

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	121
Program Memory Size	768KB (768K x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 15x10b, 5x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/ppc5605bclq48

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Block diagram

Table 2 summarizes the functions of the blocks present on the MPC5607B.

Block	Function
Analog-to-digital converter (ADC)	Converts analog voltages to digital values
Boot assist module (BAM)	A block of read-only memory containing VLE code which is executed according to the boot mode of the device
Clock generation module (MC_CGM)	Provides logic and control required for the generation of system and peripheral clocks
Clock monitor unit (CMU)	Monitors clock source (internal and external) integrity
Cross triggering unit (CTU)	Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT
Crossbar switch (XBAR)	Supports simultaneous connections between two master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus width.
Deserial serial peripheral interface (DSPI)	Provides a synchronous serial interface for communication with external devices
Enhanced Direct Memory Access (eDMA)	Performs complex data transfers with minimal intervention from a host processor via " <i>n</i> " programmable channels
Enhanced modular input output system (eMIOS)	Provides the functionality to generate or measure events
Error Correction Status Module (ECSM)	Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes
Flash memory	Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area network)	Supports the standard CAN communications protocol
Frequency-modulated phase-locked loop (FMPLL)	Generates high-speed system clocks and supports programmable frequency modulation
Inter-integrated circuit (I ² C [™]) bus	A two wire bidirectional serial bus that provides a simple and efficient method of data exchange between devices
Internal multiplexer (IMUX) SIU subblock	Allows flexible mapping of peripheral interface on the different pins of the device
Interrupt controller (INTC)	Provides priority-based preemptive scheduling of interrupt requests
JTAG controller (JTAGC)	Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode
LINFlex controller	Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load
Memory protection unit (MPU)	Provides hardware access control for all memory references generated in a device
Mode entry module (MC_ME)	Provides a mechanism for controlling the device operational mode and modetransition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications

Package pinouts and signal descriptions

Figure 2 shows the MPC5607B in the 176 LQFP package.

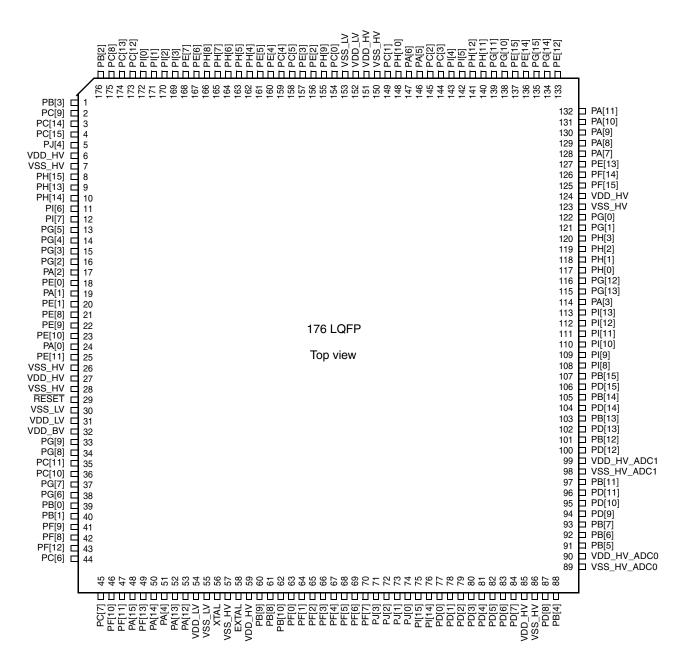


Figure 2. 176 LQFP pin configuration

Port pin	Function	Pin number					
i ort pin		100 LQFP	144 LQFP	176 LQFP	208 MAPBGA		
	Reference voltage and analog supply for the A/D converter 1 (12-bit)	60	82	99	K13		

Table 3. Voltage supply pin descriptions (continued)

A decoupling capacitor must be placed between each of the three VDD_LV/VSS_LV supply pairs to ensure stable voltage (see the recommended operating conditions in the device data sheet).

3.5 Pad types

In the device the following types of pads are available for system pins and functional port pins:

 $S = Slow^1$

 $M = Medium^{1 2}$

 $F = Fast^{1 2}$

- $I = Input only with analog feature^{1}$
- J = Input/Output ('S' pad) with analog feature

X = Oscillator

3.6 System pins

The system pins are listed in Table 4.

		direction	type	RESET	Pin number					
Port pin	Function		Pad ty	configuration	100 LQFP	144 LQFP	176 LQFP	208 MAP BGA ¹		
RESET	Bidirectional reset with Schmitt-Trigger characteristics and noise filter.	I/O	М	Input weak pull-up after RGM PHASE2 and 40 FIRC cycles	17	21	29	J1		
EXTAL	Analog output of the oscillator amplifier circuit, when the oscillator is not in bypass mode. Analog input for the clock generator when the oscillator is in bypass mode.	I/O	Х	Tristate	36	50	58	N8		
XTAL	Analog input of the oscillator amplifier circuit. Needs to be grounded if oscillator bypass mode is used.	Ι	Х	Tristate	34	48	56	P8		

Table 4. System pin descriptions

¹ 208 MAPBGA available only as development package for Nexus2+

^{1.} See the I/O pad electrical characteristics in the chip data sheet for details.

