

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	121
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	80K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 15x10b, 5x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/ppc5606bclq48

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Introduction

Table 1. MPC5607B fai	nily comparison ¹	(continued)
-----------------------	------------------------------	-------------

Feature	MPC5605B			MPC	5606B	MPC5607B		
CAN (FlexCAN)				6				
l ² C				1				
32 KHz oscillator				Yes				
GPIO ¹⁰	77	121	149	121		149		
Debug			JT	AG	G N2+			
Package	100 LQFP	144 LQFP	176 LQFP	144 LQFP	176 LQFP	208 MAP BGA ¹¹		

¹ Feature set dependent on selected peripheral multiplexing; table shows example

² Based on 125 °C ambient operating temperature

³ Not shared with 12-bit ADC, but possibly shared with other alternate functions

⁴ Not shared with 10-bit ADC, but possibly shared with other alternate functions

⁵ See the eMIOS section of the chip reference manual for information on the channel configuration and functions.

⁶ Each channel supports a range of modes including Modulus counters, PWM generation, Input Capture, Output Compare.

⁷ Each channel supports a range of modes including PWM generation with dead time, Input Capture, Output Compare.

⁸ Each channel supports a range of modes including PWM generation, Input Capture, Output Compare, Period and Pulse width measurement.

⁹ Each channel supports a range of modes including PWM generation, Input Capture, and Output Compare.

¹⁰ Maximum I/O count based on multiplexing with peripherals

¹¹ 208 MAPBGA available only as development package for Nexus2+

		ion ¹			2		¹³		Pin nu	umber	
Port pin	PCR	Alternate funct	Function	Peripheral	I/O direction	Pad type	RESET configuratio	100 LQFP	144 LQFP	176 LQFP	208 MAP BGA ⁴
PE[0]	PCR[64]	AF0 AF1 AF2 AF3 —	GPIO[64] E0UC[16] — WKPU[6] ⁵ CAN5RX	SIUL eMIOS_0 WKPU FlexCAN_5	I∕O I∕O I∕O	S	Tristate	6	10	18	F1
PE[1]	PCR[65]	AF0 AF1 AF2 AF3	GPIO[65] E0UC[17] CAN5TX —	SIUL eMIOS_0 FlexCAN_5 —	I/O I/O 0	М	Tristate	8	12	20	F4
PE[2]	PCR[66]	AF0 AF1 AF2 AF3 —	GPIO[66] E0UC[18] — EIRQ[21] SIN_1	SIUL eMIOS_0 — SIUL DSPI_1	I/O I/O — I	М	Tristate	89	128	156	D7
PE[3]	PCR[67]	AF0 AF1 AF2 AF3	GPIO[67] E0UC[19] SOUT_1 —	SIUL eMIOS_0 DSPI_1 —	I/O I/O O	М	Tristate	90	129	157	C7
PE[4]	PCR[68]	AF0 AF1 AF2 AF3 —	GPIO[68] E0UC[20] SCK_1 — EIRQ[9]	SIUL eMIOS_0 DSPI_1 — SIUL	I/O I/O I/O I	М	Tristate	93	132	160	D6
PE[5]	PCR[69]	AF0 AF1 AF2 AF3	GPIO[69] E0UC[21] CS0_1 MA[2]	SIUL eMIOS_0 DSPI_1 ADC_0	I/O I/O I/O O	М	Tristate	94	133	161	C6
PE[6]	PCR[70]	AF0 AF1 AF2 AF3 —	GPIO[70] E0UC[22] CS3_0 MA[1] EIRQ[22]	SIUL eMIOS_0 DSPI_0 ADC_0 SIUL	l∕0 0 0 −	М	Tristate	95	139	167	B5
PE[7]	PCR[71]	AF0 AF1 AF2 AF3 —	GPIO[71] E0UC[23] CS2_0 MA[0] EIRQ[23]	SIUL eMIOS_0 DSPI_0 ADC_0 SIUL	I/0 I/0 о о п	М	Tristate	96	140	168	C4
PE[8]	PCR[72]	AF0 AF1 AF2 AF3	GPIO[72] CAN2TX E0UC[22] CAN3TX	SIUL FlexCAN_2 eMIOS_0 FlexCAN_3	I/O O I/O O	М	Tristate	9	13	21	G2

