

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	149
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	80K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 29x10b, 5x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/ppc5606bclu48

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Introd	Juction
	1.1	Document overview
	1.2	Description
2	Block	diagram
3	Packa	age pinouts and signal descriptions
	3.1	Package pinouts
	3.2	Pad configuration during reset phases12
	3.3	Pad configuration during standby mode exit
	3.4	Voltage supply pins
	3.5	Pad types14
	3.6	System pins14
	3.7	Functional port pins15
	3.8	Nexus 2+ pins
4	Elect	rical characteristics
	4.1	Parameter classification
	4.2	NVUSRO register
		4.2.1 NVUSRO[PAD3V5V] field description
		4.2.2 NVUSRO[OSCILLATOR_MARGIN] field
		description
		4.2.3 NVUSRO[WATCHDOG_EN] field description36
	4.3	Absolute maximum ratings
	4.4	Recommended operating conditions
	4.5	Thermal characteristics40
		4.5.1 External ballast resistor recommendations 40
		4.5.2 Package thermal characteristics40
		4.5.3 Power considerations
	4.6	I/O pad electrical characteristics
		4.6.1 I/O pad types
		4.6.2 I/O input DC characteristics
		4.6.3 I/O output DC characteristics
		4.6.4 Output pin transition times
		4.6.5 I/O pad current specification
	4.7	RESET electrical characteristics
	4.8	Power management electrical characteristics
		4.8.1 Voltage regulator electrical characteristics57
		4.8.2 Low voltage detector electrical characteristics .59
	4.9	Power consumption
	4.10	Flash memory electrical characteristics

		4 10 1 Brogram/oroad abaracteristics
		4.10.1 Flogialit/elase characteristics
		4.10.2 Flash power supply DC characteristics 63
		4.10.3 Start-up/Switch-off timings
	4.11	Electromagnetic compatibility (EMC) characteristics 64
		4.11.1 Designing hardened software to avoid
		noise problems
		4.11.2 Electromagnetic interference (EMI) 65
		4.11.3 Absolute maximum ratings (electrical
		sensitivity) 65
	4.12	Fast external crystal oscillator (4 to 16 MHz)
		electrical characteristics
	4.13	Slow external crystal oscillator (32 kHz)
		electrical characteristics 69
	4.14	FMPLL electrical characteristics
	4.15	Fast internal RC oscillator (16 MHz)
		electrical characteristics
	4.16	Slow internal RC oscillator (128 kHz)
		electrical characteristics 73
	4.17	ADC electrical characteristics
		4.17.1 Introduction
		4.17.2 Input impedance and ADC accuracy 75
		4.17.3 ADC electrical characteristics 80
	4.18	On-chip peripherals 85
		4.18.1 Current consumption 85
		4.18.2 DSPI characteristics
		4.18.3 Nexus characteristics
		4.18.4 JTAG characteristics
5	Pack	age characteristics
	5.1	Package mechanical data 96
		5.1.1 176 LQFP 96
		5.1.2 144 LQFP 100
		5.1.3 100 LQFP 102
		5.1.4 208 MAPBGA 105
6	Orde	ring information
Ар	pendix	AAbbreviations
7	Revis	sion history 109

1 Introduction

1.1 Document overview

This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the device.

1.2 Description

This family of 32-bit system-on-chip (SoC) microcontrollers is the latest achievement in integrated automotive application controllers. It belongs to an expanding family of automotive-focused products designed to address the next wave of body electronics applications within the vehicle.

The advanced and cost-efficient e200z0h host processor core of this automotive controller family complies with the Power Architecture technology and only implements the VLE (variable-length encoding) APU (Auxiliary Processor Unit), providing improved code density. It operates at speeds of up to 64 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations.

