

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

2000	
Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, I ² C, LINbus, SCI, SPI
Peripherals	DMA, POR, PWM, WDT
Number of I/O	149
Program Memory Size	1.5MB (1.5M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 29x10b, 5x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=spc5607bf1mlu6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

1.1 Document overview

This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the device.

1.2 Description

This family of 32-bit system-on-chip (SoC) microcontrollers is the latest achievement in integrated automotive application controllers. It belongs to an expanding family of automotive-focused products designed to address the next wave of body electronics applications within the vehicle.

The advanced and cost-efficient e200z0h host processor core of this automotive controller family complies with the Power Architecture technology and only implements the VLE (variable-length encoding) APU (Auxiliary Processor Unit), providing improved code density. It operates at speeds of up to 64 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations.

Feature		MPC5605B		MPC	5606B	MPC5607B			
CPU				e200z0h					
Execution speed ²			ļ	Up to 64 MH	z				
Code flash memory	768 KB			11	ИB	1.5 MB			
Data flash memory			6	64 (4 × 16) K	В				
SRAM		64 KB		80	KB	96 KB			
MPU				8-entry					
eDMA				16 ch					
10-bit ADC				Yes					
dedicated ³	7 ch	15 ch	29 ch	15 ch		29 ch			
shared with 12-bit ADC				19 ch					
12-bit ADC				Yes					
dedicated ⁴				5 ch					
shared with 10-bit ADC				19 ch					
Total timer I/O ⁵ eMIOS	37 ch, 16-bit			64 ch,	16-bit				
Counter / OPWM / ICOC ⁶				10 ch					
O(I)PWM / OPWFMB / OPWMCB / ICOC ⁷				7 ch					
O(I)PWM / ICOC ⁸	7 ch			14	ch				
OPWM / ICOC ⁹	13 ch	13 ch			ch				
SCI (LINFlex)	4	8	10	8		10			
SPI (DSPI)	3	5	6	5		6			

Table 1. MPC5607B family comparison¹

3.3 Pad configuration during standby mode exit

Pad configuration (input buffer enable, pull enable) for low-power wakeup pads is controlled by both the SIUL and WKPU modules. During standby exit, all low power pads PA[0,1,2,4,15], $PB[1,3,8,9,10]^1$, PC[7,9,11], PD[0,1], PE[0,9,11], $PF[9,11,13]^2$, $PG[3,5,7,9]^2$, $PI[1,3]^3$ are configured according to their respective configuration done in the WKPU module. All other pads will have the same configuration as expected after a reset.

The TDO pad has been moved into the STANDBY domain in order to allow low-power debug handshaking in STANDBY mode. However, no pull-resistor is active on the TDO pad while in STANDBY mode. At this time the pad is configured as an input. When no debugger is connected the TDO pad is floating causing additional current consumption.

To avoid the extra consumption TDO must be connected. An external pull-up resistor in the range of 47–100 kOhms should be added between the TDO pin and VDD. Only if the TDO pin is used as an application pin and a pull-up cannot be used should a pull-down resistor with the same value be used instead between the TDO pin and GND.

3.4 Voltage supply pins

Voltage supply pins are used to provide power to the device. Three dedicated VDD_LV/VSS_LV supply pairs are used for 1.2 V regulator stabilization.

Port pin	Function	Pin number						
Fortpin	T unction	100 LQFP	144 LQFP	176 LQFP	208 MAPBGA			
VDD_HV	Digital supply voltage	15, 37, 70, 84	19, 51, 100, 123	6, 27, 59, 85, 124, 151	C2, D9, E16, G13, H3, N4, N9, R5			
VSS_HV	Digital ground	14, 16, 35, 69, 83	18, 20, 49, 99, 122	7, 26, 28, 57, 86, 123, 150	G7, G8, G9, G10, H7, H8, H9, H10, J7, J8, J9, J10, K7, K8, K9, K10			
VDD_LV	1.2 V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest $V_{SS_{LV}}$ pin. ¹	19, 32, 85	23, 46, 124	31, 54, 152	D8, K4, P7			
VSS_LV	1.2 V decoupling pins. Decoupling capacitor must be connected between these pins and the nearest V _{DD_LV} pin. ¹	18, 33, 86	22, 47, 125	30, 55, 153	C8, J2, N7			
VDD_BV	Internal regulator supply voltage	20	24	32	K3			
VSS_HV_ADC0	Reference ground and analog ground for the A/D converter 0 (10-bit)	51	73	89	R15			
VDD_HV_ADC0	Reference voltage and analog supply for the A/D converter 0 (10-bit)	52	74	90	P14			
VSS_HV_ADC1	Reference ground and analog ground for the A/D converter 1 (12-bit)	59	81	98	N12			