		ior			2		د ا		Pin number			
Port pin	PCR	Alternate funct	Function	Peripheral	I/O direction	Pad type	RESET configuration	100 LQFP	144 LQFP	176 LQFP	208 MAP BGA ⁴	
PF[8]	PCR[88]	AF0 AF1 AF2 AF3	GPIO[88] CAN3TX CS4_0 CAN2TX	SIUL FlexCAN_3 DSPI_0 FlexCAN_2	0000	М	Tristate	_	34	42	P1	
PF[9]	PCR[89]	AF0 AF1 AF2 AF3 —	GPIO[89] E1UC[1] CS5_0 — WKPU[22] ⁵ CAN2RX	SIUL eMIOS_1 DSPI_0 — WKPU FlexCAN_2	I∕O I∕O O − − −	S	Tristate	_	33	41	N2	
PF[10]	PCR[90]	AF0 AF1 AF2 AF3	CAN3RX GPIO[90] CS1_0 LIN4TX E1UC[2]	FlexCAN_3 SIUL DSPI_0 LINFlex_4 eMIOS_1	- I∕O O O ∑ Q	М	Tristate		38	46	R3	
PF[11]	PCR[91]	AF0 AF1 AF2 AF3 —	GPIO[91] CS2_0 E1UC[3] — WKPU[15] ⁵ LIN4RX	SIUL DSPI_0 eMIOS_1 WKPU LINFlex_4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S	Tristate		39	47	R4	
PF[12]	PCR[92]	AF0 AF1 AF2 AF3	GPIO[92] E1UC[25] LIN5TX —	SIUL eMIOS_1 LINFlex_5 —	000	М	Tristate		35	43	R1	
PF[13]	PCR[93]	AF0 AF1 AF2 AF3 —	GPIO[93] E1UC[26] — WKPU[16] ⁵ LIN5RX	SIUL eMIOS_1 WKPU LINFlex_5	I/O I/O — — —	S	Tristate		41	49	Τ6	
PF[14]	PCR[94]	AF0 AF1 AF2 AF3	GPIO[94] CAN4TX E1UC[27] CAN1TX	SIUL FlexCAN_4 eMIOS_1 FlexCAN_1	I/O O I/O O	М	Tristate	_	102	126	D14	
PF[15]	PCR[95]	AF0 AF1 AF2 AF3 — —	GPIO[95] E1UC[4] — EIRQ[13] CAN1RX CAN4RX	SIUL eMIOS_1 SIUL FlexCAN_1 FlexCAN_4	1/0 1/0 	S	Tristate	-	101	125	E15	

 Table 5. Functional port pin descriptions (continued)

4 Electrical characteristics

This section contains electrical characteristics of the device as well as temperature and power considerations.

This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages.

To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V_{DD} or V_{SS}). This could be done by the internal pull-up and pull-down, which is provided by the product for most general purpose pins.

The parameters listed in the following tables represent the characteristics of the device and its demands on the system.

In the tables where the device logic provides signals with their respective timing characteristics, the symbol "CC" for Controller Characteristics is included in the Symbol column.

In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol "SR" for System Requirement is included in the Symbol column.

4.1 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in Table 7 are used and the parameters are tagged accordingly in the tables where appropriate.

Classification tag	Tag description
Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 7. Parameter classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

4.2 NVUSRO register

Bit values in the Non-Volatile User Options (NVUSRO) Register control portions of the device configuration, namely electrical parameters such as high voltage supply and oscillator margin, as well as digital functionality (watchdog enable/disable after reset).

For a detailed description of the NVUSRO register, please refer to the device reference manual.

4.2.1 NVUSRO[PAD3V5V] field description

The DC electrical characteristics are dependent on the PAD3V5V bit value. Table 8 shows how NVUSRO[PAD3V5V] controls the device configuration.

Symbol		C	Parameter	Conditions ²	Pin count		Unit		
Oy m	501	Ŭ	i didineter	Conditions		Min Typ Max		onic	
R_{\thetaJC}	СС		Thermal resistance,	Single-layer board — 1s	100			23	°C/W
			Junction-to-case ^o		144	_	_	23	
					176			23	
				Four-layer board — 2s2p	100			19.8	
					144			19.2	
					176	—	—	18.8	

Table 14. LQFP thermal characteristics¹ (continued)

¹ Thermal characteristics are targets based on simulation.