Feature		MPC5605B		MPC	5606B	MPC5607B		
CPU	e200z0h							
Execution speed ²			ļ	Up to 64 MH	z			
Code flash memory		768 KB		11	MB	1.5 MB		
Data flash memory			6	64 (4 × 16) K	В			
SRAM		64 KB		80	KB	96 KB		
MPU				8-entry				
eDMA				16 ch				
10-bit ADC				Yes				
dedicated ³	7 ch	15 ch	29 ch	15 ch		29 ch		
shared with 12-bit ADC	19 ch							
12-bit ADC	Yes							
dedicated ⁴	5 ch							
shared with 10-bit ADC	19 ch							
Total timer I/O ⁵ eMIOS	37 ch, 64 ch, 16-bit 16-bit							
Counter / OPWM / ICOC ⁶	10 ch							
O(I)PWM / OPWFMB / OPWMCB / ICOC ⁷	7 ch							
O(I)PWM / ICOC ⁸	7 ch	7 ch 14 ch						
OPWM / ICOC ⁹	13 ch 33 ch							
SCI (LINFlex)	4	8	10	8		10		
SPI (DSPI)	3	5	6	5		6		

Table 1. MPC5607B family comparison¹

Introduction

Table 1. MPC5607B fai	nily comparison ¹	(continued)
-----------------------	------------------------------	-------------

Feature		MPC5605B		MPC	5606B	MPC5607B			
CAN (FlexCAN)	6								
l ² C	1								
32 KHz oscillator				Yes					
GPIO ¹⁰	77	121	149	121		149			
Debug			JT	AG	N2+				
Package	100 LQFP	144 LQFP	176 LQFP	144 LQFP	176 LQFP	176 LQFP	208 MAP BGA ¹¹		

¹ Feature set dependent on selected peripheral multiplexing; table shows example

² Based on 125 °C ambient operating temperature

³ Not shared with 12-bit ADC, but possibly shared with other alternate functions

⁴ Not shared with 10-bit ADC, but possibly shared with other alternate functions

⁵ See the eMIOS section of the chip reference manual for information on the channel configuration and functions.

⁶ Each channel supports a range of modes including Modulus counters, PWM generation, Input Capture, Output Compare.

⁷ Each channel supports a range of modes including PWM generation with dead time, Input Capture, Output Compare.

⁸ Each channel supports a range of modes including PWM generation, Input Capture, Output Compare, Period and Pulse width measurement.

⁹ Each channel supports a range of modes including PWM generation, Input Capture, and Output Compare.

¹⁰ Maximum I/O count based on multiplexing with peripherals

¹¹ 208 MAPBGA available only as development package for Nexus2+

Block	Function
Non-Maskable Interrupt (NMI)	Handles external events that must produce an immediate response, such as power down detection
Periodic interrupt timer (PIT)	Produces periodic interrupts and triggers
Power control unit (MC_PCU)	Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called "power domains" which are controlled by the PCU
Real-time counter (RTC)	A free running counter used for time keeping applications, the RTC can be configured to generate an interrupt at a predefined interval independent of the mode of operation (run mode or low-power mode)
Reset generation module (MC_RGM)	Centralizes reset sources and manages the device reset sequence of the device
Static random-access memory (SRAM)	Provides storage for program code, constants, and variables
System integration unit lite (SIUL)	Provides control over all the electrical pad controls and up 32 ports with 16 bits of bidirectional, general-purpose input and output signals and supports up to 32 external interrupts with trigger event configuration
System status and configuration module (SSCM)	Provides system configuration and status data (such as memory size and status, device mode and security status), device identification data, debug status port enable and selection, and bus and peripheral abort enable/disable
System timer module (STM)	Provides a set of output compare events to support AUTOSAR (AUTomotive Open System ARchitecture) and operating system tasks
System watchdog timer (SWT)	Provides protection from runaway code
WKPU (wakeup unit)	The wakeup unit supports up to 27 external sources that can generate interrupts or wakeup events, of which 1 can cause non-maskable interrupt requests or wakeup events.

Table 2. MPC5607B	series block	summary ((continued)
-------------------	--------------	-----------	-------------

3 Package pinouts and signal descriptions

3.1 Package pinouts

The available LQFP pinouts and the ballmap are provided in the following figures. For pin signal descriptions, please see Table 5.