Table 3. Voltage supply pin descriptions

1. PB[8, 9] ports have wakeup functionality in all modes except STANDBY.

2. PF[9,11,13], PG[3,5,7,9], PI[1,3] are not available in the 100-pin LQFP.

3. PI[1,3] are not available in the 144-pin LQFP.

		tion ¹			1 ²		n³		Pin nu	umber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration ³	100 LQFP	144 LQFP	176 LQFP	208 MAP BGA ⁴
PB[11]	PCR[27]	AF0 AF1 AF2	GPIO[27] E0UC[3] —	SIUL eMIOS_0	I/O I/O	J	Tristate	—	—	97	N13
		AF3 —	CS0_0 ADC0_S[3]	DSPI_0 ADC_0	I/O I						
PB[12]	PCR[28]	AF0 AF1 AF2	GPIO[28] E0UC[4] —	SIUL eMIOS_0	I/O I/O	J	Tristate	61	83	101	M16
		AF3 —	CS1_0 ADC0_X[0]	DSPI_0 ADC_0	0 1						
PB[13]	PCR[29]	AF0 AF1 AF2	GPIO[29] E0UC[5] —	SIUL eMIOS_0	I/O I/O	J	Tristate	63	85	103	M13
		AF3 —	CS2_0 ADC0_X[1]	DSPI_0 ADC_0	0 1						
PB[14]	PCR[30]	AF0 AF1 AF2 AF3 —	GPIO[30] E0UC[6] — CS3_0 ADC0_X[2]	SIUL eMIOS_0 — DSPI_0 ADC_0	I/O I/O - O -	J	Tristate	65	87	105	L16
PB[15]	PCR[31]	AF0 AF1 AF2 AF3 —	GPIO[31] E0UC[7] CS4_0 ADC0_X[3]	SIUL eMIOS_0 DSPI_0 ADC_0	I/O I/O — 0 I	J	Tristate	67	89	107	L13
		<u> </u>		Por	t C	<u> </u>					
PC[0] ¹⁰	PCR[32]	AF0 AF1 AF2 AF3	GPIO[32] — TDI —	SIUL — JTAGC —	I/O 	М	Input, weak pull-up	87	126	154	A8
PC[1] ¹⁰	PCR[33]	AF0 AF1 AF2 AF3	GPIO[33] TDO 	SIUL — JTAGC —	I/O — 0 —	F ¹¹	Tristate	82	121	149	C9
PC[2]	PCR[34]	AF0 AF1 AF2 AF3 —	GPIO[34] SCK_1 CAN4TX DEBUG[0] EIRQ[5]	SIUL DSPI_1 FlexCAN_4 SSCM SIUL	I/O I/O O O I	Μ	Tristate	78	117	145	A11

Table 5. Functional port pir	n descriptions (continued)
------------------------------	----------------------------

		ion ¹			2		³		Pin nu	umber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration ³	100 LQFP	144 LQFP	176 LQFP	208 MAP BGA ⁴
PC[11]	PCR[43]	AF0 AF1 AF2 AF3 — —	GPIO[43] — MA[2] WKPU[5] ⁵ CAN1RX CAN4RX	SIUL — ADC_0 WKPU FlexCAN_1 FlexCAN_4	I/O — — — — — — — — — — — — — — — — — — —	S	Tristate	21	27	35	M4
PC[12]	PCR[44]	AF0 AF1 AF2 AF3 —	GPIO[44] E0UC[12] — EIRQ[19] SIN_2	SIUL eMIOS_0 — SIUL DSPI_2	10 10 10 1 1 1 1 1 1 1	Μ	Tristate	97	141	173	B4
PC[13]	PCR[45]	AF0 AF1 AF2 AF3	GPIO[45] E0UC[13] SOUT_2 —	SIUL eMIOS_0 DSPI_2 —	1/0 /0	S	Tristate	98	142	174	A2
PC[14]	PCR[46]	AF0 AF1 AF2 AF3 —	GPIO[46] E0UC[14] SCK_2 — EIRQ[8]	SIUL eMIOS_0 DSPI_2 — SIUL	I/O I/O I/O I	S	Tristate	3	3	3	C1
PC[15]	PCR[47]	AF0 AF1 AF2 AF3 —	GPIO[47] E0UC[15] CS0_2 — EIRQ[20]	SIUL eMIOS_0 DSPI_2 — SIUL	I/O I/O I/O I	М	Tristate	4	4	4	D3
				Por	t D						
PD[0]	PCR[48]	AF0 AF1 AF2 AF3 — — —	GPIO[48] — — WKPU[27] ⁵ ADC0_P[4] ADC1_P[4]	SIUL — — WKPU ADC_0 ADC_1	 - 	Ι	Tristate	41	63	77	P12
PD[1]	PCR[49]	AF0 AF1 AF2 AF3 — — —	GPIO[49] — — WKPU[28] ⁵ ADC0_P[5] ADC1_P[5]	SIUL — — WKPU ADC_0 ADC_1	 	Ι	Tristate	42	64	78	T12

Table 5. Functional port pin descriptions (continued)

		ion ¹			2		n ³		Pin n	umber	
Port pin	PCR	Alternate function ¹	Function	Peripheral	I/O direction ²	Pad type	RESET configuration ³	100 LQFP	144 LQFP	176 LQFP	208 MAP BGA ⁴
PD[2]	PCR[50]	AF0 AF1 AF2 AF3 —	GPIO[50] — — ADC0_P[6] ADC1_P[6]	SIUL — — ADC_0 ADC_1	-	Ι	Tristate	43	65	79	R12
PD[3]	PCR[51]	AF0 AF1 AF2 AF3 —	GPIO[51] — — ADC0_P[7] ADC1_P[7]	SIUL — — ADC_0 ADC_1	 - 	I	Tristate	44	66	80	P13
PD[4]	PCR[52]	AF0 AF1 AF2 AF3 —	GPIO[52] — — ADC0_P[8] ADC1_P[8]	SIUL — — ADC_0 ADC_1	 	Ι	Tristate	45	67	81	R13
PD[5]	PCR[53]	AF0 AF1 AF2 AF3 —	GPIO[53] — — ADC0_P[9] ADC1_P[9]	SIUL — — ADC_0 ADC_1	 	Ι	Tristate	46	68	82	T13
PD[6]	PCR[54]	AF0 AF1 AF2 AF3 —	GPIO[54] — — ADC0_P[10] ADC1_P[10]	SIUL — — ADC_0 ADC_1	 	Ι	Tristate	47	69	83	T14
PD[7]	PCR[55]	AF0 AF1 AF2 AF3 —	GPIO[55] — — ADC0_P[11] ADC1_P[11]	SIUL — — ADC_0 ADC_1	-	Ι	Tristate	48	70	84	R14
PD[8]	PCR[56]	AF0 AF1 AF2 AF3 —	GPIO[56] — — ADC0_P[12] ADC1_P[12]	SIUL — — ADC_0 ADC_1	 - 	Ι	Tristate	49	71	87	T15