² $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40$ to 125 °C.

³ Junction-to-ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package. When Greek letters are not available, the symbols are typed as R_{thJA} and R_{thJMA}.

⁴ Junction-to-board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. When Greek letters are not available, the symbols are typed as R_{th.IB}.

⁵ Junction-to-case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer. When Greek letters are not available, the symbols are typed as R_{thJC}.

4.5.3 **Power considerations**

The average chip-junction temperature, T_I, in degrees Celsius, may be calculated using Equation 1:

$$T_{J} = T_{A} + (P_{D} \times R_{\theta JA})$$
 Eqn. 1

Where:

 T_A is the ambient temperature in °C.

 $R_{\theta JA}$ is the package junction-to-ambient thermal resistance, in °C/W.

 P_D is the sum of P_{INT} and $P_{I/O} (P_D = P_{INT} + P_{I/O})$.

P_{INT} is the product of I_{DD} and V_{DD}, expressed in watts. This is the chip internal power.

 $P_{I/O}$ represents the power dissipation on input and output pins; user determined.

Most of the time for the applications, $P_{I/O} < P_{INT}$ and may be neglected. On the other hand, $P_{I/O}$ may be significant, if the device is configured to continuously drive external modules and/or memories.

An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is given by:

$$P_{D} = K / (T_{J} + 273 °C)$$
 Eqn. 2

Therefore, solving equations 1 and 2:

$$K = P_D x (T_A + 273 °C) + R_{\theta JA} x P_D^2$$
 Eqn. 3

Where:

Symt	Symbol		Parameter	Condi	tions ¹		Unit		
- Oynic		Ŭ	i arameter	Condi		Min	Тур	Мах	onne
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	_	0.65V _{DD}	_	V _{DD} + 0.4	V	
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	_	-0.4	—	0.35V _{DD}		
V _{HYS}	СС	С	Input hysteresis CMOS (Schmitt Trigger)	_	0.1V _{DD}	—	—		
I _{LKG}	СС	D	Digital input leakage	No injection	$T_A = -40 \ ^\circ C$	—	2	200	nA
		D		pin	T _A = 25 °C	_	2	200	
		D			T _A = 85 °C	_	5	300	
		D			T _A = 105 °C	—	12	500	
		Ρ			T _A = 125 °C	—	70	1000	
W_{Fl}^2	SR	Ρ	Wakeup input filtered pulse	_	_	_	_	40	ns
$W_{\rm NFl}^2$	SR	Ρ	Wakeup input not filtered pulse	-	-	1000		—	ns

Table 15. I/O input DC electrical characteristics

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

² In the range from 40 to 1000 ns, pulses can be filtered or not filtered, according to operating temperature and voltage.

4.6.3 I/O output DC characteristics

The following tables provide DC characteristics for bidirectional pads:

- Table 16 provides weak pull figures. Both pull-up and pull-down resistances are supported.
- Table 17 provides output driver characteristics for I/O pads when in SLOW configuration.
- Table 18 provides output driver characteristics for I/O pads when in MEDIUM configuration.
- Table 19 provides output driver characteristics for I/O pads when in FAST configuration.

Symbol		C	Parameter	Conditions ¹			Unit		
- Oyini	501	Ŭ	i di dificici	Conditions	Min	Тур	Max	onne	
ll _{WPU} l	СС	Ρ	Weak pull-up current	$V_{IN} = V_{IL}, V_{DD} = 5.0 \text{ V} \pm 10\%$	PAD3V5V = 0	10	—	150	μA
		С	absolute value		$PAD3V5V = 1^2$	10	_	250	
		Ρ		$V_{IN} = V_{IL}, V_{DD} = 3.3 \text{ V} \pm 10\%$	PAD3V5V = 1	10	—	150	
II _{WPD} I	СС	Ρ	Weak pull-down current	$V_{IN} = V_{IH}, V_{DD} = 5.0 \text{ V} \pm 10\%$	PAD3V5V = 0	10	—	150	μA
		С	absolute value		PAD3V5V = 1	10	—	250	
		Ρ		$V_{IN} = V_{IH}, V_{DD} = 3.3 \text{ V} \pm 10\%$	PAD3V5V = 1	10	—	150	

