

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, LINbus, SPI, UART, USB
Peripherals	DMA, I ² S, LED, POR, PWM, WDT
Number of I/O	55
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	160K x 8
Voltage - Supply (Vcc/Vdd)	3.13V ~ 3.63V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-11
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xmc4500f100f1024abxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

About this Document

About this Document

This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMC4500 series devices.

The document describes the characteristics of a superset of the XMC4500 series devices. For simplicity, the various device types are referred to by the collective term XMC4500 throughout this manual.

XMC4000 Family User Documentation

The set of user documentation includes:

- Reference Manual
 - decribes the functionality of the superset of devices.
- Data Sheets
 - list the complete ordering designations, available features and electrical characteristics of derivative devices.
- Errata Sheets
 - list deviations from the specifications given in the related Reference Manual or Data Sheets. Errata Sheets are provided for the superset of devices.

Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device.

Application related guidance is provided by Users Guides and Application Notes.

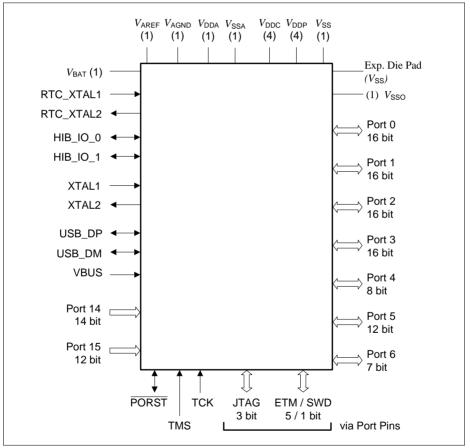
Please refer to http://www.infineon.com/xmc4000 to get access to the latest versions of those documents.

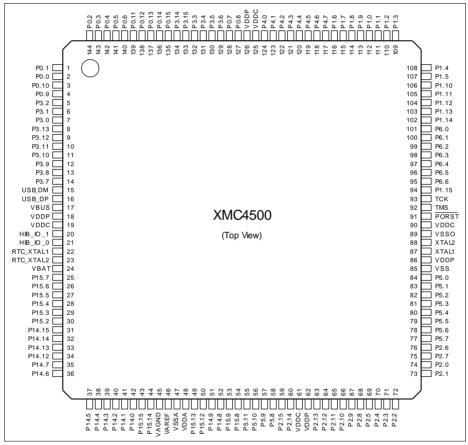
General Device Information

2 General Device Information

This section summarizes the logic symbols and package pin configurations with a detailed list of the functional I/O mapping.

2.1 Logic Symbols




Figure 2 XMC4500 Logic Symbol PG-LQFP-144



General Device Information

2.2 Pin Configuration and Definition

The following figures summarize all pins, showing their locations on the four sides of the different packages.

. .

General Device Information

Table 9Package Pin Mapping (cont'd)									
Function	LQFP-144	LFBGA-144	LQFP-100	Pad Type	Notes				
RTC_XTAL1	22	F2	15	clock_IN					
RTC_XTAL2	23	F1	16	clock_O					
VBAT	24	G1	17	Power	When VDDP is supplied VBAT has to be supplied as well.				
VBUS	17	E2	10	special					
VAREF	46	M3	33	AN_Ref					
VAGND	45	M2	32	AN_Ref					
VDDA	48	L1	35	AN_Power					
VSSA	47	M1	34	AN_Power					
VDDC	19	-	12	Power					
VDDC	61	-	42	Power					
VDDC	90	-	64	Power					
VDDC	125	-	86	Power					
VDDC	-	A2	-	Power					
VDDC	-	B12	-	Power					
VDDC	-	M11	-	Power					
VDDP	18	-	11	Power					
VDDP	62	-	43	Power					
VDDP	86	-	60	Power					
VDDP	126	-	87	Power					
VDDP	-	A11	-	Power					
VDDP	-	B1	-	Power					
VDDP	-	L12	-	Power					
VSS	85	-	59	Power					
VSS	-	A1	-	Power					
VSS	-	A12	-	Power					
VSS	-	M12	-	Power					

2.3 Power Connection Scheme

Figure 9. shows a reference power connection scheme for the XMC4500.