				umber	mber									
Port pin	PCR	Alternate funct	Function	Peripheral	I/O direction	Pad type	RESET configuration	100 LQFP	144 LQFP	176 LQFP	208 MAP BGA ⁴			
PA[14]	PCR[14]	AF0 AF1 AF2 AF3 —	GPIO[14] SCK_0 CS0_0 E0UC[0] EIRQ[4]	SIUL DSPI_0 DSPI_0 eMIOS_0 SIUL	I/O I/O I/O I/O I	М	Tristate	28	42	50	P6			
PA[15]	PCR[15]	AF0 AF1 AF2 AF3 —	GPIO[15] CS0_0 SCK_0 E0UC[1] WKPU[10] ⁵	SIUL DSPI_0 DSPI_0 eMIOS_0 WKPU	I/O I/O I/O I/O I	М	Tristate	27	40	48	R6			
	Port B													
PB[0]	PCR[16]	AF0 AF1 AF2 AF3	GPIO[16] CAN0TX E0UC[30] LIN0TX	SIUL FlexCAN_0 eMIOS_0 LINFlex_0	I∕O O [∕O I∕O 0	Μ	Tristate	23	31	39	N3			
PB[1]	PCR[17]	AF0 AF1 AF2 AF3 — —	GPIO[17] — E0UC[31] — WKPU[4] ⁵ CAN0RX LIN0RX	SIUL — eMIOS_0 — WKPU FlexCAN_0 LINFlex_0	10 10 1	S	Tristate	24	32	40	N1			
PB[2]	PCR[18]	AF0 AF1 AF2 AF3	GPIO[18] LINOTX SDA E0UC[30]	SIUL LINFlex_0 I ² C_0 eMIOS_0	I/O O I/O I/O	М	Tristate	100	144	176	B2			
PB[3]	PCR[19]	AF0 AF1 AF2 AF3 —	GPIO[19] E0UC[31] SCL 	SIUL eMIOS_0 I ² C_0 — WKPU LINFlex_0	I/O I/O I/O I	S	Tristate	1	1	1	C3			
PB[4]	PCR[20]	AF0 AF1 AF2 AF3 — —	 ADC0_P[0] ADC1_P[0] GPI0[20]		 	Ι	Tristate	50	72	88	T16			

 Table 5. Functional port pin descriptions (continued)

Symbol		c	Parameter		Conditions ¹	v	Unit		
Sym	1001	Ŭ	i di difietei		Conditions		Тур	Max	onne
V _{OL}	СС	С	Output low level MEDIUM configuration	Push Pull	I _{OL} = 3.8 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	_	—	0.2V _{DD}	V
		Ρ			$I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)		—	0.1V _{DD}	
		С			$I_{OL} = 1 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^2$		—	0.1V _{DD}	
		С			$I_{OL} = 1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1$ (recommended)	—	—	0.5	
		С			I _{OL} = 100 μA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0		—	0.1V _{DD}	

Table 18. MEDIUM configuration output buffer electrical characteristics (continued)

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Symbol		~	Paramotor		Conditions ¹		Value		Unit
Synn	100	C	Falailletei		Conditions		Тур	Max	Unit
V _{OH}	СС	Ρ	Output high level FAST configuration	Push Pull	$I_{OH} = -14 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 0 (recommended)	0.8V _{DD}			V
		С			$I_{OH} = -7 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 1 ²		_	_	
	C				$I_{OH} = -11 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%,$ PAD3V5V = 1 (recommended)	V _{DD} – 0.8			
V _{OL}	СС	Ρ	Output low level FAST configuration	Push Pull	$I_{OL} = 14 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ PAD3V5V = 0 (recommended)	_	_	0.1V _{DD}	V
		С			$I_{OL} = 7 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ $PAD3V5V = 1^2$	_	_	0.1V _{DD}	
		С			$I_{OL} = 11 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%,$ PAD3V5V = 1 (recommended)			0.5	

Table 19. FAST configuration output buffer electrical characteristics

 $\overline{1}$ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

Each decoupling capacitor must be placed between each of the three V_{DD_LV}/V_{SS_LV} supply pairs to ensure stable voltage (see Section 4.4, "Recommended operating conditions).