- ¹ Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA = 00 → AF0; PCR.PA = 01 → AF1; PCR.PA = 10 → AF2; PCR.PA = 11 → AF2. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to '1', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "—".
- ² Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.
- ³ The RESET configuration applies during and after reset.
- ⁴ 208 MAPBGA available only as development package for Nexus2+
- ⁵ All WKPU pins also support external interrupt capability. See the WKPU chapter for further details.
- ⁶ NMI has higher priority than alternate function. When NMI is selected, the PCR.AF field is ignored.
- ⁷ "Not applicable" because these functions are available only while the device is booting. Refer to the BAM information for details.
- ⁸ Value of PCR.IBE bit must be 0
- ⁹ This wakeup input cannot be used to exit STANDBY mode.
- ¹⁰ Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO. PC[0:1] are available as JTAG pins (TDI and TDO respectively). PH[9:10] are available as JTAG pins (TCK and TMS respectively).
 - It is up to the user to configure these pins as GPIO when needed.
- ¹¹ PC[1] is a fast/medium pad but is in medium configuration by default. This pad is in Alternate Function 2 mode after reset which has TDO functionality. The reset value of PCR.OBE is '1', but this setting has no impact as long as this pad stays in AF2 mode. After configuring this pad as GPIO (PCR.PA = 0), output buffer is enabled as reset value of PCR.OBE = 1.
- ¹² Not available in 100 LQFP package

3.8 Nexus 2+ pins

In the 208 MAPBGA package, eight additional debug pins are available (see Table 6).

		I/O		Function	Pin number			
Port pin	Function	direction	Pad type	after reset	100 LQFP	144 LQFP	208 MAP BGA ¹	
МСКО	Message clock out	0	F	—	—	_	T4	
MDO0	Message data out 0	0	М	—			H15	
MDO1	Message data out 1	0	М	_		_	H16	
MDO2	Message data out 2	0	М	—		_	H14	
MDO3	Message data out 3	0	М	—			H13	
EVTI	Event in	I	М	Pull-up		_	K1	
EVTO	Event out	0	М	—		_	L4	
MSEO	Message start/end out	0	М	—	—	_	G16	

 Table 6. Nexus 2+ pin descriptions

¹ 208 MAPBGA available only as development package for Nexus2+

Symbol		Parameter	Conditions	Va	lue	Unit
Symbol		Farameter	Conditions	Min	Max	Unit
V _{SS_ADC}	SR	Voltage on VSS_HV_ADC0, VSS_HV_ADC1 (ADC reference) pin with respect to ground (V _{SS})		V _{SS} - 0.1	V _{SS} + 0.1	V
$V_{DD_ADC}^4$	SR	Voltage on VDD_HV_ADC0,	—	3.0 ⁵	3.6	V
		VDD_HV_ADC1 (ADC reference) with respect to ground (V _{SS})	Relative to V _{DD}	V _{DD} - 0.1	V _{DD} + 0.1	
V _{IN}	SR		—	$V_{SS} - 0.1$	—	V
		ground (V _{SS})	Relative to V _{DD}	—	V _{DD} + 0.1	
I _{INJPAD}	SR	Injected input current on any pin during overload condition	_	-5	5	mA
I _{INJSUM}	SR	Absolute sum of all injected input currents during overload condition	_	-50	50	-
TV _{DD}	SR	V _{DD} slope to ensure correct power up ⁶	—	—	0.25	V/µs
T _{A C-Grade Part}	SR	Ambient temperature under bias	f _{CPU} < 64 MHz ⁷	-40	85	°C
T _{J C-Grade} Part	SR	Junction temperature under bias	—	-40	110	
T _{A V-Grade Part}	SR	Ambient temperature under bias	f _{CPU} < 64 MHz ⁷	-40	105	
T _{J V-Grade} Part	SR	Junction temperature under bias	—	-40	130	1
TA M-Grade Part	SR	Ambient temperature under bias	f _{CPU} < 64 MHz ⁷	-40	125	1
T _{J M-Grade Part}	SR	Junction temperature under bias	—	-40	150	1

Table 12. Recommended operating conditions (3.3 V) (continued)

¹ 100 nF capacitance needs to be provided between each V_{DD}/V_{SS} pair.

 $^2~$ 330 nF capacitance needs to be provided between each V_{DD~LV}/V_{SS~LV} supply pair.

