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Applications of "Embedded -
Microcontrollers"
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smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
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programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
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processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
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such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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Description The AT90S/LS2323 and AT90S/LS2343 are low-power, CMOS, 8-bit microcontrollers
based on the AVR RISC architecture. By executing powerful instructions in a single
clock cycle, the AT90S2323/2343 achieves throughputs approaching 1 MIPS per MHz
allowing the system designer to optimize power consumption versus processing speed.

The AVR core combines a rich instruction set with 32 general-purpose working regis-
ters. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU),
allowing two independent registers to be accessed in one single instruction executed in
one clock cycle. The resulting architecture is more code efficient while achieving
throughputs up to ten times faster than conventional CISC microcontrollers.

Block Diagram Figure 1.  The AT90S/LS2343 Block Diagram
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AT90S/LS2323/2343
Pin Descriptions 
AT90S/LS2343

VCC Supply voltage pin.

GND Ground pin.

Port B (PB4..PB0) Port B is a 5-bit bi-directional I/O port with internal pull-up resistors. The Port B output
buffers can sink 20 mA. As inputs, Port B pins that are externally pulled low, will source
current if the pull-up resistors are activated.

Port B also serves the functions of various special features.

Port pins can provide internal pull-up resistors (selected for each bit). The Port B pins
are tri-stated when a reset condition becomes active.

RESET Reset input. An external reset is generated by a low level on the RESET pin. Reset
pulses longer than 50 ns will generate a reset, even if the clock is not running. Shorter
pulses are not guaranteed to generate a reset.

CLOCK Clock signal input in external clock mode.

Clock Options

Crystal Oscillator The AT90S/LS2323 contains an inverting amplifier that can be configured for use as an
On-chip oscillator, as shown in Figure 3. XTAL1 and XTAL2 are input and output
respectively. Either a quartz crystal or a ceramic resonator may be used. It is recom-
mended that the AT90S/LS2343 be used if an external clock source is used, since this
gives an extra I/O pin.

Figure 3.  Oscillator Connection

External Clock The AT90S/LS2343 can be clocked by an external clock signal, as shown in Figure 4, or
by the On-chip RC oscillator. This RC oscillator runs at a nominal frequency of 1 MHz
(VCC = 5V). A fuse bit (RCEN) in the Flash memory selects the On-chip RC oscillator as
the clock source when programmed (“0”). The AT90S/LS2343 is shipped with this bit
programmed. The AT90S/LS2343 is recommended if an external clock source is used,
because this gives an extra I/O pin.

The AT90S/LS2323 can be clocked by an external clock as well, as shown in Figure 4.
No fuse bit selects the clock source for AT90S/LS2323.
5
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AT90S/LS2323/2343
I/O Direct Figure 12.  I/O Direct Addressing

Operand address is contained in six bits of the instruction word. n is the destination or
source register address.

Data Direct Figure 13.  Direct Data Addressing

A 16-bit data address is contained in the 16 LSBs of a 2-word instruction. Rd/Rr specify
the destination or source register.

Data Indirect with 
Displacement

Figure 14.  Data Indirect with Displacement

Operand address is the result of the Y- or Z-register contents added to the address con-
tained in six bits of the instruction word.
13
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Memory Access and 
Instruction Execution 
Timing

This section describes the general access timing concepts for instruction execution and
internal memory access.

The AVR CPU is driven by the System Clock Ø, directly generated from the external
clock signal applied to the CLOCK pin. No internal clock division is used.

Figure 21. shows the parallel instruction fetches and instruction executions enabled by
the Harvard architecture and the fast-access register file concept. This is the basic pipe-
lining concept to obtain up to 1 MIPS per MHz with the corresponding unique results for
functions per cost, functions per clocks and functions per power unit.

Figure 21.  The Parallel Instruction Fetches and Instruction Executions 

Figure 22. shows the internal timing concept for the register file. In a single clock cycle
an ALU operation using two register operands is executed and the result is stored back
to the destination register.