^{2.} All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium. The only exception is PC[1] which is in medium configuration by default (see the PCR.SRC description in the chip reference manual, Pad Configuration Registers (PCR0–PCR148)).

		tion ¹			2		n ³		Pin nu	umber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration ³	100 LQFP	144 LQFP	176 LQFP	208 MAP BGA ⁴
PA[7]	PCR[7]	AF0 AF1 AF2 AF3 —	GPIO[7] E0UC[7] LIN3TX — EIRQ[2] ADC1_S[1]	SIUL eMIOS_0 LINFlex_3 SIUL ADC_1	I/O I/O O I I I	J	Tristate	71	104	128	D16
PA[8]	PCR[8]	AF0 AF1 AF2 AF3 — N/A ⁷ —	GPIO[8] EOUC[8] EOUC[14] — EIRQ[3] ABS[0] LIN3RX	SIUL eMIOS_0 eMIOS_0 — SIUL BAM LINFlex_3	/0 /0 /0 - - -	S	Input, weak pull-up	72	105	129	C16
PA[9]	PCR[9]	AF0 AF1 AF2 AF3 N/A ⁷	GPIO[9] E0UC[9] — CS2_1 FAB	SIUL eMIOS_0 DSPI_1 BAM	I/O I/O — 0 I	S	Pull- down	73	106	130	C15
PA[10]	PCR[10]	AF0 AF1 AF2 AF3 —	GPIO[10] E0UC[10] SDA LIN2TX ADC1_S[2]	SIUL eMIOS_0 I ² C_0 LINFlex_2 ADC_1	I/O I/O I/O I	J	Tristate	74	107	131	B16
PA[11]	PCR[11]	AF0 AF1 AF2 AF3 — — —	GPIO[11] E0UC[11] SCL EIRQ[16] LIN2RX ADC1_S[3]	SIUL eMIOS_0 I ² C_0 SIUL LINFlex_2 ADC_1	I/O I/O I/O I/O I I I I	J	Tristate	75	108	132	B15
PA[12]	PCR[12]	AF0 AF1 AF2 AF3 —	GPIO[12] — E0UC[28] CS3_1 EIRQ[17] SIN_0	SIUL — eMIOS_0 DSPI_1 SIUL DSPI_0	½ ½ 0 − −	S	Tristate	31	45	53	T7
PA[13]	PCR[13]	AF0 AF1 AF2 AF3	GPIO[13] SOUT_0 E0UC[29] —	SIUL DSPI_0 eMIOS_0 —	I/O O I/O —	М	Tristate	30	44	52	R7

Table 5. Functional port pi	n descriptions (continued)
iable et l'alletterlai pert pi	

		ion ¹		2			n ³		Pin n	umber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration ³	100 LQFP	144 LQFP	176 LQFP	208 MAP BGA ⁴
PD[2]	PCR[50]	AF0 AF1 AF2 AF3 —	GPIO[50] — — ADC0_P[6] ADC1_P[6]	SIUL — — ADC_0 ADC_1	-	Ι	Tristate	43	65	79	R12
PD[3]	PCR[51]	AF0 AF1 AF2 AF3 —	GPIO[51] — — ADC0_P[7] ADC1_P[7]	SIUL — — ADC_0 ADC_1	 - 	I	Tristate	44	66	80	P13
PD[4]	PCR[52]	AF0 AF1 AF2 AF3 —	GPIO[52] — — ADC0_P[8] ADC1_P[8]	SIUL — — ADC_0 ADC_1	 	Ι	Tristate	45	67	81	R13
PD[5]	PCR[53]	AF0 AF1 AF2 AF3 —	GPIO[53] — — ADC0_P[9] ADC1_P[9]	SIUL — — ADC_0 ADC_1	 	Ι	Tristate	46	68	82	T13
PD[6]	PCR[54]	AF0 AF1 AF2 AF3 —	GPIO[54] — — ADC0_P[10] ADC1_P[10]	SIUL — — ADC_0 ADC_1	 	Ι	Tristate	47	69	83	T14
PD[7]	PCR[55]	AF0 AF1 AF2 AF3 —	GPIO[55] — — ADC0_P[11] ADC1_P[11]	SIUL — — ADC_0 ADC_1	-	Ι	Tristate	48	70	84	R14
PD[8]	PCR[56]	AF0 AF1 AF2 AF3 — —	GPIO[56] — — ADC0_P[12] ADC1_P[12]	SIUL — — ADC_0 ADC_1	 - 	Ι	Tristate	49	71	87	T15

Table 8. PAD3V5V field description¹

Value ²	Description
0	High voltage supply is 5.0 V
1	High voltage supply is 3.3 V

¹ See the device reference manual for more information on the NVUSRO register.

² Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

4.2.2 NVUSRO[OSCILLATOR_MARGIN] field description

The fast external crystal oscillator consumption is dependent on the OSCILLATOR_MARGIN bit value. Table 9 shows how NVUSRO[OSCILLATOR_MARGIN] controls the device configuration.

Table 9. OSCILLATOR_MARGIN field description¹

Value ²	Description
0	Low consumption configuration (4 MHz/8 MHz)
1	High margin configuration (4 MHz/16 MHz)

¹ See the device reference manual for more information on the NVUSRO register.

² Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

4.2.3 NVUSRO[WATCHDOG_EN] field description

The watchdog enable/disable configuration after reset is dependent on the WATCHDOG_EN bit value. Table 10 shows how NVUSRO[WATCHDOG_EN] controls the device configuration.

Table 10. WATCHDOG_EN field description

Value ¹	Description
0	Disable after reset
1	Enable after reset

¹ Default manufacturing value is '1'. Value can be programmed by customer in Shadow Flash.

4.3 Absolute maximum ratings

Table 11. Absolute maximum ratings

Symbo	1	Parameter	Conditions	Va	lue	Unit
Symbo	'I	i arameter	Conditions	Min	Мах	onne
V _{SS}	SR	Digital ground on VSS_HV pins	—	0	0	V
V _{DD}		Voltage on VDD_HV pins with respect to ground (V _{SS})	—	-0.3	6.0	V
V _{SS_LV}		Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})	—	V _{SS} – 0.1	V _{SS} + 0.1	V
V _{DD_BV}		Voltage on VDD_BV (regulator supply) pin with	—	-0.3	6.0	V
	respect to ground (V _{SS})		Relative to V _{DD}	-0.3	V _{DD} + 0.3	

4.5 Thermal characteristics

4.5.1 External ballast resistor recommendations

External ballast resistor on V_{DD_BV} pin helps in reducing the overall power dissipation inside the device. This resistor is required only when maximum power consumption exceeds the limit imposed by package thermal characteristics.

As stated in Table 14 LQFP thermal characteristics, considering a thermal resistance of 144 LQFP as 48.3 °C/W, at ambient temperature $T_A = 125$ °C, the junction temperature T_j will cross 150 °C if the total power dissipation is greater than (150 - 125)/48.3 = 517 mW. Therefore, the total device current I_{DDMAX} at 125 °C/5.5 V must not exceed 94.1 mA (i.e., PD/VDD). Assuming an average $I_{DD}(V_{DD_{HV}})$ of 15–20 mA consumption typically during device RUN mode, the LV domain consumption $I_{DD}(V_{DD_{BV}})$ is thus limited to $I_{DDMAX} - I_{DD}(V_{DD_{HV}})$, i.e., 80 mA.

Therefore, respecting the maximum power allowed as explained in Section 4.5.2, "Package thermal characteristics, it is recommended to use this resistor only in the 125 °C/5.5 V operating corner as per the following guidelines:

- If $I_{DD}(V_{DD BV}) < 80$ mA, then no resistor is required.
- If 80 mA $< I_{DD}(V_{DD BV}) < 90$ mA, then 4 Ω resistor can be used.
- If $I_{DD}(V_{DD BV}) > 90$ mA, then 8 Ω resistor can be used.

Using resistance in the range of 4–8 Ω , the gain will be around 10–20% of total consumption on V_{DD_BV}. For example, if 8 Ω resistor is used, then power consumption when I_{DD}(V_{DD_BV}) is 110 mA is equivalent to power consumption when I_{DD}(V_{DD_BV}) is 90 mA (approximately) when resistor not used.

In order to ensure correct power up, the minimum V_{DD_BV} to be guaranteed is 30 ms/V. If the supply ramp is slower than this value, then LVDHV3B monitoring ballast supply V_{DD_BV} pin gets triggered leading to device reset. Until the supply reaches certain threshold, this low voltage detector (LVD) generates destructive reset event in the system. This threshold depends on the maximum $I_{DD}(V_{DD_BV})$ possible across the external resistor.