Figure 9 Power Connection Scheme

Every power supply pin needs to be connected. Different pins of the same supply need also to be externally connected. As example, all $V_{\rm DDP}$ pins must be connected externally to one $V_{\rm DDP}$ net. In this reference scheme one 100 nF capacitor is connected at each supply pin against $V_{\rm SS}$. An additional 10 µF capacitor is connected to the $V_{\rm DDP}$ nets and an additional 10 µF capacitor to the $V_{\rm DDP}$ nets.

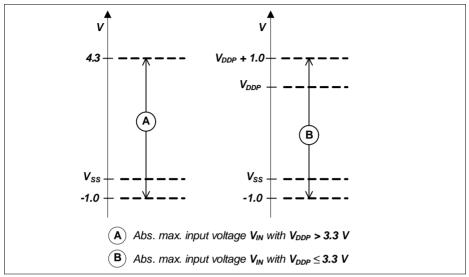


Figure 10 Absolute Maximum Input Voltage Ranges

3.1.3 Pin Reliability in Overload

When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification.

 Table 13 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met:

- full operation life-time is not exceeded
- Operating Conditions are met for
 - pad supply levels (V_{DDP} or V_{DDA})
 - temperature

If a pin current is outside of the **Operating Conditions** but within the overload conditions, then the parameters of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters.

Note: An overload condition on one or more pins does not require a reset.

Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery.

38

Table 21 Standard Pads Class_A1+

Parameter	Symbol	Va	lues	Unit	Note /
		Min.	Max.		Test Condition
Output high voltage,	V _{OHA1+}	V _{DDP} - 0.4	-	V	$I_{OH} \ge$ -400 μ A
POD ¹⁾ = weak	CC	2.4	-	V	<i>I</i> _{OH} ≥ -500 μA
Output high voltage,	_	V _{DDP} - 0.4	-	V	<i>I</i> _{OH} ≥ -1.4 mA
$POD^{1)} = medium$		2.4	-	V	<i>I</i> _{OH} ≥ -2 mA
Output high voltage,		V _{DDP} - 0.4	-	V	$I_{\rm OH} \ge$ -1.4 mA
$POD^{1)} = strong$		2.4	_	V	$I_{\rm OH} \ge$ -2 mA
Output low voltage	$V_{\rm OLA1+}$ CC	-	0.4	V	$I_{OL} \le 500 \ \mu A;$ POD ¹⁾ = weak
		-	0.4	V	$I_{OL} \le 2 \text{ mA};$ POD ¹⁾ = medium
		-	0.4	V	$I_{OL} \le 2 \text{ mA};$ POD ¹⁾ = strong
Fall time	t _{FA1+} CC	-	150	ns	$C_{L} = 20 \text{ pF};$ POD ¹⁾ = weak
		-	50	ns	$C_{\rm L}$ = 50 pF; POD ¹⁾ = medium
		-	28	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = strong; edge = slow
		_	16	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = strong; edge = soft;
Rise time	t _{RA1+} CC	-	150	ns	$C_{L} = 20 \text{ pF};$ POD ¹⁾ = weak
		-	50	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = medium
		-	28	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = strong; edge = slow
		-	16	ns	$C_{L} = 50 \text{ pF};$ POD ¹⁾ = strong; edge = soft

1) POD = Pin Out Driver

Conditions apply)										
Parameter	Symbol		Values	5	Unit	Note /				
		Min.	Тур.	Max.		Test Condition				
Input low voltage	$V_{\rm IL}$ SR	-	-	0.8	V					
Input high voltage (driven)	V _{IH} SR	2.0	-	-	V					
Input high voltage (floating) ¹⁾	V _{IHZ} SR	2.7	-	3.6	V					
Differential input sensitivity	V _{DIS} CC	0.2	-	-	V					
Differential common mode range	V _{CM} CC	0.8	-	2.5	V					
Output low voltage	V _{OL} CC	0.0	-	0.3	V	1.5 kOhm pull- up to 3.6 V				
Output high voltage	V _{OH} CC	2.8	-	3.6	V	15 kOhm pull- down to 0 V				
DP pull-up resistor (idle bus)	R _{PUI} CC	900	-	1 575	Ohm					
DP pull-up resistor (upstream port receiving)	R _{PUA} CC	1 425	-	3 090	Ohm					
DP, DM pull-down resistor	R _{PD} CC	14.25	-	24.8	kOhm					
Input impedance DP, DM	Z _{INP} CC	300	-	-	kOhm	$0 \ V \leq V_{IN} \leq V_{DDP}$				
Driver output resistance DP, DM	Z _{DRV} CC	28	-	44	Ohm					

Table 29 USB OTG Data Line (USB_DP, USB_DM) Parameters (Operating Conditions apply)

 Measured at A-connector with 1.5 kOhm ± 5% to 3.3 V ± 0.3 V connected to USB_DP or USB_DM and at Bconnector with 15 kOhm ± 5% to ground connected to USB_DP and USB_DM.