Figure 22.  Single Cycle ALU Operation

The internal data SRAM access is performed in two System Clock cycles as described
in Figure 23..

System Clock Ø

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

T1 T2 T3 T4

System Clock Ø

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4
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AT90S/LS2323/2343
• Bit 0 – C: Carry Flag

The carry flag C indicates a carry in an arithmetical or logical operation. See the Instruc-
tion Set description for detailed information.

Note that the Status Register is not automatically stored when entering an interrupt rou-
tine and restored when returning from an interrupt routine. This must be handled by
software.

Stack Pointer – SPL An 8-bit  register  at I /O address $3D ($5D) forms the stack pointer of the
AT90S2323/2343. Eight bits are used to address the 128 bytes of SRAM in locations
$60 - $DF.

The Stack Pointer points to the data SRAM stack area where the Subroutine and Inter-
rupt stacks are located. This stack space in the data SRAM must be defined by the
program before any subroutine calls are executed or interrupts are enabled. The Stack
Pointer must be set to point above $60. The Stack Pointer is decremented by 1 when
data is pushed onto the Stack with the PUSH instruction and it is decremented by 2
when an address is pushed onto the stack with subroutine calls and interrupts. The
Stack Pointer is incremented by 1 when data is popped from the stack with the POP
instruction and it is incremented by 2 when an address is popped from the stack with
return from subroutine RET or return from interrupt RETI.

Reset and Interrupt 
Handling

The AT90S2323/2343 provides two interrupt sources. These interrupts and the separate
reset vector each have a separate program vector in the program memory space. Both
interrupts are assigned individual enable bits that must be set (one) together with the
I-bit in the Status Register in order to enable the interrupt.

The lowest addresses in the program memory space are automatically defined as the
Reset and Interrupt vectors. The complete list of vectors is shown in Table 3. The list
also determines the priority levels of the interrupts. The lower the address, the higher
the priority level. RESET has the highest priority, and next is INT0 (the External Interrupt
Request 0), etc.

Bit 7 6 5 4 3 2 1 0

$3D ($5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 3.  Reset and Interrupt Vectors

Vector No. Program Address Source Interrupt Definition

1 $000 RESET
Hardware Pin, Power-on Reset and 
Watchdog Reset

2 $001 INT0 External Interrupt Request 0

3 $002 TIMER0, OVF0 Timer/Counter0 Overflow
19
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AT90S/LS2323/2343
Watchdog Reset When the Watchdog times out, it will generate a short reset pulse of 1 CPU clock cycle
duration. On the falling edge of this pulse, the delay timer starts counting the Time-out
period tTOUT. Refer to page 30 for details on operation of the Watchdog.

Figure 28.  Watchdog Reset during Operation

MCU Status Register – 
MCUSR

The MCU Status Register provides information on which reset source caused an MCU
reset.

• Bits 7..2 – Res: Reserved Bits

These bits are reserved bits in the AT90S2323/2343 and always read as zero.

• Bit 1 – EXTRF: External Reset Flag

After a Power-on Reset, this bit is undefined (X). It will be set by an External Reset. A
Watchdog Reset will leave this bit unchanged.

• Bit 0 – PORF: Power-on Reset Flag

This bit is set by a Power-on Reset. A Watchdog Reset or an External Reset will leave
this bit unchanged.

To summarize, Table 7 shows the value of these two bits after the three modes of reset.

To make use of these bits to identify a reset condition, the user software should clear
both the PORF and EXTRF bits as early as possible in the program. Checking the
PORF and EXTRF values is done before the bits are cleared. If the bit is cleared before
an External or Watchdog Reset occurs, the source of reset can be found by using the
following truth table, Table 8.

Bit 7 6 5 4 3 2 1 0

$34 ($54) – – – – – – EXTRF PORF MCUSR

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 See Bit Description

Table 7.  PORF and EXTRF Values after Reset

Reset Source PORF EXTRF

Power-on Reset 1 Undefined

External Reset Unchanged 1

Watchdog Reset Unchanged Unchanged
23
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Interrupt Handling The AT90S2323/2343 has two 8-bit interrupt mask control registers; GIMSK (General
Interrupt Mask register) and TIMSK (Timer/Counter Interrupt Mask register).