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Package		Supply segment									
Tuckage	1	2	3	4	5	6	7	8			
208 MAPBGA ¹		Equivalent	to 176 LQFP	segment pac	I distribution		MCKO	MDOn /MSEO			
176 LQFP	pin7 – pin27	pin28 – pin57	pin59 – pin85	pin86 – pin123	pin124 – pin150	pin151 – pin6	—	_			
144 LQFP	pin20 – pin49	pin51 – pin99	pin100 – pin122	pin 123 – pin19	—	_	_				
100 LQFP	pin16 – pin35	pin37 – pin69	pin70 – pin83	pin84 – pin15	—	_	_				

Table 21. I/O supply segments

¹ 208 MAPBGA available only as development package for Nexus2+

Table 22. I/O consumption

Symbo		<u>ر</u>	Parameter	Condi	tions ¹		Value	•	Unit
Symbo		C	Falameter	Condi		Min	Тур	Max	Unit
I _{SWTSLW} ²	СС	D	Dynamic I/O current for SLOW configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0			20	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1		—	16	
I _{SWTMED} ²	СС	D	Dynamic I/O current for MEDIUM configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_	—	29	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	—	17	
I _{SWTFST} ²	СС	D	Dynamic I/O current for FAST configuration	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	—	—	110	mA
					V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	—	50	
I _{RMSSLW}	СС	D	Root mean square I/O	C _L = 25 pF, 2 MHz	$V_{DD} = 5.0 V \pm 10\%$,	—	—	2.3	mA
			current for SLOW	C _L = 25 pF, 4 MHz	PAD3V5V = 0	—	—	3.2	
			-	C _L = 100 pF, 2 MHz		—	—	6.6	
				C _L = 25 pF, 2 MHz	$V_{DD} = 3.3 V \pm 10\%$,	—	—	1.6	
				C _L = 25 pF, 4 MHz	PAD3V5V = I	—	—	2.3	
				C _L = 100 pF, 2 MHz		—	_	4.7	
IRMSMED	СС	D	Root mean square I/O	C _L = 25 pF, 13 MHz	$V_{DD} = 5.0 V \pm 10\%,$		-	6.6	mA
			configuration	C _L = 25 pF, 40 MHz	PAD3V5V = 0	—		13.4	
				C _L = 100 pF, 13 MHz		—		18.3	
				C _L = 25 pF, 13 MHz	$V_{DD} = 3.3 V \pm 10\%$,	—	—	5	
				C _L = 25 pF, 40 MHz		—	—	8.5	
				C _L = 100 pF, 13 MHz		—	—	11	

Symbo	1	C	Parameter	Conditions ¹			Value	•	Unit
Gymbo		Ŭ	i didineter	Condi		Min	Тур	Max	onit
I _{RMSFST}	СС	D	Root mean square I/O	C _L = 25 pF, 40 MHz	$V_{DD} = 5.0 \text{ V} \pm 10\%,$	—	—	22	mA
			configuration	$C_{L} = 25 \text{ pF, 64 MHz}$	PAD3V5V = 0	—	—	33	
				C _L = 100 pF, 40 MHz		—		56	
				C _L = 25 pF, 40 MHz	$V_{DD} = 3.3 V \pm 10\%$,			14	
			-	C _L = 25 pF, 64 MHz	FAD3V5V = 1	—	—	20	
				C _L = 100 pF, 40 MHz		—	—	35	
IAVGSEG	SR	D	Sum of all the static I/O	$V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$				70	mA
			segment	$V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PA}$	AD3V5V = 1	_	_	65	

Table 22. I/O consumption (continued)

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to125 °C, unless otherwise specified

 2 Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.

Table 23 provides the weight of concurrent switching I/Os.

Due to the dynamic current limitations, the sum of the weight of concurrent switching I/Os on a single segment must not exceed 100% to ensure device functionality.