4.5.2 Package thermal characteristics

Table 14. LQFP thermal characteristics¹

Symb		С	Parameter	Conditions ²	Pin count		•	Unit	
Synn		C	Falanciel	Conditions		Min	Тур	Max	Onit
$R_{\theta JA}$	СС	D	Thermal resistance,	Single-layer board — 1s	100			64	°C/W
			junction-to-ambient natural convection ³		144			64	
					176			64	
				Four-layer board — 2s2p	100			49.7	
					144			48.3	
					176			47.3	
$R_{\theta JB}$	СС		Thermal resistance,	Single-layer board — 1s	100	_	_	36	°C/W
			junction-to-board ⁴		144			38	
					176			38	
				Four-layer board — 2s2p	100	_	_	33.6	
					144	_	_	33.4	
					176			33.4	

Syml	hol	с	Parameter		Conditions ¹		Value		Unit
Synn	001	C	Farameter		Conditions	Min	Тур	Max	Unit
V _{OH}	CC	Ρ	Output high level SLOW configuration	Push Pull	$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 0 (recommended)	0.8V _{DD}			V
		С			$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ $PAD3V5V = 1^2$	0.8V _{DD}	_	_	
		С			$I_{OH} = -1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%,$ PAD3V5V = 1 (recommended)	V _{DD} – 0.8			
V _{OL}	CC	Ρ	Output low level SLOW configuration	Push Pull	$\begin{split} I_{OL} &= 2 \text{ mA}, \\ V_{DD} &= 5.0 \text{ V} \pm 10\%, \\ PAD3V5V &= 0 \\ (recommended) \end{split}$	—		0.1V _{DD}	V
		С			$I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ $PAD3V5V = 1^2$	—	_	0.1V _{DD}	
		С			$I_{OL} = 1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%,$ PAD3V5V = 1 (recommended)	—	_	0.5	

Table 17. SLOW configuration output buffer electrical characteristics

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Table 18. MEDIUM configuration output I	buffer electrical characteristics
---	-----------------------------------

Svm	Symbol (C	Parameter		V	Unit			
- Cym		•	i di dillotoi		Conditions ¹	Min	Тур	Мах	0
V _{OH}	СС		Output high level MEDIUM configuration	Push Pull $I_{OH} = -3.8 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$		0.8V _{DD}	—	_	V
		Ρ			$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	0.8V _{DD}	_	_	
		С			$I_{OH} = -1 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^2$	0.8V _{DD}	—		
		С			$I_{OH} = -1$ mA, $V_{DD} = 3.3$ V ± 10%, PAD3V5V = 1 (recommended)	V _{DD} – 0.8	—	_	
		С			I _{OH} = −100 μA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	0.8V _{DD}	—		

Package		Supply segment										
Гаскауе	1	2	3	4	5	6	7	8				
208 MAPBGA ¹	Equivalent to 176 LQFP segment pad distribution						МСКО	MDOn /MSEO				
176 LQFP	pin7 – pin27	pin28 – pin57	pin59 – pin85	pin86 – pin123	pin124 – pin150	pin151 – pin6	—	—				
144 LQFP	pin20 – pin49	pin51 – pin99	pin100 – pin122	pin 123 – pin19	_	_	—	—				
100 LQFP	pin16 – pin35	pin37 – pin69	pin70 – pin83	pin84 – pin15	—	_	—	—				

Table 21. I/O supply segments

¹ 208 MAPBGA available only as development package for Nexus2+

Table 22. I/O consumption

Cymbo		с	Parameter	Condi	itions ¹		Value)	Unit
Symbo		C	Parameter	Condi	luons [.]	Min	Тур	Max	Unit
I _{SWTSLW} ²	СС	D	Dynamic I/O current for SLOW configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	-	—	20	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	—	16	
I _{SWTMED} ²	СС	D	Dynamic I/O current for MEDIUM configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	—	—	29	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	—	17	
I _{SWTFST} ²	СС	D	Dynamic I/O current for FAST configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	—	—	110	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—		50	
I _{RMSSLW}	СС	D	Root mean square I/O	C _L = 25 pF, 2 MHz	$V_{DD} = 5.0 V \pm 10\%$,	—	—	2.3	mA
			current for SLOW configuration	C _L = 25 pF, 4 MHz	PAD3V5V = 0	—	—	3.2	
				C _L = 100 pF, 2 MHz	-	—	—	6.6	
				C _L = 25 pF, 2 MHz	$V_{DD} = 3.3 V \pm 10\%$,	—	—	1.6	
				C _L = 25 pF, 4 MHz	PAD3V5V = 1	—	—	2.3	
				C _L = 100 pF, 2 MHz	-	_	—	4.7	
I _{RMSMED}	СС	D	Root mean square I/O	C _L = 25 pF, 13 MHz	$V_{DD} = 5.0 V \pm 10\%$,	—	—	6.6	mA
			current for MEDIUM configuration	C _L = 25 pF, 40 MHz	PAD3V5V = 0	_	—	13.4	
				C _L = 100 pF, 13 MHz	-	—	—	18.3	
				C _L = 25 pF, 13 MHz	$V_{DD} = 3.3 V \pm 10\%$,	—	—	5	
				C _L = 25 pF, 40 MHz	PAD3V5V = 1	_	—	8.5	
				C _L = 100 pF, 13 MHz		—	—	11	