When an interrupt occurs, the Global Interrupt Enable I-bit is cleared (zero) and all inter-
rupts are disabled. The user software can set (one) the I-bit to enable nested interrupts.
The I-bit is set (one) when a Return from Interrupt instruction (RETI) is executed.

When the Program Counter is vectored to the actual interrupt vector in order to execute
the interrupt handling routine, hardware clears the corresponding flag that generated the
interrupt. Some of the interrupt flags can also be cleared by writing a logical “1” to the
flag bit position(s) to be cleared. If an interrupt condition occurs when the corresponding
interrupt enable bit is cleared (zero), the interrupt flag will be set and remembered until
the interrupt is enabled or the flag is cleared by software.

If one or more interrupt conditions occur when the global interrupt enable bit is cleared
(zero), the corresponding interrupt flag(s) will be set and remembered until the global
interrupt enable bit is set (one) and will be executed by order of priority.

Note that external level interrupt does not have a flag and will only be remembered for
as long as the interrupt condition is active.

Note that the Status Register is not automatically stored when entering an interrupt rou-
tine and restored when returning from an interrupt routine. This must be handled by
software.

General Interrupt Mask 
Register – GIMSK

• Bit 7 – Res: Reserved Bit

This bit is a reserved bit in the AT90S2323/2343 and always reads as zero.

• Bit 6 – INT0: External Interrupt Request 0 Enable

When the INT0 bit is set (one) and the I-bit in the Status Register (SREG) is set (one),
the external pin interrupt is enabled. The Interrupt Sense Control0 bits 1/0 (ISC01 and
ISC00) in the MCU general Control Register (MCUCR) define whether the external
interrupt is activated on rising or falling edge of the INT0 pin or level sensed. Activity on
the pin will cause an interrupt request even if INT0 is configured as an output. The corre-
sponding interrupt of External Interrupt Request 0 is executed from program memory
address $001. See also “External Interrupts.”

• Bits 5..0 – Res: Reserved Bits

These bits are reserved bits in the AT90S2323/2343 and always read as zero.

Table 8.  Reset Source Identification

PORF EXTRF Reset Source

0 0 Watchdog Reset

0 1 External Reset

1 0 Power-on Reset

1 1 Power-on Reset

Bit 7 6 5 4 3 2 1 0

$3B ($5B) – INT0 – – – – – – GIMSK

Read/Write R R/W R R R R R R

Initial Value 0 0 0 0 0 0 0 0
24 AT90S/LS2323/2343
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EEPROM Read/Write 
Access

The EEPROM access registers are accessible in the I/O space.

The write access time is in the range of 2.5 - 4 ms, depending on the VCC voltages. A
self-timing function, however, lets the user software detect when the next byte can be
written.

In order to prevent unintentional EEPROM writes, a specific write procedure must be fol-
lowed. Refer to the description of the EEPROM Control Register for details on this.

When the EEPROM is written, the CPU is halted for two clock cycles before the next
instruction is executed. When the EEPROM is read, the CPU is halted for four clock
cycles before the next instruction is executed.

EEPROM Address Register – 
EEAR

• Bit 7 – Res: Reserved Bit

This bit is a reserved bit in the AT90S2323/2343 and will always read as zero.

• Bit 6..0 – EEAR6..0: EEPROM Address

The EEPROM Address Register (EEAR6..0) specifies the EEPROM address in the
128-byte EEPROM space. The EEPROM data bytes are addressed linearly between 0
and 127.

EEPROM Data Register – 
EEDR

• Bits 7..0 – EEDR7..0: EEPROM Data

For the EEPROM write operation, the EEDR register contains the data to be written to
the EEPROM in the address given by the EEAR register. For the EEPROM read opera-
tion, the EEDR contains the data read out from the EEPROM at the address given by
EEAR.