Symbol		C	Poromotor	Conditional		Unit		
		C			Min	Тур	Max	Unit
C _{REGn}	SR		Internal voltage regulator external capacitance	_	200	_	500	nF
R _{REG}	SR		Stability capacitor equivalent serial resistance	Range: 10 kHz to 20 MHz	_		0.2	Ω
C _{DEC1}	SR		Decoupling capacitance ² ballast	V_{DD_BV}/V_{SS_LV} pair: $V_{DD_BV} = 4.5$ V to 5.5 V	100 ³	470 ⁴	—	nF
				V _{DD_BV} /V _{SS_LV} pair: V _{DD_BV} = 3 V to 3.6 V	400		—	
C _{DEC2}	SR		Decoupling capacitance regulator supply	V _{DD} /V _{SS} pair	10	100	—	nF
V _{MREG}	СС	Т	Main regulator output voltage	Before exiting from reset	_	1.32	—	V
		Ρ		After trimming	1.16	1.28	—	
I _{MREG}	SR		Main regulator current provided to V _{DD_LV} domain	—	_	—	150	mA
IMREGINT	СС	D	Main regulator module current	I _{MREG} = 200 mA	_	—	2	mA
			consumption	I _{MREG} = 0 mA	_	—	1	
V _{LPREG}	СС	Ρ	Low-power regulator output voltage	After trimming	1.16	1.28	—	V
I _{LPREG}	SR		Low-power regulator current provided to $V_{DD_{LV}}$ domain	—	_	—	15	mA
I _{LPREGINT}	СС	D	Low-power regulator module current consumption	I _{LPREG} = 15 mA; T _A = 55 °C	_	_	600	μA
				I _{LPREG} = 0 mA; T _A = 55 °C		5	—	
V _{ULPREG}	СС	Ρ	Ultra low power regulator output voltage	After trimming	1.16	1.28	—	V
IULPREG	SR		Ultra low power regulator current provided to V _{DD_LV} domain	_	_		5	mA
IULPREGINT	I _{ULPREGINT} CC D Ultra low power regulator module current consumption		I _{ULPREG} = 5 mA; T _A = 55 °C			100	μA	
				I _{ULPREG} = 0 mA; T _A = 55 °C		2	—	
I _{DD_BV}	СС	D	In-rush average current on V _{DD_BV} during power-up ⁵	—		—	300 ⁶	mA

Table 25	Voltage	regulator	electrical	characteristics
Table 2J.	vonage	regulator	electrical	Characteristics

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

² This capacitance value is driven by the constraints of the external voltage regulator supplying the V_{DD_BV} voltage. A typical value is in the range of 470 nF.

 $^{3}\,$ This value is acceptable to guarantee operation from 4.5 V to 5.5 V

MPC5607B Microcontroller Data Sheet, Rev. 6

Symbol		C	Parameter	Condition	Conditions ¹			Value		
		Ŭ	i ulumeter	Condition	15	Min	Тур	Max	onne	
I _{DDSTDBY2}	СС	Ρ	STANDBY2 mode current ⁹	Slow internal RC	T _A = 25 °C	_	30	100	μA	
		D		oscillator (128 kHz) running	T _A = 55 °C	—	75	_		
		D			T _A = 85 °C	_	180	700		
		D			T _A = 105 °C	—	315	1000		
		Ρ			T _A = 125 °C	—	560	1700		
I _{DDSTDBY1}	СС	Т	STANDBY1 mode current ¹⁰	Slow internal RC	T _A = 25 °C	—	20	60	μA	
		D		running	T _A = 55 °C	—	45	—		
		D		-	T _A = 85 °C	—	100	350		
		D			T _A = 105 °C	—	165	500		
		D			T _A = 125 °C	—	280	900		

Table 27. Power consumption on VDD_BV and VDD_HV (continued)