4.8 Power management electrical characteristics

4.8.1 Voltage regulator electrical characteristics

The device implements an internal voltage regulator to generate the low voltage core supply V_{DD_LV} from the high voltage ballast supply V_{DD_BV} . The regulator itself is supplied by the common I/O supply V_{DD} . The following supplies are involved:

- HV: High voltage external power supply for voltage regulator module. This must be provided externally through V_{DD} power pin.
- BV: High voltage external power supply for internal ballast module. This must be provided externally through V_{DD_BV} power pin. Voltage values should be aligned with V_{DD} .
- LV: Low voltage internal power supply for core, FMPLL and Flash digital logic. This is generated by the internal voltage regulator but provided outside to connect stability capacitor. It is further split into four main domains to ensure noise isolation between critical LV modules within the device:
 - LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding.
 - LV_CFLA: Low voltage supply for code flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding.
 - LV_DFLA: Low voltage supply for data flash module. It is supplied with dedicated ballast and shorted to LV_COR through double bonding.
 - LV_PLL: Low voltage supply for FMPLL. It is shorted to LV_COR through double bonding.

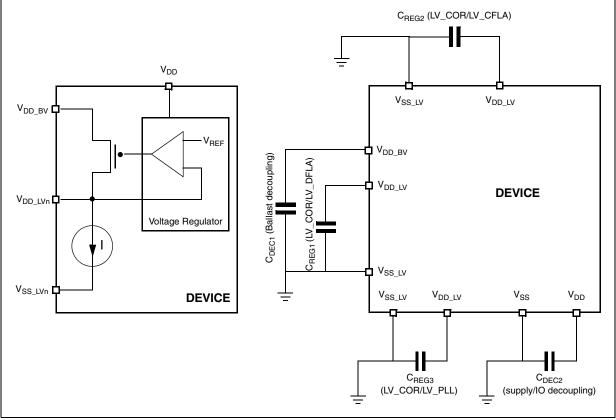


Figure 9. Voltage regulator capacitance connection

The internal voltage regulator requires external capacitance (C_{REGn}) to be connected to the device in order to provide a stable low voltage digital supply to the device. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the board to less than 5 nH.

Symbol	Ratings Conditions		Class	Max value ³	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human Body Model)	$T_A = 25 \ ^{\circ}C$ conforming to AEC-Q100-002	H1C	2000	V
V _{ESD(MM)}	Electrostatic discharge voltage (Machine Model)	$T_A = 25 \ ^{\circ}C$ conforming to AEC-Q100-003	M2	200	
V _{ESD(CDM)}	Electrostatic discharge voltage	$T_A = 25 \degree C$	C3A	500	
	(Charged Device Model)	conforming to AEC-Q100-011		750 (corners)	

Table 34. ESD absolute maximum ratings^{1,2}

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

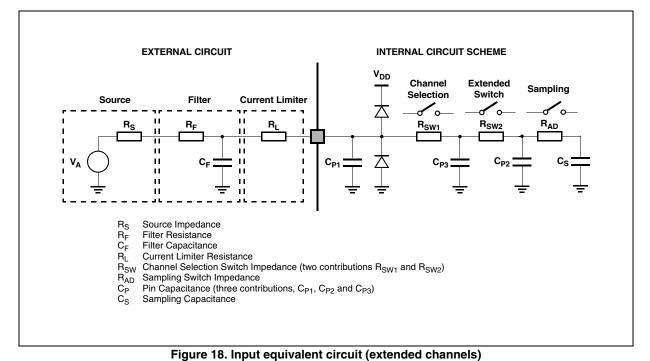
³ Data based on characterization results, not tested in production

4.11.3.2 Static latch-up (LU)

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with the EIA/JESD 78 IC latch-up standard.


Table 35. Latch-up results

Symbol	Parameter	Conditions	Class	
LU	Static latch-up class	$T_A = 125 \ ^{\circ}C$ conforming to JESD 78	II level A	

4.12 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics

The device provides an oscillator/resonator driver. Figure 11 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator.

Table 36 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.

relying the constitution notice where shall be considered. A growing the three constitutions of C

A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C_F , C_{P1} and C_{P2} are initially charged at the source voltage V_A (refer to the equivalent circuit reported in Figure 17): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close).