³ 470 nF capacitance needs to be provided between V_{DD_BV} and the nearest V_{SS_LV} (higher value may be needed depending on external regulator characteristics). Supply ramp slope on VDD_BV should always be faster or equal to slope of VDD_HV. Otherwise, device may enter regulator bypass mode if slope on VDD_BV is slower.

 $^4\,$ 100 nF capacitance needs to be provided between V_DD_ADC/V_SS_ADC pair.

⁵ Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below V_{LVDHVL}, device is reset.

⁶ Guaranteed by device validation

⁷ This frequency includes the 4% frequency modulation guardband.

Table 13	. Recommended	operating	conditions	(5.0 V	/)
----------	---------------	-----------	------------	--------	----

Symbol		Parameter	Conditions	Va	Unit	
Symbol		i arameter	Conditions	Min	Max	onit
V _{SS}	SR	Digital ground on VSS_HV pins	—	0	0	V
V _{DD} ¹	SR	Voltage on VDD_HV pins with respect to ground	—	4.5	5.5	V
		(V _{SS})	Voltage drop ²	3.0	5.5	
V _{SS_LV} ³		Voltage on VSS_LV (low voltage digital supply) pins with respect to ground (V _{SS})	—	V _{SS} – 0.1	V _{SS} + 0.1	V

4.5 Thermal characteristics

4.5.1 External ballast resistor recommendations

External ballast resistor on V_{DD_BV} pin helps in reducing the overall power dissipation inside the device. This resistor is required only when maximum power consumption exceeds the limit imposed by package thermal characteristics.

As stated in Table 14 LQFP thermal characteristics, considering a thermal resistance of 144 LQFP as 48.3 °C/W, at ambient temperature $T_A = 125$ °C, the junction temperature T_j will cross 150 °C if the total power dissipation is greater than (150 - 125)/48.3 = 517 mW. Therefore, the total device current I_{DDMAX} at 125 °C/5.5 V must not exceed 94.1 mA (i.e., PD/VDD). Assuming an average $I_{DD}(V_{DD_{HV}})$ of 15–20 mA consumption typically during device RUN mode, the LV domain consumption $I_{DD}(V_{DD_{BV}})$ is thus limited to $I_{DDMAX} - I_{DD}(V_{DD_{HV}})$, i.e., 80 mA.

Therefore, respecting the maximum power allowed as explained in Section 4.5.2, "Package thermal characteristics, it is recommended to use this resistor only in the 125 °C/5.5 V operating corner as per the following guidelines:

- If $I_{DD}(V_{DD BV}) < 80$ mA, then no resistor is required.
- If 80 mA $< I_{DD}(V_{DD BV}) < 90$ mA, then 4 Ω resistor can be used.
- If $I_{DD}(V_{DD BV}) > 90$ mA, then 8 Ω resistor can be used.

Using resistance in the range of 4–8 Ω , the gain will be around 10–20% of total consumption on V_{DD_BV}. For example, if 8 Ω resistor is used, then power consumption when I_{DD}(V_{DD_BV}) is 110 mA is equivalent to power consumption when I_{DD}(V_{DD_BV}) is 90 mA (approximately) when resistor not used.

In order to ensure correct power up, the minimum V_{DD_BV} to be guaranteed is 30 ms/V. If the supply ramp is slower than this value, then LVDHV3B monitoring ballast supply V_{DD_BV} pin gets triggered leading to device reset. Until the supply reaches certain threshold, this low voltage detector (LVD) generates destructive reset event in the system. This threshold depends on the maximum $I_{DD}(V_{DD_BV})$ possible across the external resistor.

4.5.2 Package thermal characteristics

Table 14. LQFP thermal characteristics¹

Symb		С	Parameter	Conditions ²	Pin count		Value	•	Unit
Synn		C	Falanciel	Conditions		Min	Тур	Max	Onit
$R_{\theta JA}$	СС	D	Thermal resistance,	Single-layer board — 1s	100			64	°C/W
			junction-to-ambient natural convection ³		144			64	
					176			64	
				Four-layer board — 2s2p	100			49.7	
					144			48.3	
					176			47.3	
$R_{\theta JB}$	СС		Thermal resistance,	Single-layer board — 1s	100	_	_	36	°C/W
			junction-to-board ⁴		144			38	
					176			38	
				Four-layer board — 2s2p	100	_	_	33.6	
					144	_	_	33.4	
					176			33.4	

Syml	hol	с	Parameter		Conditions ¹		Value		Unit
Synn	001	C	Farameter		Conditions	Min	Тур	Max	Unit
V _{OH}	CC	CC P Output high level Push SLOW configuration		Push Pull	$\begin{split} I_{OH} &= -2 \text{ mA}, \\ V_{DD} &= 5.0 \text{ V} \pm 10\%, \\ PAD3V5V &= 0 \\ (recommended) \end{split}$	0.8V _{DD}			V
		С			$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ $PAD3V5V = 1^2$	0.8V _{DD}	_	_	
	C			$I_{OH} = -1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%,$ PAD3V5V = 1 (recommended)	V _{DD} – 0.8				
V _{OL}	CC	Ρ	Output low level SLOW configuration	Push Pull	$\begin{split} I_{OL} &= 2 \text{ mA}, \\ V_{DD} &= 5.0 \text{ V} \pm 10\%, \\ PAD3V5V &= 0 \\ (recommended) \end{split}$	2 mA, — — — (5.0 V ± 10%, /5V = 0		0.1V _{DD}	V
		С			$I_{OL} = 2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%,$ $PAD3V5V = 1^2$	—	_	0.1V _{DD}	
		С			$I_{OL} = 1 \text{ mA},$ $V_{DD} = 3.3 \text{ V} \pm 10\%,$ PAD3V5V = 1 (recommended)	—	_	0.5	

