order of steps 2 and 3 is unessential):

- 1. Wait until EEWE becomes zero.
- 2. Write new EEPROM address to EEAR (optional).
- 3. Write new EEPROM data to EEDR (optional).
- 4. Write a logical "1" to the EEMWE bit in EECR (to be able to write a logical "1" to the EEMWE bit, the EEWE bit must be written to "0" in the same cycle).
- 5. Within four clock cycles after setting EEMWE, write a logical "1" to EEWE.

Caution: An interrupt between step 4 and step 5 will make the write cycle fail, since the EEPROM Master Write Enable will time-out. If an interrupt routine accessing the EEPROM is interrupting another EEPROM access, the EEAR and EEDR registers will be modified, causing the interrupted EEPROM access to fail. It is recommended to have the global interrupt flag cleared during the four last steps to avoid these problems.

When the write access time (typically 2.5 ms at V_{CC} = 5V or 4 ms at V_{CC} = 2.7V) has elapsed, the EEWE bit is cleared (zero) by hardware. The user software can poll this bit and wait for a zero before writing the next byte. When EEWE has been set, the CPU is halted for two cycles before the next instruction is executed.

• Bit 0 – EERE: EEPROM Read Enable

The EEPROM Read Enable signal (EERE) is the read strobe to the EEPROM. When the correct address is set up in the EEAR register, the EERE bit must be set. When the EERE bit is cleared (zero) by hardware, requested data is found in the EEDR register. The EEPROM read access takes one instruction and there is no need to poll the EERE bit. When EERE has been set, the CPU is halted for four cycles before the next instruction is executed.

The user should poll the EEWE bit before starting the read operation. If a write operation is in progress when new data or address is written to the EEPROM I/O registers, the write operation will be interrupted and the result is undefined.

High-voltage Serial Programming Algorithm

To program and verify the AT90S/LS2323 and AT90S/LS234 in the high-voltage Serial Programming mode, the following sequence is recommended (see instruction formats in Table 16):

- Power-up sequence: Apply 4.5 5.5V between V_{CC} and GND. Set RESET and PB0 to "0" and wait at least 100 ns. Then, if the RCEN Fuse is not programmed, toggle XTAL1/PB3 at least four times with minimum 100 ns pulse width. Set PB3 to "0". Wait at least 100 ns. Or, if the RCEN Fuse is programmed, set PB3 to "0". Wait for least 4 μs. In both cases, apply 12V to RESET and wait at least 100 ns before changing PB0. Wait 8 μs before giving any instructions.
- 2. The Flash array is programmed one byte at a time by supplying first the address, then the low and high data bytes. The write instruction is self-timed; wait until the PB2 (RDY/BSY) pin goes high.
- 3. The EEPROM array is programmed one byte at a time by supplying first the address, then the data byte. The write instruction is self-timed; wait until the PB2 (RDY/BSY) pin goes high.
- 4. Any memory location can be verified by using the Read instruction, which returns the contents at the selected address at serial output PB2.
- Power-off sequence:Set PB3 to "0". Set RESET to "0". Turn V_{CC} power off.

When writing or reading serial data to the device, data is clocked on the rising edge of the serial clock. See Figure 33, Figure 34 and Table 17 for details.

High-voltage Serial Programming Characteristics

Figure 34. High-voltage Serial Programming Timing

Table 17. High-voltage Serial Programming Characteristics, $T_A = 25^{\circ}C \pm 10^{\circ}$, $V_{CC} = 5.0V \pm 10^{\circ}$ (unless otherwise noted)

Symbol	Parameter	Min	Тур	Max	Units
t _{SHSL}	SCI (XTAL1/PB3) Pulse Width High	100.0			ns
t _{SLSH}	SCI (XTAL1/PB3) Pulse Width Low	100.0			ns
t _{IVSH}	SDI (PB0), SII (PB1) Valid to SCI (XTAL1/PB3) High	50.0			ns
t _{SHIX}	SDI (PB0), SII (PB1) Hold after SCI (XTAL1/PB3) High	50.0			ns
t _{SHOV}	SCI (XTAL1/PB3) High to SDO (PB2) Valid	10.0	16.0	32.0	ns
t _{WLWH_CE}	Wait after Instr.3 for Chip Erase	5.0	10.0	15.0	ms
t _{WLWH_PFB}	Wait after Instr.3 for Write Fuse Bits	1.0	1.5	1.8	ms

Low-voltage Serial Downloading

Both the program and data memory arrays can be programmed using the serial SPI bus while RESET is pulled to GND. The serial interface consists of pins SCK, MOSI (input) and MISO (output) (see Figure 35). After RESET is set low, the Programming Enable instruction needs to be executed first before program/erase instructions can be executed.