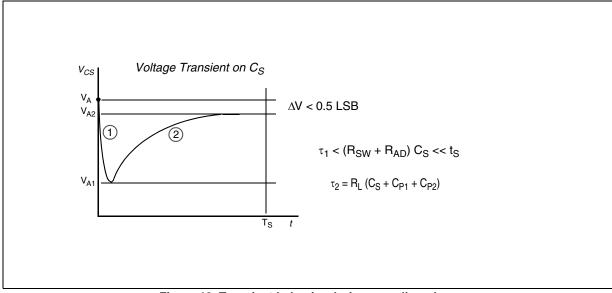


Figure 19. Transient behavior during sampling phase

In particular two different transient periods can be distinguished:

1. A first and quick charge transfer from the internal capacitance C_{P1} and C_{P2} to the sampling capacitance C_S occurs (C_S is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which C_{P2} is reported in parallel to C_{P1} (call $C_P = C_{P1} + C_{P2}$), the two capacitances C_P and C_S are in series, and the time constant is

Eqn. 5

Fan 6

$$\tau_1 = (\mathbf{R}_{SW} + \mathbf{R}_{AD}) \bullet \frac{\mathbf{C}_P \bullet \mathbf{C}_S}{\mathbf{C}_P + \mathbf{C}_S}$$

Equation 5 can again be simplified considering only C_S as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time t_S is always much longer than the internal time constant:

$$\tau_1 < (R_{SW} + R_{AD}) \bullet C_S \ll t_s$$

The charge of C_{P1} and C_{P2} is redistributed also on C_S , determining a new value of the voltage V_{A1} on the capacitance according to Equation 7:

$$V_{A1} \bullet (C_S + C_{P1} + C_{P2}) = V_A \bullet (C_{P1} + C_{P2})$$
 Eqn. 7

2. A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance R_L : again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality would be faster), the time constant is:

$$\tau_2 < R_L \bullet (C_S + C_{P1} + C_{P2})$$
 Eqn. 8

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time t_s , a constraints on R_I sizing is obtained:

$$10 \bullet \tau_2 = 10 \bullet R_L \bullet (C_S + C_{P1} + C_{P2}) < t_s$$

Of course, R_L shall be sized also according to the current limitation constraints, in combination with R_S (source impedance) and R_F (filter resistance). Being C_F definitively bigger than C_{P1} , C_{P2} and C_S , then the final voltage V_{A2} (at the end of the charge transfer transient) will be much higher than V_{A1} . Equation 10 must be respected (charge balance assuming now C_S already charged at V_{A1}):

Eqn. 10

Egn. 9

$$V_{A2} \bullet (C_S + C_{P1} + C_{P2} + C_F) = V_A \bullet C_F + V_{A1} \bullet (C_{P1} + C_{P2} + C_S)$$

The two transients above are not influenced by the voltage source that, due to the presence of the R_FC_F filter, is not able to provide the extra charge to compensate the voltage drop on C_S with respect to the ideal source V_A ; the time constant R_FC_F of the filter is very high with respect to the sampling time (t_s). The filter is typically designed to act as antialiasing.

¹ Operating conditions: $T_A = 25 \text{ °C}$, $f_{periph} = 8 \text{ MHz}$ to 64 MHz

 ² f_{periph} is an absolute value.
 ³ During the conversion, the total current consumption is given from the sum of the static and dynamic consumption, i.e., (41 + 46) * f_{periph}.

4.18.2 **DSPI** characteristics

No.	Symbo		с	Parameter		DSPI0/D	SPI1/DS	PI5/DSPI6	C	SPI2/DS	SPI4	Unit
NO.	Symbo	51					Max	Min Typ		Max	Onne	
1	t _{SCK}	SR	D	SCK cycle time	Master mode (MTFE = 0)	125	—	_	333	—		ns
			D		Slave mode (MTFE = 0)	125	_	_	333		_	
			D		Master mode (MTFE = 1)	83	_	_	125	_	_	
			D		Slave mode (MTFE = 1)	83	—	_	125	—	_	
—	f _{DSPI}	SR	D	DSPI digital controller frequ	lency	—	_	f _{CPU}	_	_	f _{CPU}	MHz
—	∆t _{CSC}	CC	D	Internal delay between pad associated to SCK and pad associated to CSn in master mode for CSn1->0		—	_	130 ²	_	_	15 ³	ns
_	∆t _{ASC}	СС	D	Internal delay between pad associated to SCK and pad associated to CSn in master mode for CSn1->1	Master mode	_	_	130 ³		_	130 ³	ns
2	t _{CSCext} ⁴	SR	D	CS to SCK delay	Slave mode	32	—	—	32	—	_	ns
3	t _{ASCext} 5	SR	D	After SCK delay	Slave mode	1/f _{DSPI} + 5	—	—	1/f _{DSPI} + 5	—	_	ns
4	t _{SDC}	СС	D	SCK duty cycle	Master mode	_	t _{SCK} /2	—	_	t _{SCK} /2	_	ns
		SR	D		Slave mode	t _{SCK} /2	—	—	t _{SCK} /2	—	_	
5	t _A	SR	D	Slave access time	Slave mode	—	—	1/f _{DSPI} + 70	_	—	1/f _{DSPI} + 130	ns
6	t _{DI}	SR	D	Slave SOUT disable time	Slave mode	7		—	7		—	ns