Table 17. SLOW configuration output buffer electrical characteristics

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

Table 18. MEDIUM configuration output I	buffer electrical characteristics
---	-----------------------------------

Sym	bol	C	Parameter		Conditions ¹	V		Unit	
- Oym				Conditions	Min	Тур	Max	Unit	
V _{OH}	СС		Output high level MEDIUM configuration	Push Pull	I _{OH} = -3.8 mA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	0.8V _{DD}	—		V
		Ρ			$I_{OH} = -2 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 0$ (recommended)	0.8V _{DD}	_	_	
		С			$I_{OH} = -1 \text{ mA},$ $V_{DD} = 5.0 \text{ V} \pm 10\%, \text{ PAD3V5V} = 1^2$	0.8V _{DD}	—	_	
		С			$I_{OH} = -1$ mA, $V_{DD} = 3.3$ V ± 10%, PAD3V5V = 1 (recommended)	V _{DD} – 0.8	—	_	
		С			I _{OH} = −100 μA, V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	0.8V _{DD}	—		

² The configuration PAD3V5 = 1 when V_{DD} = 5 V is only a transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

4.6.4 Output pin transition times

Symb		с	Parameter	(c)	nditions ¹		Value	•	Unit
Synn	101	C	Falameter		nations	Min	Тур	Max	Onit
T _{tr}	СС	D	Output transition time output pin ²	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%$,			50	ns
		Т	SLOW configuration	C _L = 50 pF	PAD3V5V = 0	_	_	100	
		D		C _L = 100 pF		_	—	125	
		D		C _L = 25 pF	$V_{DD} = 3.3 V \pm 10\%$,	_	—	50	
		Т		C _L = 50 pF	PAD3V5V = 1	_	_	100	
		D		C _L = 100 pF		_	_	125	
T _{tr}	СС	D	$\begin{array}{c} \text{MEDIUM configuration} \\ \text{C}_{L} = 50 \text{ pF} \\ \text{SIUL.PCRx.SRC} = 1 \end{array}$	_	—	10	ns		
		Т			_	_	20		
		D		C _L = 100 pF		_	_	40	
		D		C _L = 25 pF	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1 SIUL.PCRx.SRC = 1	_	_	12	
		Т		C _L = 50 pF				25	
		D		C _L = 100 pF				40	
T _{tr}	СС	D	Output transition time output pin ²	C _L = 25 pF	$V_{DD} = 5.0 V \pm 10\%$,	_	_	4	ns
			FAST configuration	C _L = 50 pF	PAD3V5V = 0			6	
				C _L = 100 pF]	—	—	12	
			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	_	—	4			
				—	—	7			
				C _L = 100 pF		_	_	12	

Table 20. Output pin transition times

 $\overline{1}$ V_{DD} = 3.3 V ± 10% / 5.0 V ± 10%, T_A = -40 to 125 °C, unless otherwise specified

 $^2~$ CL includes device and package capacitances (C_{PKG} < 5 pF).

4.6.5 I/O pad current specification

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V_{DD}/V_{SS} supply pair as described in Table 21.

Table 22 provides I/O consumption figures.

In order to ensure device reliability, the average current of the I/O on a single segment should remain below the I_{AVGSEG} maximum value.

•					176 L	QFP			144/10	0 LQFP	
Sup	ply segr	nent	Pad	Weight 5 V		Weight 3.3 V		Weight 5 V		Weight 3.3 V	
176 LQFP	144 LQFP	100 LQFP		SRC ² = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1	SRC = 0	SRC = 1
1		_	PH[15]	2%	3%	3%	3%	_	_		—
		_	PH[13]	3%	4%	3%	4%	—	_		_
		_	PH[14]	3%	4%	4%	4%	—	—	—	—
		_	PI[6]	4%	—	4%	—	—	—	—	—
	—	_	PI[7]	4%	—	4%		—	—	—	—
	4	_	PG[5]	4%	—	5%		10%	—	12%	—
		_	PG[4]	4%	6%	5%	5%	9%	13%	11%	12%
		_	PG[3]	4%	—	5%	—	9%	—	11%	—
		_	PG[2]	4%	6%	5%	5%	9%	12%	10%	11%
		4	PA[2]	4%	—	5%	—	8%	—	10%	—
			PE[0]	4%	—	5%	—	8%	—	9%	—
			PA[1]	4%	—	5%	—	8%	—	9%	—
			PE[1]	4%	6%	5%	6%	7%	10%	9%	9%
			PE[8]	4%	6%	5%	6%	7%	10%	8%	9%
			PE[9]	4%	—	5%	—	6%	—	8%	—
			PE[10]	4%	—	5%	—	6%	—	7%	—
			PA[0]	4%	6%	5%	5%	6%	8%	7%	7%
			PE[11]	4%	—	5%	—	5%	—	6%	—

Table 23. I/O weight¹ (continued)

4.7 **RESET** electrical characteristics

The device implements a dedicated bidirectional $\overline{\text{RESET}}$ pin.