Bit 7 6 5 4 3 2 1 0

$1E ($3E) – EEAR6 EEAR5 EEAR4 EEAR3 EEAR2 EEAR1 EEAR0 EEAR

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

$1D ($3D) MSB LSB EEDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
32 AT90S/LS2323/2343
1004D–09/01



Prevent EEPROM 
Corruption

During periods of low VCC, the EEPROM data can be corrupted because the supply volt-
age is too low for the CPU and the EEPROM to operate properly. These issues are the
same as for board level systems using the EEPROM and the same design solutions
should be applied.

An EEPROM data corruption can be caused by two situations when the voltage is too
low. First, a regular write sequence to the EEPROM requires a minimum voltage to
operate correctly. Secondly, the CPU itself can execute instructions incorrectly, if the
supply voltage for executing instructions is too low.

EEPROM data corruption can easily be avoided by following these design recommen-
dations (one is sufficient):

1. Keep the AVR RESET active (low) during periods of insufficient power supply 
voltage. This is best done by an external low VCC Reset Protection circuit, often 
referred to as a Brown-out Detector (BOD). Please refer to application note AVR 
180 for design considerations regarding power-on reset and low-voltage 
detection.

2. Keep the AVR core in Power-down Sleep mode during periods of low VCC. This 
will prevent the CPU from attempting to decode and execute instructions, effec-
tively protecting the EEPROM registers from unintentional writes.

3. Store constants in Flash memory if the ability to change memory contents from 
software is not required. Flash memory cannot be updated by the CPU and will 
not be subject to corruption.
34 AT90S/LS2323/2343
1004D–09/01



3. $002: $03 (indicates AT90S/LS2343 when signature byte $001 is $91)

Note: When both Lock bits are programmed (Lock mode 3), the signature bytes cannot be read
in the low-voltage Serial mode. Reading the signature bytes will return: $00, $01 and
$02.

Programming the Flash 
and EEPROM

Atmel’s AT90S2323/2343 offers 2K bytes of In-System Programmable Flash program
memory and 128 bytes of EEPROM data memory.

The AT90S2323/2343 is shipped with the On-chip Flash program and EEPROM data
memory arrays in the erased state (i.e., contents = $FF) and ready to be programmed.

The device supports a high-voltage (12V) Serial Programming mode and a low-voltage
Serial Programming mode. The +12V is used for programming enable only and no cur-
rent of significance is drawn by this pin. The low-voltage Serial Programming mode
provides a convenient way to download program and data into the device inside the
user’s system.

The program and EEPROM memory arrays in the AT90S2323/2343 are programmed
byte-by-byte in either programming modes. For the EEPROM, an auto-erase cycle is
provided within the self-timed write instruction in the low-voltage Serial Programming
mode.

During programming, the supply voltage must be in accordance with Table 15.

High-voltage Serial 
Programming

This section describes how to program and verify Flash program memory, EEPROM
data memory, Lock bits and Fuse bits in the AT90S2323/2343.

Figure 32.  High-voltage Serial Programming

Table 15.  Supply Voltage during Programming

Part Low-voltage Serial Programming High-voltage Serial Programming

AT90S2323 4.0 - 6.0V 4.5 - 5.5V

AT90LS2323 2.7 - 6.0V 4.5 - 5.5V

AT90S2323 4.0 - 6.0V 4.5 - 5.5V

AT90LS2323 2.7 - 6.0V 4.5 - 5.5V

RESET

XTAL1/PB3

GND

VCC

PB2

PB1

PB0

SERIAL DATA OUTPUT

SERIAL INSTR. INPUT

SERIAL DATA INPUT

SERIAL CLOCK INPUT

11.5 - 12.5V 4.5 - 5.5VAT90S/LS2323,
AT90S/LS2343
38 AT90S/LS2323/2343
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AT90S/LS2323/2343
Note: a = address high bits
b = address low bits
i = data in
o = data out
x = don’t care
1 = Lock Bit1
2 = Lock Bit2
F = FSTRT Fuse
R = RCEN Fuse
S = SPIEN Fuse

Read Fuse 
and Lock Bits 
(AT90S/
LS2323)

PB0

PB1

PB2

0_0000_0100_00

0_0100_1100_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0111_1000_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0111_1100_00

1_2Sxx_xxRx_xx

Reading 1, 2, S, R = “0” means 
the Fuse/Lock bit is 
programmed.