Supply segment			176 LQFP					144/10	0 LQFP		
		Pad	Weight 5 V		Weight 3.3 V		Weig	ht 5 V	Weight 3.3 V		
176 LQFP	144 LQFP	100 LQFP		SRC ² = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1
6	4	4	PB[3]	5%	—	6%	—	13%	_	15%	—
			PC[9]	4%	—	5%	—	13%	_	15%	—
			PC[14]	4%	—	4%	—	13%	_	15%	—
			PC[15]	3%	4%	4%	4%	12%	18%	15%	16%
	_	—	PJ[4]	3%	4%	3%	3%	—	—	—	—

Table 23. I/O weight¹

Table 23. I/O weight (continue

0					176 L	QFP			144/10	0 LQFP	
Sup	piy segn	nent	Pad	Weigh	nt 5 V	Weigh	t 3.3 V	Weigl	ht 5 V	Weigh	t 3.3 V
176 LQFP	144 LQFP	100 LQFP		SRC ² = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1
4	2	2	PD[8]	1%	—	1%	—	1%	—	2%	—
			PB[4]	1%	—	1%	—	1%		2%	
			PB[5]	1%	—	1%	_	1%	_	2%	_
			PB[6]	1%		1%		1%	_	2%	_
			PB[7]	1%	—	1%		1%		2%	_
			PD[9]	1%	_	1%	—	1%	_	2%	_
			PD[10]	1%	—	1%		1%		2%	
			PD[11]	1%	_	1%		1%	_	2%	_
4	_	_	PB[11]	1%	_	1%		—	_	_	_
		_	PD[12]	11%	_	13%		—		_	_
	2	2	PB[12]	11%	—	13%	—	15%	_	17%	—
			PD[13]	11%	—	13%	—	14%	_	17%	—
			PB[13]	11%	—	13%	—	14%	_	17%	—
			PD[14]	11%	—	13%	—	14%	_	17%	_
			PB[14]	11%	—	13%	—	14%	_	16%	_
			PD[15]	11%	—	13%	—	13%		16%	_
			PB[15]	11%	—	13%	—	13%		15%	
	_		PI[8]	10%	—	12%	—	—		_	
	—		PI[9]	10%	—	12%	—	—		—	_
	_		PI[10]	10%	_	12%	_	—		_	
	_		PI[11]	10%	—	12%	—	—		_	
	_		PI[12]	10%	—	12%	—	—		—	
	_		PI[13]	10%	—	11%	—	—		—	
	2	2	PA[3]	9%	_	11%	—	11%		13%	
			PG[13]	9%	13%	11%	11%	10%	14%	12%	13%
			PG[12]	9%	13%	10%	11%	10%	14%	12%	12%
			PH[0]	6%	8%	7%	7%	6%	9%	7%	8%
			PH[1]	6%	8%	7%	7%	6%	8%	7%	7%
			PH[2]	5%	7%	6%	6%	5%	7%	6%	7%
			PH[3]	5%	7%	5%	6%	5%	7%	6%	6%
		—	PG[1]	4%	—	5%	—	4%	—	5%	—
		—	PG[0]	4%	5%	4%	5%	4%	5%	4%	5%

4.7 **RESET** electrical characteristics

The device implements a dedicated bidirectional $\overline{\text{RESET}}$ pin.

Figure 7. Start-up reset requirements

Figure 8. Noise filtering on reset signal

Symbo	Symbol		Parameter	Condition			Unit		
Cymbe	•	Ŭ	i ulumeter	Condition	Min	Тур	Max	onne	
I _{DDSTDBY2}	СС	Ρ	STANDBY2 mode current ⁹	Slow internal RC	T _A = 25 °C	_	30	100	μA
		D		oscillator (128 kHz)	T _A = 55 °C	—	75	—	
		D			T _A = 85 °C	_	180	700	
		D			T _A = 105 °C	—	315	1000	
		Ρ			T _A = 125 °C	—	560	1700	
I _{DDSTDBY1}	СС	Т	STANDBY1 mode current ¹⁰	Slow internal RC	T _A = 25 °C	—	20	60	μA
		D		running	T _A = 55 °C	—	45	—	
		D			T _A = 85 °C	—	100	350	
		D			T _A = 105 °C	—	165	500	
		D			T _A = 125 °C	—	280	900	

Table 27. Power consumption on VDD_BV and VDD_HV (continued)