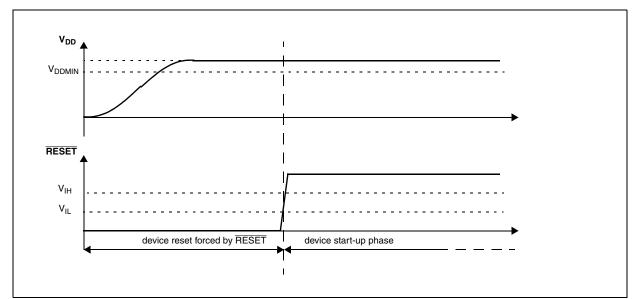


Figure 7. Start-up reset requirements

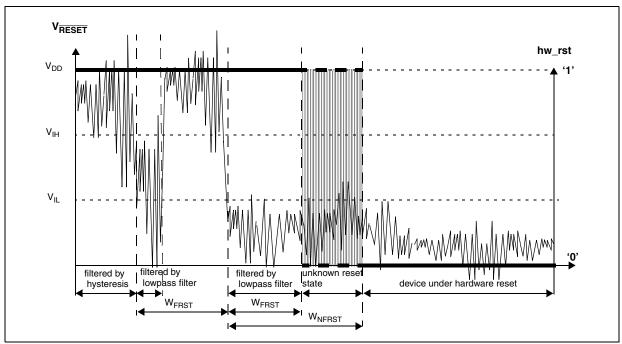


Figure 8. Noise filtering on reset signal

Symbol	Ratings	Conditions	Class	Max value ³	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human Body Model)	$T_A = 25 \degree C$ conforming to AEC-Q100-002	H1C	2000	V
V _{ESD(MM)}	Electrostatic discharge voltage (Machine Model)	$T_A = 25 \degree C$ conforming to AEC-Q100-003	M2	200	
V _{ESD(CDM)}	Electrostatic discharge voltage	$T_A = 25 \degree C$	C3A	500	
	(Charged Device Model)	conforming to AEC-Q100-011		750 (corners)	

Table 34. ESD absolute maximum ratings^{1,2}

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

² A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

³ Data based on characterization results, not tested in production

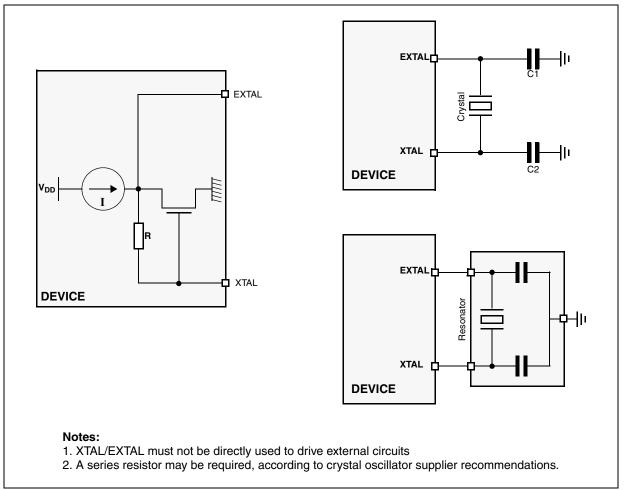
4.11.3.2 Static latch-up (LU)

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with the EIA/JESD 78 IC latch-up standard.

Table 35. Latch-up results


Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = 125 \ ^{\circ}C$ conforming to JESD 78	II level A

4.12 Fast external crystal oscillator (4 to 16 MHz) electrical characteristics

The device provides an oscillator/resonator driver. Figure 11 describes a simple model of the internal oscillator driver and provides an example of a connection for an oscillator or a resonator.

Table 36 provides the parameter description of 4 MHz to 16 MHz crystals used for the design simulations.

Figure 11. Crystal oscillator and resonator connection scheme

Shunt Crystal Load on capacitance Crystal Crystal Nominal equivalent NDK crystal motional motional xtalin/xtalout between frequency series reference capacitance inductance C1 = C2 xtalout (MHz) resistance (C_m) fF (L_m) mH $(pF)^1$ and xtalin **ESR** Ω C0² (pF) 4 NX8045GB 300 2.68 591.0 21 2.93 8 NX5032GA 300 2.46 160.7 17 3.01 10 150 2.93 86.6 15 2.91 12 120 3.11 56.5 15 2.93 16 120 3.90 25.3 10 3.00

Table 36. Crystal description

The values specified for C1 and C2 are the same as used in simulations. It should be ensured that the testing includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.

² The value of C0 specified here includes 2 pF additional capacitance for parasitics (to be seen with bond-pads, package, etc.).

Symbol		с	Parameter	C.	onditions ¹		Value		Unit
Symbol		C	Faiametei		Conditions			Max	onn
I _{FIRCSTOP}	CC	Т	Fast internal RC oscillator high	T _A = 25 °C	sysclk = off		500		μA
			frequency and system clock current in stop mode		sysclk = 2 MHz		600		
			,		sysclk = 4 MHz		700		
					sysclk = 8 MHz		900		
					sysclk = 16 MHz		1250		
t _{FIRCSU}	СС	С	Fast internal RC oscillator start-up time	V _{DD} = 5.0 V	± 10%		1.1	2.0	μs
AFIRCPRE	СС	С	Fast internal RC oscillator precision after software trimming of f _{FIRC}	T _A = 25 °C		-1	—	1	%
$\Delta_{FIRCTRIM}$	СС	С	Fast internal RC oscillator trimming step	T _A = 25 °C			1.6		%
	СС	С	Fast internal RC oscillator variation over temperature and supply with respect to f_{FIRC} at $T_A = 25$ °C in high-frequency configuration		_	-5		5	%

 Table 41. Fast internal RC oscillator (16 MHz) electrical characteristics (continued)

 1 V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

² This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is ON.