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

- ² Running consumption does not include I/Os toggling which is highly dependent on the application. The given value is thought to be a worst case value with all peripherals running, and code fetched from code flash while modify operation ongoing on data flash. Notice that this value can be significantly reduced by application: switch off not used peripherals (default), reduce peripheral frequency through internal prescaler, fetch from RAM most used functions, use low power mode when possible.
- ³ Higher current may be sunk by device during power-up and standby exit. Please refer to in-rush average current in Table 25.
- ⁴ RUN current measured with typical application with accesses on both Flash and RAM.
- ⁵ Only for the "P" classification: Data and Code Flash in Normal Power. Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPI as Master, PLL as system clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic SW/WDG timer reset enabled.
- ⁶ Data Flash Power Down. Code Flash in Low Power. SIRC 128 kHz and FIRC 16 MHz on. 10 MHz XTAL clock. FlexCAN: instances: 0, 1, 2 ON (clocked but not reception or transmission), instances: 4, 5, 6 clocks gated. LINFlex: instances: 0, 1, 2 ON (clocked but not reception or transmission), instance: 3 to 9 clocks gated. eMIOS: instance: 0 ON (16 channels on PA[0]–PA[11] and PC[12]–PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0 (clocked but no communication), instance: 1 to 5 clocks gated. RTC/API ON. PIT ON. STM ON. ADC1 OFF. ADC0 ON but no conversion except two analog watchdogs.
- ⁷ Only for the "P" classification: No clock, FIRC 16 MHz off, SIRC 128 kHz on, PLL off, HPvreg off, ULPVreg/LPVreg on. All possible peripherals off and clock gated. Flash in power down mode.
- ⁸ When going from RUN to STOP mode and the core consumption is > 6 mA, it is normal operation for the main regulator module to be kept on by the on-chip current monitoring circuit. This is most likely to occur with junction temperatures exceeding 125 °C and under these circumstances, it is possible for the current to initially exceed the maximum STOP specification by up to 2 mA. After entering stop, the application junction temperature will reduce to the ambient level and the main regulator will be automatically switched off when the load current is below 6 mA.
- ⁹ Only for the "P" classification: ULPreg on, HP/LPVreg off, 32 KB RAM on, device configured for minimum consumption, all possible modules switched off.
- ¹⁰ ULPreg on, HP/LPVreg off, 8 KB RAM on, device configured for minimum consumption, all possible modules switched off.

Symbo	Symbol		Parameter	Conditiono		Unit						
Symbo	1	C	Falameter	Conditions	Min	Тур	Max	Onit				
P/E	CC	С	Number of program/erase cycles per block for 16 KB blocks over the operating temperature range (T _J)	_	100000	_	_	cycles				
P/E	CC	С	Number of program/erase cycles per block for 32 KB blocks over the operating temperature range (T _J)	_	10000	100000	_	cycles				
P/E	СС	С	Number of program/erase cycles per block for 128 KB blocks over the operating temperature range (T _J)	_	1000	100000	_	cycles				
Retention	СС	cc c	cc c	cc c	cc c	cc c	CC C Minimum data retention at 85 °C average ambient	Blocks with 0–1,000 P/E cycles	20	—	_	years
			temperature ⁻	Blocks with 1,001–10,000 P/E cycles	10	—	_	years				
				Blocks with 10,001–100,000 P/E cycles	5	—		years				

Table 29. Flash module life

¹ Ambient temperature averaged over duration of application, not to exceed recommended product operating temperature range.

ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units will experience single bit corrections throughout the life of the product with no impact to product reliability.

Table 30. Flash read access timing

Symbol		С	Parameter	Conditions ¹	Max	Unit
f _{READ}	CC	Ρ	Maximum frequency for Flash reading	2 wait states	64	MHz
		С		1 wait state	40	
		С		0 wait states	20	

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

4.10.2 Flash power supply DC characteristics

Table 31 shows the power supply DC characteristics on external supply.

Symbol		Parameter	Conditions ¹			Value		
Cymbe		i di dineter	Conditions		Min	Тур	Max	onne
I _{CFREAD}	СС	Sum of the current consumption on	Flash module read	Code Flash			33	mA
I _{DFREAD}		$v_{DD_{HV}}$ and $v_{DD_{BV}}$ on read access	$T_{CPU} = 64 \text{ MHz}$	Data Flash	_	_	33	
ICFMOD	СС	Sum of the current consumption on	Program/Erase	Code Flash	_	_	52	mA
IDFMOD		V _{DD_HV} and V _{DD_BV} on matrix modification (program/erase)	Flash registers f _{CPU} = 64 MHz	Data Flash	—	_	33	
I _{CFLPW}	СС	Sum of the current consumption on	_	Code Flash			1.1	mA
I _{DFLPW}		V_{DD_HV} and V_{DD_BV} during Flash low power mode		Data Flash	—	_	900	μA
I _{CFPWD}	СС	Sum of the current consumption on	—	Code Flash		_	150	μA
IDFPWD		v_{DD_HV} and v_{DD_BV} during Flash power down mode		Data Flash	—	_	150	