Figure 35. Low-voltage Serial Programming and Verify

For the EEPROM, an auto-erase cycle is provided within the self-timed Write instruction and there is no need to first execute the Chip Erase instruction. The Chip Erase instruction turns the content of every memory location in both the program and EEPROM arrays into \$FF.

The program and EEPROM memory arrays have separate address spaces: \$0000 to \$03FF for Flash program memory and \$000 to \$07F for EEPROM data memory.

Either an external clock is applied to the XTAL1/PB3 pin or the device must be clocked from the internal RC oscillator (AT90S/LS2343 only). The minimum low and high periods for the serial clock (SCK) input are defined as follows:

Low: > 2 MCU clock cycles

High: > 2 MCU clock cycles

Low-voltage SerialWhen writing serial data to the AT90S2323/2343, data is clocked on the rising edge ofProgramming AlgorithmSCK.

When reading data from the AT90S2323/2343, data is clocked on the falling edge of SCK. See Figure 36, Figure 37 and Table 20 for timing details.

To program and verify the AT90S2323/2343 in the low-voltage Serial Programming mode, the following sequence is recommended (see 4-byte instruction formats in Table 19):

1. Power-up sequence:

Apply power between V_{CC} and GND while RESET and SCK are set to "0". (If the programmer cannot guarantee that SCK is held low during power-up, RESET must be given a positive pulse after SCK has been set to "0".) If the device is programmed for external clocking, apply a 0 - 8 MHz clock to the XTAL1/PB3 pin. If the internal RC oscillator is selected as the clock source, no external clock source needs to be applied (AT90S/LS2343 only).

- 2. Wait for at least 20 ms and enable serial programming by sending the Programming Enable serial instruction to the MOSI (PB0) pin. Refer to the above section for minimum low and high periods for the serial clock input, SCK.
- 3. The serial programming instructions will not work if the communication is out of synchronization. When in sync, the second byte (\$53) will echo back when issuing the third byte of the Programming Enable instruction. Whether the echo is correct or not, all four bytes of the instruction must be transmitted. If the \$53 did not echo back, give SCK a positive pulse and issue a new Programming Enable instruction. If the \$53 is not seen within 32 attempts, there is no functional device connected.
- If a Chip Erase is performed (must be done to erase the Flash), wait t_{WD_ERASE} after the instruction, give RESET a positive pulse and start over from step 2. See Table 21 on page 46 for t_{WD ERASE} value.
- 5. The Flash or EEPROM array is programmed one byte at a time by supplying the address and data together with the appropriate Write instruction. An EEPROM memory location is first automatically erased before new data is written. Use Data Polling to detect when the next byte in the Flash or EEPROM can be written. If polling is not used, wait t_{WD_PROG} before transmitting the next instruction. See Table 22 on page 46 for t_{WD_PROG} value. In an erased device, no \$FFs in the data file(s) need to be programmed.
- 6. Any memory location can be verified by using the Read instruction, which returns the content at the selected address at the serial output MISO (PB1) pin.

- 7. At the end of the programming session, **RESET** can be set high to commence normal operation.
- Power-off sequence (if needed): Set CLOCK/XTAL1 to "0".
 Set RESET to "1".
 Turn V_{CC} power off.

Data Polling EEPROM When a byte is being programmed into the EEPROM, reading the address location being programmed will give the value P1 until the auto-erase is finished, and then the value P2 will be given. See Table 18 for P1 and P2 values.

At the time the device is ready for a new EEPROM byte, the programmed value will read correctly. This is used to determine when the next byte can be written. This will not work for the values P1 and P2, so when programming these values, the user will have to wait for at least the prescribed time t_{WD_PROG} before programming the next byte. See Table 22 for t_{WD_PROG} value. As a chip-erased device contains \$FF in all locations, programming of addresses that are meant to contain \$FF can be skipped. This does not apply if the EEPROM is reprogrammed without first chip-erasing the device.

Table 18.	Read Back	Value during	EEPROM Polling
-----------	-----------	--------------	-----------------------

Part	P1	P2
AT90S2323	\$00	\$FF
AT90S2343	\$00	\$FF

Data Polling Flash

When a byte is being programmed into the Flash, reading the address location being programmed will give the value FF. At the time the device is ready for a new byte, the programmed value will read correctly. This is used to determine when the next byte can be written. This will not work for the value FF, so when programming this value, the user will have to wait for at least t_{WD_PROG} before programming the next byte. As a chiperased device contains FF in all locations, programming of addresses that are meant to contain FF can be skipped.