Read Fuse 
and Lock Bits 
(AT90S/
LS2343)

PB0

PB1

PB2

0_0000_0100_00

0_0100_1100_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0111_1000_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0111_1100_00

1_2Sxx_xxRx_xx

Reading 1, 2, S, R = “0” means 
the Fuse/Lock bit is 
programmed.

Read 
Signature 
Bytes

PB0

PB1

PB2

0_0000_1000_00

0_0100_1100_00

x_xxxx_xxxx_xx

0_0000_00bb_00

0_0000_1100_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0110_1000_00

x_xxxx_xxxx_xx

0_0000_0000_00

0_0110_1100_00

o_oooo_ooox_xx

Repeat Instr.2 - Instr.4 for each 
signature byte address.

Table 16.  High-voltage Serial Programming Instruction Set (Continued)

Instruction

Instruction Format

Operation RemarksInstr.1 Instr.2 Instr.3 Instr.4
41
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High-voltage Serial Programming Characteristics

Figure 34.  High-voltage Serial Programming Timing

Low-voltage Serial 
Downloading

Both the program and data memory arrays can be programmed using the serial SPI bus
while RESET is pulled to GND. The serial interface consists of pins SCK, MOSI (input)
and MISO (output) (see Figure 35). After RESET is set low, the Programming Enable
instruction needs to be executed first before program/erase instructions can be
executed.

Figure 35.  Low-voltage Serial Programming and Verify

Table 17.  High-voltage Serial Programming Characteristics, TA = 25°C ± 10%, VCC =
5.0V ± 10% (unless otherwise noted)

Symbol Parameter Min Typ Max Units

tSHSL SCI (XTAL1/PB3) Pulse Width High 100.0 ns

tSLSH SCI (XTAL1/PB3) Pulse Width Low 100.0 ns

tIVSH
SDI (PB0), SII (PB1) Valid to SCI (XTAL1/PB3) 
High

50.0 ns

tSHIX
SDI (PB0), SII (PB1) Hold after SCI (XTAL1/PB3) 
High

50.0 ns

tSHOV SCI (XTAL1/PB3) High to SDO (PB2) Valid 10.0 16.0 32.0 ns

tWLWH_CE Wait after Instr.3 for Chip Erase 5.0 10.0 15.0 ms

tWLWH_PFB Wait after Instr.3 for Write Fuse Bits 1.0 1.5 1.8 ms

SDI (PB0), SII (PB1)

SDO (PB2)

SCI (XTAL1/PB3)

tIVSH

tSHSL

tSLSHtSHIX

tSHOV

RESET

GND

VCC

PB2

PB1

PB0

SCK

MISO

MOSI

2.7 - 6.0VAT90S/LS2323,
AT90S/LS2343

GND
42 AT90S/LS2323/2343
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Low-voltage Serial Programming Characteristics

Figure 37.  Low-voltage Serial Programming Timing

Table 20.  Low-voltage Serial Programming Characteristics, TA = -40°C to 85°C, VCC =
2.7 - 6.0V (unless otherwise noted)