3.2.9 Flash Memory Parameters

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Parameter	Symbol		Value	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Erase Time per 256 Kbyte Sector	$t_{\sf ERP}\sf CC$	_	5	5.5	S	
Erase Time per 64 Kbyte Sector	t _{ERP} CC	_	1.2	1.4	S	
Erase Time per 16 Kbyte Logical Sector	$t_{\sf ERP}\sf CC$	-	0.3	0.4	S	
Program time per page ¹⁾	t _{PRP} CC	-	5.5	11	ms	
Erase suspend delay	t _{FL_ErSusp}	-	-	15	ms	
Wait time after margin change	t _{FL_Margin} _{Del} CC	10	-	-	μs	
Wake-up time	t _{WU} CC	-	-	270	μS	
Read access time	t _a CC	22	-	-	ns	For operation with 1 / $f_{CPU} < t_a$ wait states must be configured ²⁾
Data Retention Time, Physical Sector ³⁾⁴⁾	t _{RET} CC	20	-	-	years	Max. 1000 erase/program cycles
Data Retention Time, Logical Sector ³⁾⁴⁾	t _{RETL} CC	20	-	-	years	Max. 100 erase/program cycles
Data Retention Time, User Configuration Block (UCB) ³⁾⁴⁾	t _{RTU} CC	20	-	-	years	Max. 4 erase/program cycles per UCB

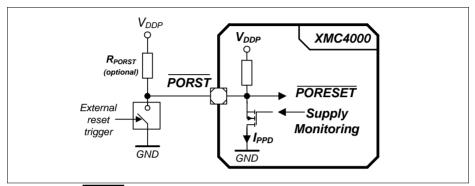
Table 33 Flash Memory Parameters

1) In case the Program Verify feature detects weak bits, these bits will be programmed once more. The reprogramming takes an additional time of 5.5 ms.

68

2) The following formula applies to the wait state configuration: FCON.WSPFLASH × (1 / f_{CPU}) $\geq t_a$.

3) Storage and inactive time included.


4) Values given are valid for an average weighted junction temperature of $T_{\rm J}$ = 110°C.

3.3.2 Power-Up and Supply Monitoring

PORST is always asserted when V_{DDP} and/or V_{DDC} violate the respective thresholds.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

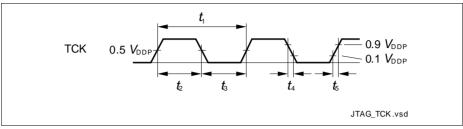
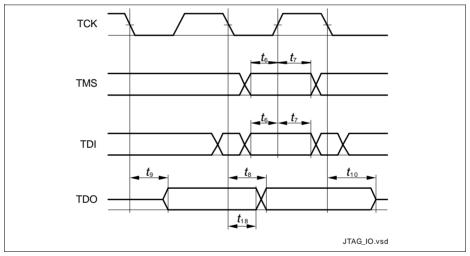

Figure 25 PORST Circuit

Table 34	Supply Monitoring Parameters	
----------	------------------------------	--


Parameter	Symbol		Value	s	Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Digital supply voltage reset threshold	V _{POR} CC	2.79 ¹⁾	-	3.05 ²⁾	V	3)	
Core supply voltage reset threshold	V _{PV} CC	-	-	1.17	V		
V_{DDP} voltage to ensure defined pad states	V _{DDPPA} CC	-	1.0	-	V		
PORST rise time	t _{PR} SR	-	_	2	μS	4)	
Startup time from power-on reset with code execution from Flash	t _{SSW} CC	-	2.5	3.5	ms	Time to the first user code instruction	
$V_{ m DDC}$ ramp up time	t _{VCR} CC	_	550	_	μS	Ramp up after power-on or after a reset triggered by a violation of $V_{\rm POR}$ or $V_{\rm PV}$	

1) Minimum threshold for reset assertion.