4.16 Slow internal RC oscillator (128 kHz) electrical characteristics

The device provides a 128 kHz low power internal RC oscillator. This can be used as the reference clock for the RTC module.

Table 42. Slow internal RC oscillator (128 kHz) electrical characteristics

Symbol	Symbol		Parameter	Conditions ¹				Unit
Cymbol		С	i didineter	Conditions	Min	Тур	Max	onn
f _{SIRC}	СС	Ρ	Slow internal RC oscillator low	T _A = 25 °C, trimmed		128	_	kHz
	SR	_	frequency	_	100	_	150	
I _{SIRC} ^{2,}	СС	-	Slow internal RC oscillator low frequency current	T _A = 25 °C, trimmed		_	5	μA
t _{SIRCSU}	СС		Slow internal RC oscillator start-up time	$T_A = 25 \ ^{\circ}C, V_{DD} = 5.0 \ V \pm 10\%$		8	12	μs
$\Delta_{SIRCPRE}$	СС		Slow internal RC oscillator precision after software trimming of f _{SIRC}	T _A = 25 °C	-2		2	%
	СС	С	Slow internal RC oscillator trimming step	—	_	2.7	_	

In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: C_S being substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with C_S equal to 3 pF, a resistance of 330 k Ω is obtained ($R_{EQ} = 1 / (fc*C_S)$, where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on C_S) and the sum of $R_S + R_F + R_L + R_{SW} + R_{AD}$, the external circuit must be designed to respect the Equation 4:

Eqn. 4

$$V_A \bullet \frac{R_S + R_F + R_L + R_{SW} + R_{AD}}{R_{EQ}} < \frac{1}{2} LSB$$

Equation 4 generates a constraint for external network design, in particular on resistive path. Internal switch resistances (R_{SW} and R_{AD}) can be neglected with respect to external resistances.

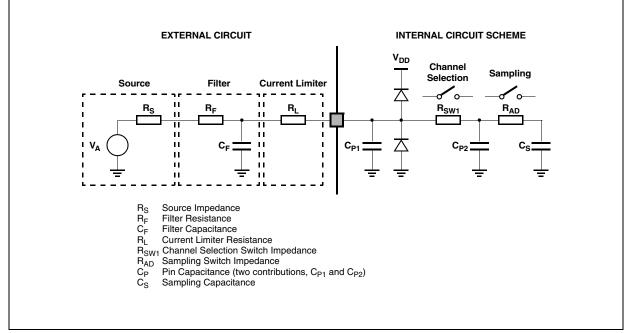


Figure 17. Input equivalent circuit (precise channels)

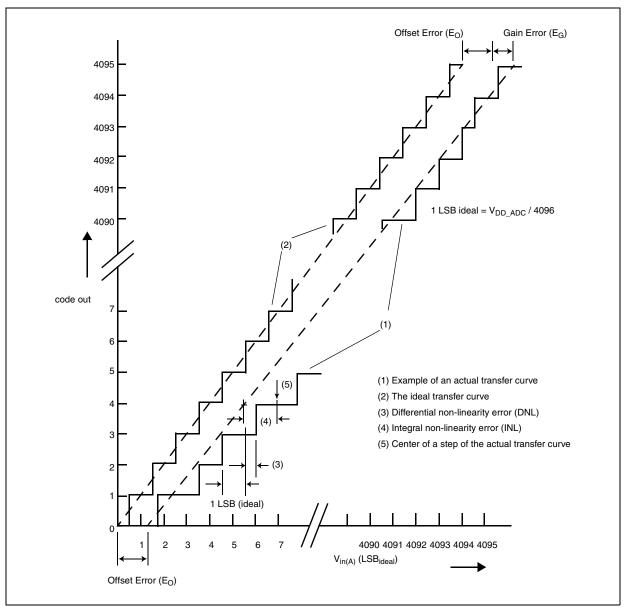
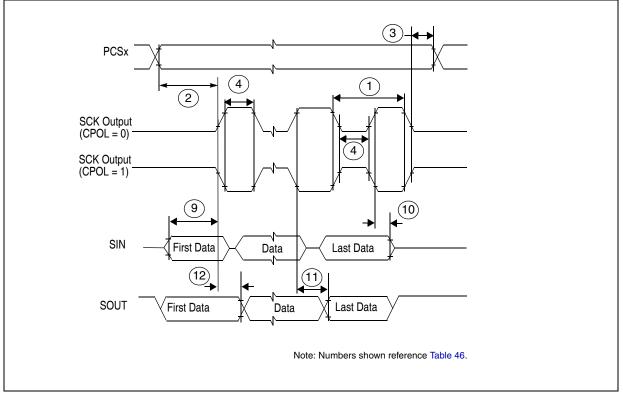



Figure 21. ADC_1 characteristic and error definitions

Table 45. ADC	1 conversion	characteristics	(12-bit ADC 1)