Symbol Parameter Min Typ Max Units

1/tCLCL Oscillator Frequency (VCC = 2.7 - 4.0V) 0 4.0 MHz

tCLCL Oscillator Period (VCC = 2.7 - 4.0V) 250.0 ns

1/tCLCL Oscillator Frequency (VCC = 4.0 - 6.0V) 0 8.0 MHz

tCLCL Oscillator Period (VCC = 4.0 - 6.0V) 125.0 ns

tSHSL SCK Pulse Width High 2.0 tCLCL ns

tSLSH SCK Pulse Width Low 2.0 tCLCL ns

tOVSH MOSI Setup to SCK High tCLCL ns

tSHOX MOSI Hold after SCK High 2.0 tCLCL ns

tSLIV SCK Low to MISO Valid 10.0 16.0 32.0 ns

Table 21.  Minimum Wait Delay after the Chip Erase Instruction

Symbol 3.2V 3.6V 4.0V 5.0V

tWD_ERASE 18 ms 14 ms 12 ms 8 ms

Table 22.  Minimum Wait Delay after Writing a Flash or EEPROM Location

Symbol 3.2V 3.6V 4.0V 5.0V

tWD_PROG 9 ms 7 ms 6 ms 4 ms

MOSI

MISO

SCK

tOVSH

tSHSL

tSLSHtSHOX

tSLIV
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AT90S/LS2323/2343
Typical 
Characteristics

The following charts show typical behavior. These figures are not tested during manu-
facturing. All current consumption measurements are performed with all I/O pins
configured as inputs and with internal pull-ups enabled. A sine wave generator with rail-
to-rail output is used as clock source.

The current consumption is a function of several factors such as: operating voltage,
operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and
ambient temperature. The dominating factors are operating voltage and frequency.

The current drawn from capacitive loaded pins may be estimated (for one pin) as
CL•VCC•f where CL = load capacitance, VCC = operating voltage and f = average switch-
ing frequency of I/O pin.

The parts are characterized at frequencies higher than test limits. Parts are not guaran-
teed to function properly at frequencies higher than the ordering code indicates.

The difference between current consumption in Power-down mode with Watchdog
Timer enabled and Power-down mode with Watchdog Timer disabled represents the dif-
ferential current drawn by the Watchdog Timer.

Figure 39.  Active Supply Current vs. Frequency
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Figure 44.  Idle Supply Current vs. VCC

Figure 45.  Power-down Supply Current vs. VCC
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Figure 52.  I/O Pin Sink Current vs. Output Voltage

Figure 53.  I/O Pin Source Current vs. Output voltage

0

5

10

15

20

25

0 0.5 1 1.5 2

I
 (

m
A

)
O

L

V  (V)OL

T  = 85˚CA

T  = 25˚CA

I/O PIN SINK CURRENT vs. OUTPUT VOLTAGE
V  = 2.7Vcc

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5 3

I/O PIN SOURCE CURRENT vs. OUTPUT VOLTAGE

I
 (

m
A

)
O

H

V  (V)OH

T  = 85˚CA

T  = 25˚CA

V  = 2.7Vcc
56 AT90S/LS2323/2343
1004D–09/01



AT90S/LS2323/2343
Figure 54.  I/O Pin Input Threshold Voltage vs. VCC

Figure 55.  I/O Pin Input Hysteresis vs. VCC

0

0.5

1

1.5

2

2.5

2.7 4.0 5.0

T
hr

es
ho

ld
 V

ol
ta

ge
 (

V
)

V  cc

I/O PIN INPUT THRESHOLD VOLTAGE vs. Vcc
T  = 25˚CA

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

2.7 4.0 5.0

In
pu

t h
ys

te
re

si
s 

(V
)

V  cc

I/O PIN INPUT HYSTERESIS vs. Vcc
T  = 25˚CA
57
1004D–09/01



AT90S/LS2323/2343
 

Instruction Set Summary
Mnemonic Operands Description Operation Flags # Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add Two Registers Rd ← Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry Two Registers Rd ← Rd + Rr + C Z,C,N,V,H 1

ADIW Rdl, K Add Immediate to Word Rdh:Rdl ← Rdh:Rdl + K Z,C,N,V,S 2

SUB Rd, Rr Subtract Two Registers Rd ← Rd − Rr Z,C,N,V,H 1

SUBI Rd, K Subtract Constant from Register Rd ← Rd − K Z,C,N,V,H 1

SBIW Rdl, K Subtract Immediate from Word Rdh:Rdl ← Rdh:Rdl − K Z,C,N,V,S 2

SBC Rd, Rr Subtract with Carry Two Registers Rd ← Rd − Rr − C Z,C,N,V,H 1

SBCI Rd, K Subtract with Carry Constant from Reg. Rd ← Rd − K − C Z,C,N,V,H 1

AND Rd, Rr Logical AND Registers Rd ← Rd • Rr Z,N,V 1

ANDI Rd, K Logical AND Register and Constant Rd ← Rd • K Z,N,V 1

OR Rd, Rr Logical OR Registers Rd ← Rd v Rr Z,N,V 1

ORI Rd, K Logical OR Register and Constant Rd ← Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Registers Rd ← Rd ⊕ Rr Z,N,V 1