Table 44 USIC SSC Slave Mode Timing

5										
Parameter	Syn	nbol		Values	S	Unit	Note /			
			Min.	Тур.	Max.		Test Condition			
DX1 slave clock period	t _{CLK}	SR	66.6	-	-	ns				
Select input DX2 setup to first clock input DX1 transmit edge ¹⁾	t ₁₀	SR	3	-	-	ns				
Select input DX2 hold after last clock input DX1 receive edge ¹⁾	<i>t</i> ₁₁	SR	4	_	_	ns				
Receive data input DX0/DX[5:3] setup time to shift clock receive edge ¹⁾	<i>t</i> ₁₂	SR	6	_	_	ns				
Data input DX0/DX[5:3] hold time from clock input DX1 receive edge ¹⁾	t ₁₃	SR	4	-	_	ns				
Data output DOUT[3:0] valid time	t ₁₄	СС	0	-	24	ns				

 This input timing is valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0).

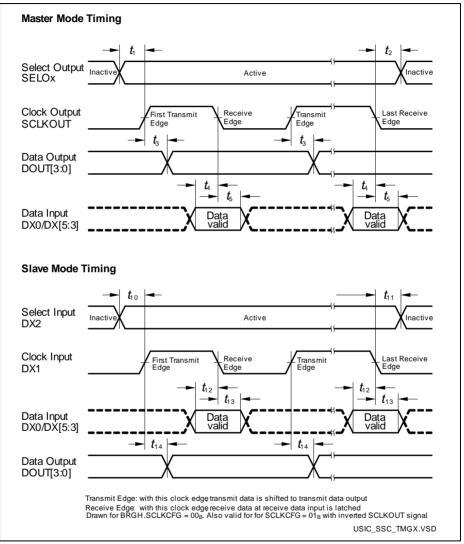


Figure 33 USIC - SSC Master/Slave Mode Timing

Note: This timing diagram shows a standard configuration, for which the slave select signal is low-active, and the serial clock signal is not shifted and not inverted.

Full-Speed Input Path (Read)

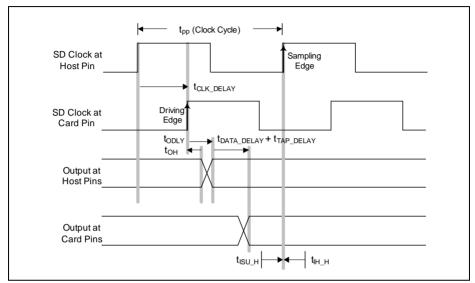


Figure 38 Full-Speed Input Path

Full-Speed Read Meeting Setup (Maximum Delay)

The following equations show how to calculate the allowed combined propagation delay range of the SD_CLK and SD_DAT/CMD signals on the PCB.

(5)

```
t_{\text{CLK\_DELAY}} + t_{\text{DATA\_DELAY}} + t_{\text{TAP\_DELAY}} + t_{\text{ODLY}} + t_{\text{ISU\_F}} < 0.5 \times t_{\text{pp}}
```

 $t_{\text{CLK_DELAY}} + t_{\text{DATA_DELAY}} < 0.5 \times t_{pp} - t_{\text{ODLY}} - t_{\text{ISU_F}} - t_{\text{TAP_DELAY}}$

 $t_{\mathrm{CLK_DELAY}} + t_{\mathrm{DATA_DELAY}} < 20 - 14 - 2 - t_{\mathrm{TAP_DELAY}}$

 $t_{\rm CLK_DELAY} + t_{\rm DATA_DELAY} < 4 - t_{\rm TAP_DELAY}$

The data + clock delay can be up to 4 ns for a 40 ns clock cycle.

Full-Speed Read Meeting Hold (Minimum Delay)

The following equations show how to calculate the allowed combined propagation delay range of the SD_CLK and SD_DAT/CMD signals on the PCB.

(6)

 $t_{CLK_DELAY} + t_{OH} + t_{DATA_DELAY} + t_{TAP_DELAY} > t_{IH_F}$

 $t_{\mathrm{CLK_DELAY}} + t_{\mathrm{DATA_DELAY}} > t_{\mathrm{IH_F}} - t_{\mathrm{OH}} - t_{\mathrm{TAP_DELAY}}$

 $t_{\text{CLK_DELAY}} + t_{\text{DATA_DELAY}} > 2 - t_{\text{TAP_DELAY}}$

The data + clock delay must be greater than 2 ns if $t_{TAP DELAY}$ is not used.