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

- ² Running consumption does not include I/Os toggling which is highly dependent on the application. The given value is thought to be a worst case value with all peripherals running, and code fetched from code flash while modify operation ongoing on data flash. Notice that this value can be significantly reduced by application: switch off not used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible.
- ³ Higher current may be sunk by device during power-up and standby exit. Please refer to in-rush average current in Table 25.
- ⁴ RUN current measured with typical application with accesses on both Flash and RAM.
- ⁵ Only for the "P" classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPI as Master, PLL as system clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic SW/WDG timer reset enabled.
- ⁶ Data Flash Power Down. Code Flash in Low Power. SIRC 128 kHz and FIRC 16 MHz on. 10 MHz XTAL clock. FlexCAN: instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clocks gated. LINFlex: instances: 0, 1, 2 ON (clocked but not reception or transmission), instance: 3 to 9 clocks gated. eMIOS: instance: 0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication), instance: 1 to 5 clocks gated. RTC/API ON. PIT ON. STM ON. ADC1 OFF. ADC0 ON but no conversion except two analog watchdogs.
- ⁷ Only for the "P" classification: No clock, FIRC 16 MHz off, SIRC 128 kHz on, PLL off, HPvreg off, ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode.
- ⁸ When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main regulator module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction temperatures exceeding 125 °C and under these circumstances, it is possible for the current to initially exceed the maximum STOP specification by up to 2 mA. After entering stop, the application junction temperature will reduce to the ambient level and the main regulator will be automatically switched off when the load current is below 6 mA.
- ⁹ Only for the "P" classification: ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum consumption, all possible modules switched off.
- ¹⁰ ULPreg on, HP/LPVreg off, 8 KB RAM on, device configured for minimum consumption, all possible modules switched off.

4.10 Flash memory electrical characteristics

4.10.1 Program/erase characteristics

Table 28 shows the program and erase characteristics.

Table 28. Program and erase specifications

						V	alue		
Symbol		С	Parameter	Conditions	Min	Typ ¹	Initial max ²	Max ³	Unit
t _{dwprogram}	СС	С	Double word (64 bits) program time ⁴	Code Flash	—	18	50	500	μs
				Data Flash		22			
t _{16Kpperase}			16 KB block preprogram and erase time	Code Flash	—	200	500	5000	ms
				Data Flash		300			
t _{32Kpperase}			32 KB block preprogram and erase time	Code Flash	—	300	600	5000	ms
				Data Flash		400			
t _{128Kpperase}			128 KB block preprogram and erase time	Code Flash	—	600	1300	7500	ms
				Data Flash		800			
t _{esus}		D	Erase Suspend Latency	_	—	—	30	30	μs
t _{ESRT}	1	С	Erase Suspend Request Rate	Code Flash	20				ms
				Data Flash	10				

¹ Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization.

² Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.

³ The maximum program and erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.

⁴ Actual hardware programming times. This does not include software overhead.

Figure 15. Slow external crystal oscillator (32 kHz) timing diagram

Symbol		C	Parameter	Conditions ¹			Unit	
		Ŭ	rutuneter	Conditions	Min	Тур	Мах	Omt
f _{SXOSC}	SR	_	Slow external crystal oscillator frequency	_	32	32.768	40	kHz
V _{SXOSC}	СС	Т	Oscillation amplitude	_	_	2.1	—	V
I _{SXOSCBIAS}	СС	Т	Oscillation bias current	_		2.5		μA
I _{SXOSC}	СС	Т	Slow external crystal oscillator consumption	_	—	—	8	μA
tsxoscsu	CC	Т	Slow external crystal oscillator start-up time	_	_	_	2 ²	S

¹ $V_{DD} = 3.3 V \pm 10\% / 5.0 V \pm 10\%$, $T_A = -40$ to 125 °C, unless otherwise specified. Values are specified for no neighbor GPIO pin activity. If oscillator is enabled (OSC32K_XTAL and OSC32K_EXTAL pins), neighboring pins should not toggle.

² Start-up time has been measured with EPSON TOYOCOM MC306 crystal. Variation may be seen with other crystal.

4.14 FMPLL electrical characteristics

The device provides a frequency modulated phase locked loop (FMPLL) module to generate a fast system clock from the main oscillator driver.