COM Rd One’s Complement Rd ← $FF − Rd Z,C,N,V 1

NEG Rd Two’s Complement Rd ← $00 − Rd Z,C,N,V,H 1

SBR Rd, K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1

CBR Rd, K Clear Bit(s) in Register Rd ← Rd • ($FF − K) Z,N,V 1

INC Rd Increment Rd ← Rd + 1 Z,N,V 1

DEC Rd Decrement Rd ← Rd − 1 Z,N,V 1

TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1

CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1

SER Rd Set Register Rd ← $FF None 1

BRANCH INSTRUCTIONS

RJMP k Relative Jump PC ← PC + k + 1 None 2

IJMP Indirect Jump to (Z) PC ← Z None 2

RCALL k Relative Subroutine Call PC ← PC + k + 1 None 3

ICALL Indirect Call to (Z) PC ← Z None 3

RET Subroutine Return PC ← STACK None 4

RETI Interrupt Return PC ← STACK I 4

CPSE Rd, Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1/2/3

CP Rd, Rr Compare Rd − Rr Z,N,V,C,H 1

CPC Rd, Rr Compare with Carry Rd − Rr − C Z,N,V,C,H 1

CPI Rd, K Compare Register with Immediate Rd − K Z,N,V,C,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b) = 0) PC ← PC + 2 or 3 None 1/2/3

SBRS Rr, b Skip if Bit in Register is Set if (Rr(b) = 1) PC ← PC + 2 or 3 None 1/2/3

SBIC P, b Skip if Bit in I/O Register Cleared if (P(b) = 0) PC ← PC + 2 or 3 None 1/2/3

SBIS P, b Skip if Bit in I/O Register is Set if (R(b) = 1) PC ← PC + 2 or 3 None 1/2/3

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC ←=PC + k + 1 None 1/2

BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC ←=PC + k + 1 None 1/2

BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1/2

BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1/2

BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1/2

BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1/2

BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1/2

BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1/2

BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1/2

BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1/2

BRGE k Branch if Greater or Equal, Signed if (N ⊕ V = 0) then PC ← PC + k + 1 None 1/2

BRLT k Branch if Less Than Zero, Signed if (N ⊕ V = 1) then PC ← PC + k + 1 None 1/2

BRHS k Branch if Half-carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1/2

BRHC k Branch if Half-carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1/2

BRTS k Branch if T-flag Set if (T = 1) then PC ← PC + k + 1 None 1/2

BRTC k Branch if T-flag Cleared if (T = 0) then PC ← PC + k + 1 None 1/2

BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1/2

BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1/2

BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1/2

BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1/2
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DATA TRANSFER INSTRUCTIONS

MOV Rd, Rr Move between Registers Rd ← Rr None 1

LDI Rd, K Load Immediate Rd ← K None 1

LD Rd, X Load Indirect Rd ← (X) None 2

LD Rd, X+ Load Indirect and Post-inc. Rd ← (X), X ← X + 1 None 2

LD Rd, -X Load Indirect and Pre-dec. X ← X − 1, Rd ← (X) None 2

LD Rd, Y Load Indirect Rd ← (Y) None 2

LD Rd, Y+ Load Indirect and Post-inc. Rd ← (Y), Y ← Y + 1 None 2

LD Rd, -Y Load Indirect and Pre-dec. Y ← Y − 1, Rd ← (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2