If the t_{TAP_DELAY} is programmed to at least 2 ns, the data + clock delay must be greater than 0 ns (or less). This is always fulfilled.

AC Timing Specifications (High-Speed Mode)

Parameter	Symbol		Values	5	Unit	Note/ Test Condition
			Min.	Max.		
Clock frequency in high speed transfer mode $(1/t_{pp})$	$f_{\rm pp}$	СС	0	48	MHz	
Clock cycle in high speed transfer mode	t _{pp}	СС	20	_	ns	
Clock low time	t _{WL}	СС	7	-	ns	
Clock high time	t _{WH}	СС	7	-	ns	
Clock rise time	t _{TLH}	СС	-	3	ns	
Clock fall time	t _{THL}	CC	-	3	ns	
Inputs setup to clock rising edge	t _{ISU_H}	SR	2	_	ns	
Inputs hold after clock rising edge	t _{IH_H}	SR	2	-	ns	
Outputs valid time in high speed mode	t _{ODLY_} H	¹ CC	-	14	ns	
Outputs hold time in high speed mode	t _{OH_H}	СС	2	-	ns	

Table 51 SDMMC Timing for High-Speed Mode

No clock delay:		(7)
	$t_{ODLY_H} + t_{DATA_DELAY} + t_{TAP_DELAY} + t_{ISU} < t_{WL}$	
With clock delay:		
	f . f . f . f . f	(8)
	$t_{ODLY_H} + t_{DATA_DELAY} + t_{TAP_DELAY} + t_{ISU} < t_{WL} + t_{CLK_DELAY}$	
		(9)
	$t_{DATA_DELAY} + t_{TAP_DELAY} - t_{CLK_DELAY} < t_{WL} - t_{ISU} - t_{ODLY_H}$	
	$t_{\text{DATA}_\text{DELAY}} - t_{\text{CLK}_\text{DELAY}} < t_{\text{WL}} - t_{\text{ISU}} - t_{\text{ODLY}_H} - t_{\text{TAP}_\text{DELAY}}$	
	$t_{DATA_DELAY} - t_{CLK_DELAY} < 10 - 6 - 14 - t_{TAP_DELAY}$	
	$t_{\text{DATA_DELAY}} - t_{\text{CLK_DELAY}} < -10 - t_{\text{TAP_DELAY}}$	

The data delay is less than the clock delay by at least 10 ns in the ideal case where t_{WL} = 10 ns.

High-Speed Write Meeting Hold (Minimum Delay)

The following equations show how to calculate the allowed skew range between the SD_CLK and SD_DAT/CMD signals on the PCB.

(10)

 $t_{\mathrm{CLK_DELAY}} < t_{\mathrm{WL}} + t_{\mathrm{OH_H}} + t_{\mathrm{DATA_DELAY}} + t_{\mathrm{TAP_DELAY}} - t_{\mathrm{IH}}$

 $t_{\mathrm{CLK_DELAY}} - t_{\mathrm{DATA_DELAY}} < t_{\mathrm{WL}} + t_{\mathrm{OH_H}} + t_{\mathrm{TAP_DELAY}} - t_{\mathrm{IH}}$

 $t_{\mathrm{CLK_DELAY}} - t_{\mathrm{DATA_DELAY}} < 10 + 2 + t_{\mathrm{TAP_DELAY}} - 2$

 $t_{\rm CLK_DELAY} - t_{\rm DATA_DELAY} < 10 + t_{\rm TAP_DELAY}$

The clock can be delayed versus data up to 13.2 ns (external delay line) in ideal case of t_{WL} = 10 ns, with maximum $t_{TAP DELAY}$ = 3.2 ns programmed.