Table 40. FN	MPLL electrica	I characteristics
--------------	----------------	-------------------

Symbol	C	Parameter	Conditions ¹		Unit		
Cymbol		i didineter	Conditions	Min	Тур	Max	
f _{PLLIN} SF	- 1	FMPLL reference clock ²	—	4	_	64	MHz

Eqn. 5

Fan 6

$$\tau_1 = (\mathbf{R}_{SW} + \mathbf{R}_{AD}) \bullet \frac{\mathbf{C}_P \bullet \mathbf{C}_S}{\mathbf{C}_P + \mathbf{C}_S}$$

Equation 5 can again be simplified considering only C_S as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time t_S is always much longer than the internal time constant:

$$\tau_1 < (R_{SW} + R_{AD}) \bullet C_S \ll t_s$$

The charge of C_{P1} and C_{P2} is redistributed also on C_S , determining a new value of the voltage V_{A1} on the capacitance according to Equation 7:

$$V_{A1} \bullet (C_S + C_{P1} + C_{P2}) = V_A \bullet (C_{P1} + C_{P2})$$
 Eqn. 7

2. A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance R_L : again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality would be faster), the time constant is:

$$\tau_2 < R_L \bullet (C_S + C_{P1} + C_{P2})$$
 Eqn. 8

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time t_s , a constraints on R_I sizing is obtained:

$$10 \bullet \tau_2 = 10 \bullet R_L \bullet (C_S + C_{P1} + C_{P2}) < t_s$$

Of course, R_L shall be sized also according to the current limitation constraints, in combination with R_S (source impedance) and R_F (filter resistance). Being C_F definitively bigger than C_{P1} , C_{P2} and C_S , then the final voltage V_{A2} (at the end of the charge transfer transient) will be much higher than V_{A1} . Equation 10 must be respected (charge balance assuming now C_S already charged at V_{A1}):

Eqn. 10

Egn. 9

$$V_{A2} \bullet (C_S + C_{P1} + C_{P2} + C_F) = V_A \bullet C_F + V_{A1} \bullet (C_{P1} + C_{P2} + C_S)$$

The two transients above are not influenced by the voltage source that, due to the presence of the R_FC_F filter, is not able to provide the extra charge to compensate the voltage drop on C_S with respect to the ideal source V_A ; the time constant R_FC_F of the filter is very high with respect to the sampling time (t_s). The filter is typically designed to act as antialiasing.

Cumh		~	Devenuetev	Conditi	1		Value		11
Sympo	ы	C	Parameter	Conditi	ions ⁻	Min	Тур	Max	Unit
R _{SW1}	СС	D	Internal resistance of analog source	_			-	3	kΩ
R _{SW2}	СС	D	Internal resistance of analog source	_		—	—	2	kΩ
R _{AD}	СС	D	Internal resistance of analog source	_		_	—	2	kΩ
I _{INJ}	SR	_	Input current Injection	Current injection on one ADC_0	V _{DD} = 3.3 V ± 10%	-5		5	mA
				from the converted one	V _{DD} = 5.0 V ± 10%	-5	_	5	
INL	СС	Т	Absolute integral nonlinearity	No overload	<u>+</u>	—	0.5	1.5	LSB
DNL	СС	Т	Absolute differential nonlinearity	No overload			0.5	1.0	LSB
I E _O I	СС	Т	Absolute offset error			—	0.5	_	LSB
I E _G I	СС	Т	Absolute gain error				0.6		LSB
TUEP	СС	Ρ	Total unadjusted error ⁷ for	Without current in	njection	-2	0.6	2	LSB
		Т	precise channels, input only pins	With current injection		-3	—	3	
TUEX	СС	Т	Total unadjusted error ⁷ for	Without current in	njection	-3	1	3	LSB
		Т	extended channel	With current inject	ction	-4		4	

Table 44. ADC_0 conversion characteristics (10-bit ADC_0) (continued)

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

 $^2\,$ Analog and digital V_{SS} **must** be common (to be tied together externally).

³ V_{AINx} may exceed V_{SS_ADC0} and V_{DD_ADC0} limits, remaining on absolute maximum ratings, but the results of the conversion will be clamped respectively to 0x000 or 0x3FF.

⁴ Duty cycle is ensured by using system clock without prescaling. When ADCLKSEL = 0, the duty cycle is ensured by internal divider by 2.

⁵ During the sampling time the input capacitance C_S can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_{ADC0_S} . After the end of the sampling time t_{ADC0_S} , changes of the analog input voltage have no effect on the conversion result. Values for the sampling clock t_{ADC0_S} depend on programming.