LD Rd, Z Load Indirect Rd ← (Z) None 2

LD Rd, Z+ Load Indirect and Post-inc. Rd ← (Z), Z ← Z + 1 None 2

LD Rd, -Z Load Indirect and Pre-dec. Z ← Z - 1, Rd ← (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2

LDS Rd, k Load Direct from SRAM Rd ← (k) None 2

ST X, Rr Store Indirect (X) ← Rr None 2

ST X+, Rr Store Indirect and Post-inc. (X) ← Rr, X ← X + 1 None 2

ST -X, Rr Store Indirect and Pre-dec. X ← X - 1, (X) ← Rr None 2

ST Y, Rr Store Indirect (Y) ← Rr None 2

ST Y+, Rr Store Indirect and Post-inc. (Y) ← Rr, Y ← Y + 1 None 2

ST -Y, Rr Store Indirect and Pre-dec. Y ← Y - 1, (Y) ← Rr None 2

STD Y+q, Rr Store Indirect with Displacement (Y + q) ← Rr None 2

ST Z, Rr Store Indirect (Z) ← Rr None 2

ST Z+, Rr Store Indirect and Post-inc. (Z) ← Rr, Z ← Z + 1 None 2

ST -Z, Rr Store Indirect and Pre-dec. Z ← Z - 1, (Z) ← Rr None 2

STD Z+q, Rr Store Indirect with Displacement (Z + q) ← Rr None 2

STS k, Rr Store Direct to SRAM (k) ← Rr None 2

LPM Load Program Memory R0 ← (Z) None 3

IN Rd, P In Port Rd ← P None 1

OUT P, Rr Out Port P ← Rr None 1

PUSH Rr Push Register on Stack STACK ← Rr None 2

POP Rd Pop Register from Stack Rd ← STACK None 2

BIT AND BIT-TEST INSTRUCTIONS

SBI P, b Set Bit in I/O Register I/O(P,b) ← 1 None 2

CBI P, b Clear Bit in I/O Register I/O(P,b) ← 0 None 2

LSL Rd Logical Shift Left Rd(n+1) ← Rd(n), Rd(0) ← 0 Z,C,N,V 1

LSR Rd Logical Shift Right Rd(n) ← Rd(n+1), Rd(7) ← 0 Z,C,N,V 1

ROL Rd Rotate Left through Carry Rd(0) ←=C, Rd(n+1) ← Rd(n), C ←=Rd(7) Z,C,N,V 1

ROR Rd Rotate Right through Carry Rd(7) ←=C, Rd(n) ← Rd(n+1), C ←=Rd(0) Z,C,N,V 1

ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n = 0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0) ←=Rd(7..4), Rd(7..4) ←=Rd(3..0) None 1

BSET s Flag Set SREG(s) ← 1 SREG(s) 1

BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1

BST Rr, b Bit Store from Register to T T ← Rr(b) T 1

BLD Rd, b Bit Load from T to Register Rd(b) ← T None 1

SEC Set Carry C ← 1 C 1

CLC Clear Carry C ← 0 C 1

SEN Set Negative Flag N ← 1 N 1

CLN Clear Negative Flag N ← 0 N 1

SEZ Set Zero Flag Z ← 1 Z 1

CLZ Clear Zero Flag Z ← 0 Z 1

SEI Global Interrupt Enable I ← 1 I 1

CLI Global Interrupt Disable I ← 0 I 1

SES Set Signed Test Flag S ← 1 S 1

CLS Clear Signed Test Flag S ← 0 S 1

SEV Set Two’s Complement Overflow V ← 1 V 1

CLV Clear Two’s Complement Overflow V ← 0 V 1

SET Set T in SREG T ← 1 T 1

CLT Clear T in SREG T ← 0 T 1

SEH Set Half-carry Flag in SREG H ← 1 H 1

CLH Clear Half-carry Flag in SREG H ← 0 H 1

NOP No Operation None 1

SLEEP Sleep (see specific descr. for Sleep function) None 1

WDR Watchdog Reset (see specific descr. for WDR/timer) None 1

Instruction Set Summary (Continued)
Mnemonic Operands Description Operation Flags # Clocks
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