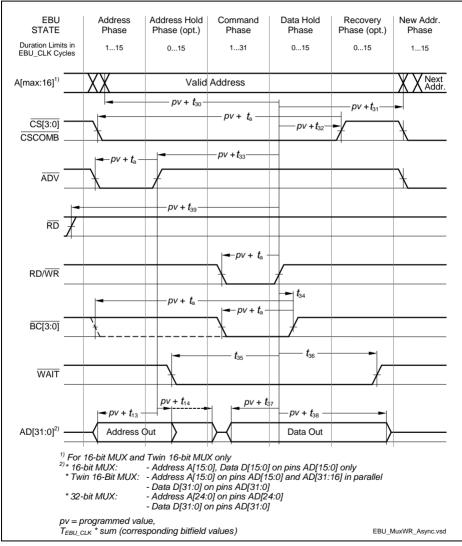

Write Timing

Table 55 Asynchronous Write Timing, Multiplexed and Demultiplexed

Parameter	Symbol	Limit Values		Unit		
				Min.	Max.	
A(24:0) output delay	to RD/WR rising	CC	t ₃₀	-2.5	2.5	ns
A(24:0) output delay	edge, deviation from	CC	t ₃₁	-2.5	2.5	
CS rising edge	the ideal programmed value.	CC	t ₃₂	-2	2	
ADV rising edge		CC	t ₃₃	-2	4.5	
BC rising edge		CC	t ₃₄	-2.5	2	
WAIT input setup		SR	t ₃₅	12	-	
WAIT input hold		SR	t ₃₆	0	-	
Data output delay		CC	t ₃₇	-5.5	2	
Data output delay		CC	t ₃₈	-5.5	2	
RD / WR output delay		CC	t ₃₉	-2.5	1.5	

Multiplexed Write Timing

3.3.10.2 EBU Burst Mode Access Timing

- Note: These parameters are not subject to production test, but verified by design and/or characterization.
- Note: Operating Conditions apply, with Class A2 pins and $C_1 = 16 \text{ pF}$.

Parameter	Symbol			Values	5	Unit	Note /
			Min.	Тур.	Max.		Test Condition
Output delay from BFCLKO rising edge	t ₁₀	CC	-2	-	2	ns	-
RD and RD/WR active/inactive after BFCLKO active edge ¹⁾	t ₁₂	CC	-2	-	2	ns	-
CSx output delay from BFCLKO active edge ¹⁾	<i>t</i> ₂₁	CC	-2.5	-	1.5	ns	-
ADV active/inactive after BFCLKO active edge ²⁾	t ₂₂	CC	-2	-	2	ns	-
BAA active/inactive after BFCLKO active edge ²⁾	<i>t</i> _{22a}	CC	-2.5	-	1.5	ns	-
Data setup to BFCLKI rising edge ³⁾	<i>t</i> ₂₃	SR	3	-	-	ns	-
Data hold from BFCLKI rising edge ³⁾	<i>t</i> ₂₄	SR	0	-	-	ns	-
WAIT setup (low or high) to BFCLKI rising edge ³⁾	t ₂₅	SR	3	-	-	ns	-
WAIT hold (low or high) from BFCLKI rising edge ³⁾	t ₂₆	SR	0	-	-	ns	-

Table 56 EBU Burst Mode Read / Write Access Timing Parameters

1) An active edge can be a rising or falling edge, depending on the settings of bits BFCON.EBSE / ECSE and the clock divider ratio.

Negative minimum values for these parameters mean that the last data read during a burst may be corrupted. However, with clock feedback enabled, this value is an oversampling not required for the internal bus transaction, and will be discarded.

2) This parameter is valid for BUSCONx.EBSE = 1 and BUSAPx.EXTCLK = 00_B.

For BUSCONx.EBSE = 1 and other values of BUSAPx.EXTCLK, ADV and BAA will be delayed by 1/2 of the internal bus clock period T_{CPU} = 1 / f_{CPU} .

For BUSCONx. EBSE = 0 and BUSAPx.EXTCLK = 11_B , add 2 internal bus clock periods.

For BUSCONx. EBSE = 0 and other values of BUSAPx.EXTCLK, add 1 internal bus clock period.

XMC4500 XMC4000 Family

Electrical Parameters

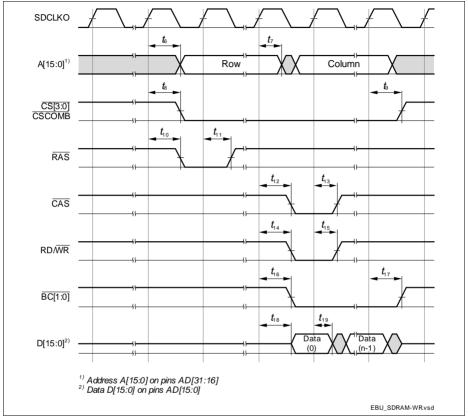


Figure 49 EBU SDRAM Write Access Timing