⁶ This parameter does not include the sampling time t_{ADC0_S}, but only the time for determining the digital result and the time to load the result's register with the conversion result.

⁷ Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a combination of Offset, Gain and Integral Linearity errors.

Figure 21. ADC_1 characteristic and error definitions

Table 45. ADC	1 conversion	characteristics	(12-bit ADC	_1)
	-		•	_ /

Symbol	I	C	Parameter	Conditions ¹	Value			Unit
Symbol		U	rarameter	Conditions	Min	Тур	Мах	onne
V _{SS_ADC1}	SR	—	Voltage on VSS_HV_ADC1 (ADC_1 reference) pin with respect to ground (V _{SS}) ²	_	-0.1	—	0.1	V
V _{DD_ADC1}	SR	—	Voltage on VDD_HV_ADC1 pin (ADC_1 reference) with respect to ground (V _{SS})	_	V _{DD} – 0.1	—	V _{DD} + 0.1	V

Symbol		<u> </u>	Parameter	Conditions ¹	Value			L Incid
		C			Min	Тур	Max	Unit
V _{AINx}	SR	_	Analog input voltage ³	_	V _{SS_ADC1} - 0.1	—	V _{DD_ADC1} + 0.1	V
I _{ADC1pwd}	SR	—	ADC_1 consumption in power down mode	_	_	—	50	μA
I _{ADC1run}	SR		ADC_1 consumption in running mode	_	—	—	6	mA
f _{ADC1}	SR		ADC_1 analog frequency	V _{DD} = 3.3 V	3.33	—	20 + 4%	MHz
				$V_{DD} = 5 V$	3.33	—	32 + 4%	
t _{ADC1_PU}	SR	—	ADC_1 power up delay	_	—	—	1.5	μs
t _{ADC1_S}	СС	Т	Sampling time ⁴ V _{DD} = 3.3 V	f _{ADC1} = 20 MHz, INPSAMP = 12	600	-		ns
			Samplingtime ⁴ V _{DD} = 5.0 V	f _{ADC1} = 32 MHz, INPSAMP = 17	500	—	_	
			Sampling time ⁴ V _{DD} = 3.3 V	f _{ADC1} = 3.33 MHz, INPSAMP = 255	—	-	76.2	μs
			Sampling time ⁴ V _{DD} = 5.0 V	f _{ADC1} = 3.33 MHz, INPSAMP = 255	—	—	76.2	
t _{ADC1_C}	СС	Ρ	Conversion time ⁵ V _{DD} = 3 .3 V	f _{ADC1} = 20 MHz, INPCMP = 0	2.4	—	—	μs
			Conversion time ⁵ V _{DD} = 5.0 V	f _{ADC 1} = 32 MHz, INPCMP = 0	1.5	—	—	μs
			Conversion time ⁵ V _{DD} = 3.3 V	f _{ADC 1} = 13.33 MHz, INPCMP = 0	—	—	3.6	μs
			Conversion time ⁵ V _{DD} = 5.0 V	f _{ADC1} = 13.33 MHz, INPCMP = 0	—	—	3.6	μs
Δ_{ADC1_SYS}	SR		ADC_1 digital clock duty cycle	ADCLKSEL = 1 ⁶	45	—	55	%
C _S	СС	D	ADC_1 input sampling capacitance	_		—	5	pF
C _{P1}	сс	D	ADC_1 input pin capacitance 1	_	_	—	3	pF
C _{P2}	сс	D	ADC_1 input pin capacitance 2	_	—	—	1	pF
C _{P3}	СС	D	ADC_1 input pin capacitance 3	_	_	—	1.5	pF
R _{SW1}	СС	D	Internal resistance of analog source	_	_	—	1	kΩ
R _{SW2}	СС	D	Internal resistance of analog source	_	—	-	2	kΩ
R _{AD}	СС	D	Internal resistance of analog source	_		—	0.3	kΩ

Table 45. ADC_1 conversion characteristics (12-bit ADC_1) (continued)

Figure 24. DSPI classic SPI timing — slave, CPHA = 0

Figure 25. DSPI classic SPI timing — slave, CPHA = 1

Figure 32. Timing diagram — JTAG boundary scan

Figure 42. 208 MAPBGA package mechanical drawing (Part 2 of 2)