Table 31. Flash power supply DC electrical characteristics

 1 V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

4.10.3 Start-up/Switch-off timings

Table 32. Start-up time/Switch-off time

Symbol		C	Parameter	Conditions ¹	Value			Unit
Cymbol		Ŭ	i arameter	Conditions	Min	Тур	Max	
t _{FLARSTEXIT}	СС	Т	Delay for Flash module to exit reset mode	—	—	—	125	μs
t _{FLALPEXIT}	СС	Т	Delay for Flash module to exit low-power mode	—	—	—	0.5	
t _{FLAPDEXIT}	СС	Т	Delay for Flash module to exit power-down mode	—	—	—	30	
t _{FLALPENTRY}	СС	Т	Delay for Flash module to enter low-power mode	—	—	—	0.5	
t _{FLAPDENTRY}	CC	Т	Delay for Flash module to enter power-down mode	—	—	—	1.5	

¹ V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

4.11 Electromagnetic compatibility (EMC) characteristics

Susceptibility tests are performed on a sample basis during product characterization.

4.11.1 Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user apply EMC software optimization and prequalification tests in relation with the EMC level requested for the application.

- Software recommendations The software flowchart must include the management of runaway conditions such as:
 - Corrupted program counter

Figure 11. Crystal oscillator and resonator connection scheme

Shunt Crystal Load on capacitance Crystal Crystal Nominal equivalent NDK crystal motional motional xtalin/xtalout between frequency series reference capacitance inductance C1 = C2 xtalout (MHz) resistance (C_m) fF (L_m) mH $(pF)^1$ and xtalin **ESR** Ω C0² (pF) 4 NX8045GB 300 2.68 591.0 21 2.93 8 NX5032GA 300 2.46 160.7 17 3.01 10 150 2.93 86.6 15 2.91 12 120 3.11 56.5 15 2.93 16 120 3.90 25.3 10 3.00

Table 36. Crystal description

The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.

² The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.).

Symbol		C	Parameter	Conditions ¹		Unit		
		Ŭ			Min	Тур	Max	
t _{FXOSCSU}	СС	Т	Fast external crystal oscillator start-up time	f _{OSC} = 4 MHz, OSCILLATOR_MARGIN = 0	—	_	6	ms
				f _{OSC} = 16 MHz, OSCILLATOR_MARGIN = 1	—	_	1.8	
V _{IH}	SR	Ρ	Input high level CMOS (Schmitt Trigger)	Oscillator bypass mode	0.65V _{DD}	_	V _{DD} + 0.4	V
V _{IL}	SR	Ρ	Input low level CMOS (Schmitt Trigger)	Oscillator bypass mode	-0.4		0.35V _{DD}	V

Table 37. Fast external crystal oscillator (4 to 16 MHz) electrical characteristics (continued)

 $^1~V_{DD}$ = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

² Stated values take into account only analog module consumption but not the digital contributor (clock tree and enabled peripherals).

Slow external crystal oscillator (32 kHz) electrical characteristics 4.13

OSC32K EXTAL OSC32K_EXTAL -11 C1 Resonator OSC32K_XTAL OSC32K_XTAL 411 C2 DEVICE DEVICE Note: OSC32_XTAL/OSC32_EXTAL must not be directly used to drive external circuits

The device provides a low power oscillator/resonator driver.

Figure 13. Crystal oscillator and resonator connection scheme

2⊣∣ı

Symbo	Symbol		Parameter	Conditions ¹			Unit		
Symbo	51	C	Falameter	Conditions	Min	Тур	Max		
Δ_{PLLIN}	SR	_	FMPLL reference clock duty cycle ²	_	40	_	60	%	
f _{PLLOUT}	СС	Ρ	FMPLL output clock frequency	—	16	—	64	MHz	
f _{VCO} 3	СС	Ρ	VCO frequency without frequency modulation	_	256	—	512	MHz	
		Ρ	VCO frequency with frequency modulation	_	245.76	_	532.48		
f _{CPU}	SR	—	System clock frequency	—	—	_	64 ⁴	MHz	
f _{FREE}	СС	Ρ	Free-running frequency	_	20	_	150	MHz	
t _{LOCK}	СС	Ρ	FMPLL lock time	Stable oscillator (f _{PLLIN} = 16 MHz)		40	100	μs	
Δt_{STJIT}	СС	—	FMPLL short term jitter ⁵	f _{sys} maximum	-4	_	4	%	
Δt_{LTJIT}	СС	—	FMPLL long term jitter	f _{PLLCLK} at 64 MHz, 4000 cycles	—	_	10	ns	
I _{PLL}	СС	С	FMPLL consumption	T _A = 25 °C	—	_	4	mA	