Table 47. DSPI characteristics¹

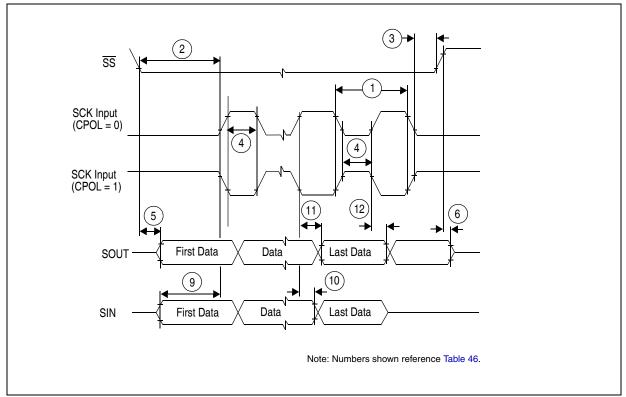


Figure 28. DSPI modified transfer format timing — slave, CPHA = 0

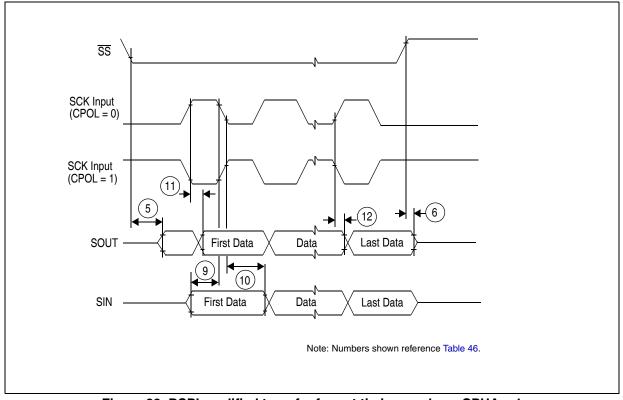


Figure 29. DSPI modified transfer format timing — slave, CPHA = 1

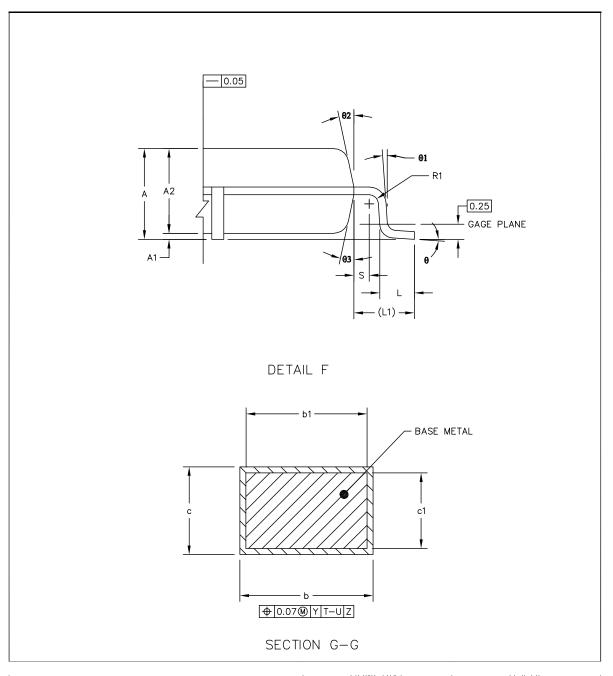


Figure 34. 176 LQFP package mechanical drawing (Part 2 of 3)

5.1.3 100 LQFP

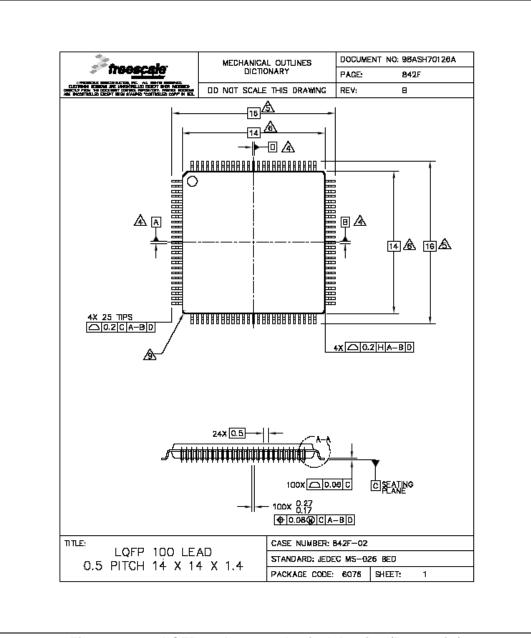


Figure 38. 100 LQFP package mechanical drawing (Part 1 of 3)