Instruction Set Summary (Continued)

Mnemonic	Operands	Description	Operation	Flags	# Clocks		
		Meus hetusen Deristere		Nana	4		
	Ru, Rr	Nove between Registers		None	1		
	Bd X		$Rd \leftarrow K$	None	2		
	Bd X+	Load Indirect and Post-inc	$Bd \leftarrow (X) X \leftarrow X + 1$	None	2		
LD	Rd, -X	Load Indirect and Pre-dec.	$X \leftarrow X - 1$, Bd $\leftarrow (X)$	None	2		
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2		
LD	Rd, Y+	Load Indirect and Post-inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2		
LD	Rd, -Y	Load Indirect and Pre-dec.	$Y \leftarrow Y - 1$, Rd \leftarrow (Y)	None	2		
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2		
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2		
LD	Rd, Z+	Load Indirect and Post-inc.	$Rd \leftarrow (Z), Z \leftarrow Z + 1$	None	2		
LD	Rd, -Z	Load Indirect and Pre-dec.	$Z \leftarrow Z - 1$, $Rd \leftarrow (Z)$	None	2		
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2		
LDS	Rd, k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2		
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	2		
ST	X+, Rr	Store Indirect and Post-inc.	$(X) \leftarrow \operatorname{Rr}, X \leftarrow X + 1$	None	2		
ST	-X, Rr	Store Indirect and Pre-dec.	$X \leftarrow X - 1$, (X) $\leftarrow Rr$	None	2		
ST	Y, Rr	Store Indirect	$(Y) \leftarrow Rr$	None	2		
ST	Y+, Rr	Store Indirect and Post-inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2		
ST	-Y, Rr	Store Indirect and Pre-dec.	$Y \leftarrow Y - 1$, (Y) $\leftarrow Rr$	None	2		
STD	Y+q, Rr	Store Indirect with Displacement	$(Y + q) \leftarrow Rr$	None	2		
ST	Z, Rr	Store Indirect	$(Z) \leftarrow Rr$	None	2		
ST	Z+, Rr	Store Indirect and Post-inc.	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2		
ST	-Z, Rr	Store Indirect and Pre-dec.	$Z \leftarrow Z - 1, (Z) \leftarrow Rr$	None	2		
STD	Z+q, Rr	Store Indirect with Displacement	$(Z + q) \leftarrow Rr$	None	2		
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2		
LPM		Load Program Memory	$R0 \leftarrow (Z)$	None	3		
IN	Rd, P	In Port		None	1		
DUDU	P, Rr	Out Port	$P \leftarrow Rr$	None	1		
PUSH	Rr	Push Register on Stack		None	2		
POP I Ha Pop Hegister from Stack Rd ← STACK None 2							
SBI	Ph	Set Bit in I/O Begister	$I/O(P h) \leftarrow 1$	None	2		
CBI	P b	Clear Bit in I/O Begister	$I/O(P b) \leftarrow 0$	None	2		
	Bd	Logical Shift Left	$Bd(n+1) \leftarrow Bd(n) Bd(0) \leftarrow 0$	ZCNV	1		
LSB	Bd	Logical Shift Bight	$Bd(n) \leftarrow Bd(n+1), Bd(7) \leftarrow 0$	Z.C.N.V	1		
BOL	Bd	Botate Left through Carry	$Bd(0) \leftarrow C, Bd(n+1) \leftarrow Bd(n), C \leftarrow Bd(7)$	Z.C.N.V	1		
ROR	Rd	Rotate Right through Carry	$Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$	Z.C.N.V	1		
ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n = 06$	Z,C,N,V	1		
SWAP	Rd	Swap Nibbles	$Rd(30) \leftarrow Rd(74), Rd(74) \leftarrow Rd(30)$	None	1		
BSET	s	Flag Set	$SREG(s) \leftarrow 1$	SREG(s)	1		
BCLR	s	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1		
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1		
BLD	Rd, b	Bit Load from T to Register	$Rd(b) \leftarrow T$	None	1		
SEC		Set Carry	C ← 1	С	1		
CLC		Clear Carry	$C \leftarrow 0$	С	1		
SEN		Set Negative Flag	N ← 1	N	1		
CLN		Clear Negative Flag	$N \leftarrow 0$	N	1		
SEZ		Set Zero Flag	Z ← 1	Z	1		
CLZ		Clear Zero Flag	Z ← 0	Z	1		
SEI		Global Interrupt Enable	l ← 1	1	1		
CLI		Global Interrupt Disable	← 0	1	1		
SES	+	Set Signed Test Flag	S ← 1	S	1		
CLS		Clear Signed Test Flag	<u>S</u> ←0	S	1		
SEV		Set Two's Complement Overflow	V ← 1	V	1		
CLV		Clear Two's Complement Overflow	V ← 0	V	1		
SEI		Set I in SREG			1		
		Clear I in SREG			1		
SEH	+	Set Half-carry Flag in SREG		н	1		
	+	Clear Half-carry Flag in SREG	U → H	H	1		
	+		(and appointing descer for Older function)	None	1		
WDR		Watchdog Beset	(see specific descr. for Sieep function)	None	1		
				INCHE	i I		

8S2