Table 40. FMPLL electrical characteristics (continued)

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified

² PLLIN clock retrieved directly from FXOSC clock. Input characteristics are granted when oscillator is used in functional mode. When bypass mode is used, oscillator input clock should verify f_{PLLIN} and Δ_{PLLIN} .

³ Frequency modulation is considered \pm 4%.

 4 f_{CPU} 64 MHz can be achieved only at up to 105 °C.

⁵ Short term jitter is measured on the clock rising edge at cycle n and n+4.

4.15 Fast internal RC oscillator (16 MHz) electrical characteristics

The device provides a 16 MHz main internal RC oscillator. This is used as the default clock at the power-up of the device.

Table 41. Fast internal RC oscillator (16 MHz) electrical characteristics

Symbol		<u>ر</u>	Parameter	Conditions ¹		Unit		
		Ŭ	i arameter	Conditions	Min	Тур	Мах	
f _{FIRC}	СС	Ρ	Fast internal RC oscillator high	T _A = 25 °C, trimmed	—	16	—	MHz
	SR	—	frequency	_	12		20	
I _{FIRCRUN} ^{2,}	СС	Т	Fast internal RC oscillator high frequency current in running mode	T _A = 25 °C, trimmed	_	_	200	μA
I _{FIRCPWD}	СС	D	Fast internal RC oscillator high frequency current in power down mode	T _A = 25 °C	—	_	10	μA

Figure 16. ADC_0 characteristic and error definitions

4.17.2 Input impedance and ADC accuracy

In the following analysis, the input circuit corresponding to the precise channels is considered.

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources charge during the sampling phase, when the analog signal source is a high-impedance source.

A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.

Symbol	Symbol		Devemeter	Conditions		Valu	e	Unit
Symbol	I	C	Parameter	Conditions	Min	Тур	Max	Unit
V _{AINx}	SR	_	Analog input voltage ³	_	V _{SS_ADC1} - 0.1	—	V _{DD_ADC1} + 0.1	V
I _{ADC1pwd}	SR	—	ADC_1 consumption in power down mode	_	_	—	50	μA
I _{ADC1run}	SR		ADC_1 consumption in running mode	_	—	—	6	mA
f _{ADC1}	SR	_	ADC_1 analog frequency	V _{DD} = 3.3 V	3.33	—	20 + 4%	MHz
				$V_{DD} = 5 V$	3.33	—	32 + 4%	
t _{ADC1_PU}	SR	—	ADC_1 power up delay	_	—	—	1.5	μs
t _{ADC1_S}	СС	Т	Sampling time ⁴ V _{DD} = 3.3 V	f _{ADC1} = 20 MHz, INPSAMP = 12	600	-		ns
			Samplingtime ⁴ V _{DD} = 5.0 V	f _{ADC1} = 32 MHz, INPSAMP = 17	500	—	_	
			Sampling time ⁴ V _{DD} = 3.3 V	f _{ADC1} = 3.33 MHz, INPSAMP = 255	—	-	76.2	μs
			Sampling time ⁴ V _{DD} = 5.0 V	f _{ADC1} = 3.33 MHz, INPSAMP = 255	—	—	76.2	
t _{ADC1_C}	СС	Ρ	Conversion time ⁵ V _{DD} = 3 .3 V	f _{ADC1} = 20 MHz, INPCMP = 0	2.4	—	—	μs
			Conversion time ⁵ V _{DD} = 5.0 V	f _{ADC 1} = 32 MHz, INPCMP = 0	1.5	—	—	μs
			Conversion time ⁵ V _{DD} = 3.3 V	f _{ADC 1} = 13.33 MHz, INPCMP = 0	—	—	3.6	μs
			Conversion time ⁵ V _{DD} = 5.0 V	f _{ADC1} = 13.33 MHz, INPCMP = 0	—	—	3.6	μs
Δ_{ADC1_SYS}	SR		ADC_1 digital clock duty cycle	ADCLKSEL = 1 ⁶	45	—	55	%
C _S	СС	D	ADC_1 input sampling capacitance	_		—	5	pF
C _{P1}	сс	D	ADC_1 input pin capacitance 1	_	_	—	3	pF
C _{P2}	сс	D	ADC_1 input pin capacitance 2	_	—	—	1	pF
C _{P3}	СС	D	ADC_1 input pin capacitance 3	_	_	—	1.5	pF
R _{SW1}	СС	D	Internal resistance of analog source	_	_	—	1	kΩ
R _{SW2}	СС	D	Internal resistance of analog source	_	—	-	2	kΩ
R _{AD}	СС	D	Internal resistance of analog source	_		—	0.3	kΩ