Symbol	1	с	Parameter	Conditions ¹		Unit		
Cymbol		Ŭ	i didineter			Тур	Max	onn
V _{SS_ADC1}	SR		Voltage on VSS_HV_ADC1 (ADC_1 reference) pin with respect to ground (V _{SS}) ²	_	-0.1		0.1	V
V _{DD_ADC1}	SR		Voltage on VDD_HV_ADC1 pin (ADC_1 reference) with respect to ground (V _{SS})	_	V _{DD} – 0.1		V _{DD} + 0.1	V

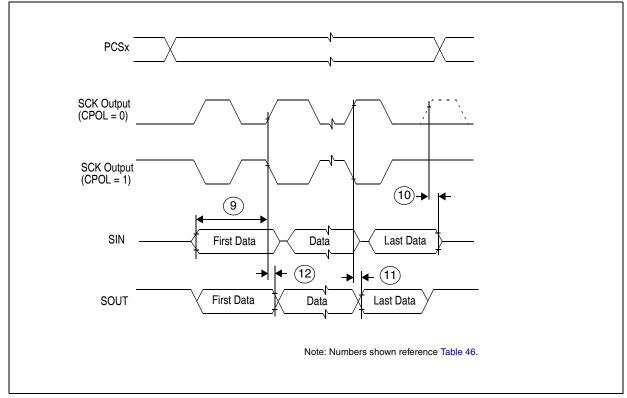


Figure 27. DSPI modified transfer format timing — master, CPHA = 1

MPC5607B Microcontroller Data Sheet, Rev. 6

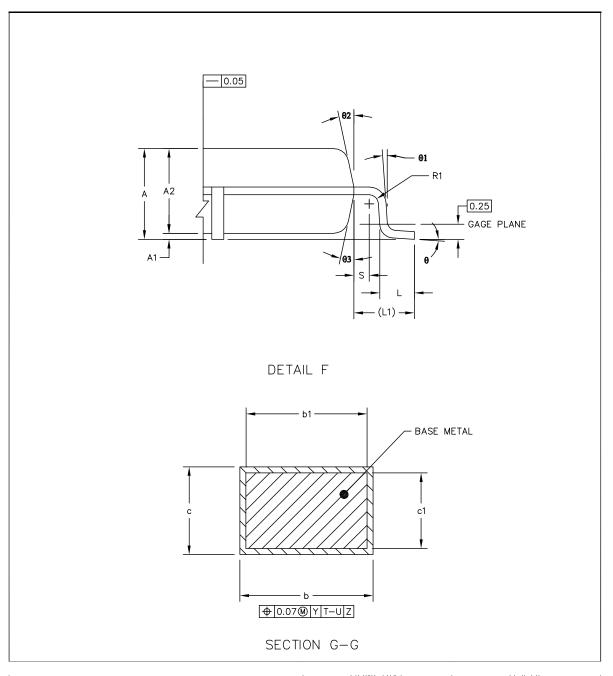


Figure 34. 176 LQFP package mechanical drawing (Part 2 of 3)

Revision	Date	Substantive changes
4	24 Aug 2010	Editorial changes and improvements.
	-	Updated "Features" section
		Table 1: updated footnote concerning 208 MAPBGA
		In the block diagram:
		Added "5ch 12-bit ADC" block.
		Updated Legend.
		 Added "Interrupt request with wakeup functionality" as an input to the WKPU block.
		Figure 2: removed alternate functions
		Figure 3: removed alternate functions
		Figure 4: removed alternate functions
		Table 2: added contents concerning the following blocks: CMU, eDMA, ECSM, MC_ME
		MC_PCU, NMI, SSCM, SWT and WKPU
		Added Section 3.2, Pin muxing
		Section 4, "Electrical characteristics: removed "Caution" note
		Section 4.2, "NVUSRO register: removed "NVUSRO[WATCHDOG_EN] field description
		section Table 11: V _{IN} : removed min value in "relative to V _{DD} " row
		Table 12
		 TA C-Grade Part, TJ C-Grade Part, TA V-Grade Part, TJ V-Grade Part, TA M-Grade Part, TJ M-Grade Part added new rows
		 TV_{DD}: contents merged into one row
		 V_{DD BV}: changed min value in "relative to V_{DD}" row
		Section 4.5, "Thermal characteristics
		• Section 4.5.1, "External ballast resistor recommendations: added new paragraph
		about power supply
		 Table 14: added R_{AJB} and R_{AJC} rows
		 Removed "208 MAPBGA thermal characteristics" table
		Table 15: rewrote parameter description of W _{FI} and W _{NFI}
		Section 4.6.5, "I/O pad current specification
		 Removed I_{DYNSEG} information
		 Updated "I/O supply segments" table
		Table 22: removed I _{DYNSEG} row
		Added Table 23
		Table 25
		Updated all values
		Removed I _{VREGREF} and I _{VREDLVD12} rows
		Added the footnote "The duration of the in-rush current depends on the capacitance placed on LV pipe, BV decape must be sized accordingly. Befor to IMPEC value for
		placed on LV pins. BV decaps must be sized accordingly. Refer to IMREG value for
		minimum amount of current to be provided in cc." to the I _{DD_BV} specification. Table 26
		Updated V _{PORH} min/max value
		Updated V _{LVDLVCORL} min value
		Updated Table 27
		Table 28
		T _{dwprogram} : added initial max value
		 Inserted T_{eslat} row
		Table 29: removed the "To be confirmed" footnote
		In the "Crystal oscillator and resonator connection scheme" figure, removed R_P
		Table 39
		Removed g _{mSXOSC} row
		 I_{SXOSCBIAS}: added min/typ/max value