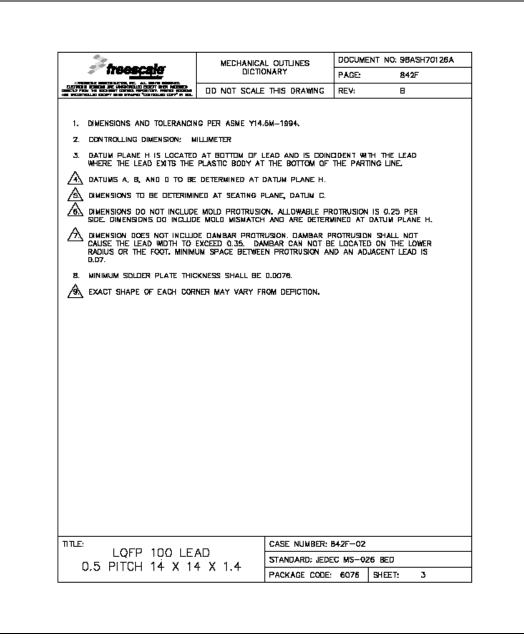


Figure 40. 100 LQFP package mechanical drawing (Part 3 of 3)

Package characteristics

5.1.4 208 MAPBGA

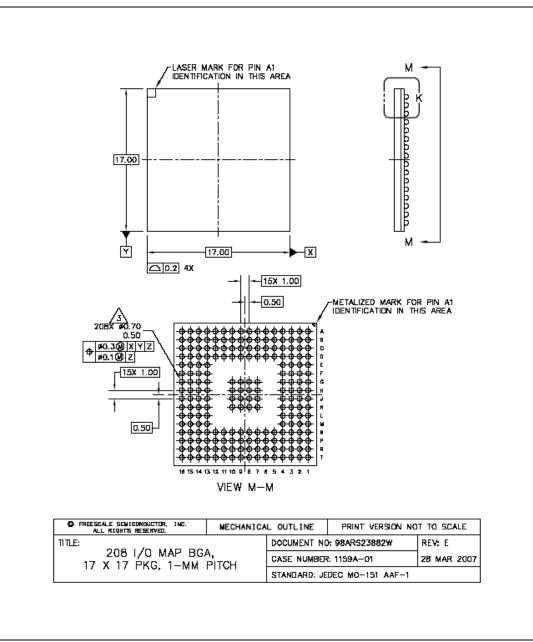


Figure 41. 208 MAPBGA package mechanical drawing (Part 1 of 2)

Revision history

Revision	Date	Substantive changes
4 (cont.)	24 Aug 2010 (cont.)	Table 40:• Added f_{VCO} row• Added $\Delta t_{ST,JIT}$ rowTable 41• I_{FIRCPWD}: removed row for $T_A = 55 \ ^{\circ}C$ • Updated T_{FIRCSU} rowTable 44: Added two rows: I_{ADC0pwd} and I_{ADC0run}Table 45• Added two rows: I_{ADC1pwd} and I_{ADC1run}
		 Updated values of f_{ADC_1} and t_{ADC1_PU} Updated t_{ADC1_C} row Updated Table 46 Updated Table 47 Updated Figure 43 Section 6, "Ordering information: deleted "Orderable part number summary" table
5	27 Aug 2010	Removed "Preliminary—Subject to Change Without Notice" marking. This data sheet contains specifications based on characterization data.
6	08 Jul 2011	 Editorial and formatting changes throughout Replaced instances of "e20020" with "e20020h"Device family comparision table: changed LINFlex count for 144-pin LQFP—was '6'; is '8' changed LINFlex count for 176-pin LQFP—was '8'; is '10' replaced 105 °C with 125 °C in footnote 2 MPC5607B block diagram: added GPIO and VREG to legend MPC5607B series block summary: added acronym "JTAGC"; in WKPU function changed "up to 18 external sources" to "up to 27 external sources" 144 LQFP pin configuration: for pins 37–72, restored the pin labels that existed prior to 27 July 2010 176 LQFP pin configuration: corrected name of pin 4: was EPC[15]; is PC[15] Added following sections: Pad configuration during reset phases Pad configuration during standby mode exit Voltage supply pins Pad types System pins Functional port pins Nexus 2+ pins Section "NVUSRO register": edited content to separate configuration into electrical parameters and digital functionality; updated footnote describing default value of '1' in field descriptions NVUSRO[PAD3V5V] and NVUSRO[OSCILLATOR_MARGIN] Added section "NVUSRO[WATCHDOG_EN] field description" Tables "Absolute maximum ratings" and "Recommended operating conditions (3.3 V)": replaced "VSS_HV_ADC0, VSS_HV_ADC1" with "VDD_HV_ADC0, VDD_HV_ADC1" in V_{DD_ADC} parameter description

Table 51. Revision history (continued)