Table 45. ADC_1 conversion characteristics (12-bit ADC_1) (continued)

Package characteristics

5 Package characteristics

5.1 Package mechanical data

5.1.1 176 LQFP

Figure 33. 176 LQFP package mechanical drawing (Part 1 of 3)

MPC5607B Microcontroller Data Sheet, Rev. 6

Figure 42. 208 MAPBGA package mechanical drawing (Part 2 of 2)

Appendix A Abbreviations

Table 50 lists abbreviations used but not defined elsewhere in this document.

Table 50. Abbreviations

Abbreviation	Meaning
CMOS	Complementary metal oxide semiconductor
СРНА	Clock phase
CPOL	Clock polarity
CS	Peripheral chip select
EVTO	Event out
МСКО	Message clock out
MDO	Message data out
MSEO	Message start/end out
MTFE	Modified timing format enable
SCK	Serial communications clock
SOUT	Serial data out
TBD	To be defined
ТСК	Test clock input
TDI	Test data input
TDO	Test data output
TMS	Test mode select

Table 51	. Revision	history	(continued)
----------	------------	---------	-------------

Revision	Date	Substantive changes
6 (cont'd)	08 Jul 2011	Section "External ballast resistor recommendations": replaced "low voltage monitor" with "low voltage detector (LVD)" "I/O input DC electrical characteristics" table: updated I _{LKG} characteristics "MEDIUM configuration output buffer electrical characteristics" table: changed "I _{OH} = 100 µA" to "I _{OL} = 100 µA" in V _{OL} conditions I/O weight: updated table (includes replacing instances of bit "SRE" with "SRC") "Reset electrical characteristics" table: updated parameter classification for II _{WPU} I Updated voltage regulator electrical characteristics Section "Low voltage detector electrical characteristics": changed title (was "Voltage monitor electrical characteristics"); changed "as well as four low voltage detectors" to "as well as five low voltage detectors"; added event status flag names found in RGM chapter of device reference manual to POR module and LVD descriptions; replaced instances of "Low voltage monitor" with "Low voltage detector"; updated values for VLVDLVBKPL and VLVDLVCORL Updated Section "Power consumption" Section "Program/erase characteristics": removed table "FLASH_BIU settings vs. frequency of operation" and associated introduction "Program and erase specifications" table: updated symbols PFCRn settings vs. frequency of operation: replaced "FLASH_BIU" with "PFCRn" in table title; updated field names and frequencies "Flash power supply DC electrical characteristics" table: deleted footnote 2 Crystal oscillator and resonator connection scheme: inserted footnote about possibly requiring a series resistor Fast external crystal oscillator (32 kHz) electrical characteristics: updated footnote 1 Section "ADC electrical characteristics": updated symbols for offset error and gain error Section "Input impedance and ADC accuracy": changed "V _A /V _{A2} " to "V _{A2} /V _A " in Equation 11 ADC input leakage current: updated I _{LKG} characteristics ADC_0 conversion characteristics table: replaced instances of "ADCx_conf_comp" with "INPCMP" ADC_1 conversion characteristics table:

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MPC5607B Rev. 6 07/2011 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org © Freescale Semiconductor, Inc. 2010-2011. All rights reserved.

